Lab 2: P4 Runtime

Copyright © 2017 — P4.org

P4 Runtime

- APl overview

+ Workflow

- Exercise - Tunneling
- ONOS demo

Copyright © 2017 — P4.org

Runtime control of P4 data planes

User supplied

Control Plane

Vendor supplied

|
|
P4 Program ’ P4 Compller Add/remove Extern Packet-in/out

I table entries control
1
: T CPU port

P4 Architecture |, Target-specific Extern .

Model : configuration Load objects DI FEmE :

I binary I
| |
]

Focus of this
session

Copyright © 2017 — P4.org 3

Existing ageroaches to runtime control

- P4 compiler auto-generated runtime APIs
o Program-dependent -- hard to provision new P4 program without restarting
the control plane!

- BMv2 CLI
o Program-independent, but target-specific -- control plane not portable!

- OpenFlow
o Target-independent, but protocol-dependent -- protocol headers and
actions baked in the specification!

- OCP Switch Abstraction Interface (SAl)
o Target-independent, but protocol-dependent

Copyright © 2017 — P4.org 4

Proeerties of a runtime control API

API Target-independent Protocol-independent
P o v X
BMv2 CLI X v/
OpenFlow v X
SAI V4 X
P4Runtime v v

Copyright © 2017 — P4.org 5

What is P4Runtime?

- Framework for runtime control of P4 targets
o Open-source API + server implementation

m https://github.com/p4lang/PI
> Initial contribution by Google and Barefoot Control plane

- Work-in-progress by the p4.org API WG

p4runtime.proto
(API)

Protobuf-based API definition T RH

o p4runtime.proto
> gRPC as a possible RPC transport

Program-independent |

server (e.g. gRPC)

| Target driver |§

- P4 program-independent

> APl doesn’t change with the P4 program e

- Enables field-reconfigurability . o
° Ability to push new P4 program without recompiling the . P4 targét -

software stack of target switches ~ TTTTTTToToTTomoooomes '

Copyright © 2017 — P4.org 6

https://github.com/p4lang/PI

More details on the P4ARuntime API

p4runtime.proto simplified excerpts:

message FieldMatch {

message TableEntry {
uint32 table_did; uint32 field_did;
repeated FieldMatch message Exact {

Action|action; bytes value;

int32 priority; }

e message Ternary {
} bytes value;
bytes mask;

}

message Action {

uint32 action_1id; oneof field_match_type {
Exact exact;
Ternary ternary;

message Param {
uint32 param_id;
bytes value;

+

repeated Param params;

}

Full protobuf definition:
https://github.com/p4lang/Pl/blob/master/proto/p4/p4runtime.proto

Copyright © 2017 — P4.org

To add a table entry, the control
plane needs to know:

IDs of P4 entities
o Tables, field matches, actions,
params, etc.

* Field matches for the

particular table
o Match type, bitwidth, etc.

« Parameters for the particular
action

« Other P4 program attributes

https://github.com/p4lang/PI/blob/master/proto/p4/p4runtime.proto

P4Runtime workflow

P4info

- Captures P4 program attributes

needed at runtime
o |Ds for tables, actions, params, etc.
o Table structure, action parameters, etc.

* Protobuf-based format

« Target-independent compiler output
o Same P4Info for BMv2, ASIC, etc.

Full P4Info protobuf specification:
https://github.com/p4lang/Pl/blob/master/proto/p4/config/p4info.proto

—

NNV

%
—H—

test.pdinfo

Q p4c-bm2-ss
) ; (compiler) - Control plane

p4runtime.proto

test.json

Copyright © 2017 — P4.org

i4 ~
/’ h
b \\
- ~

P4Runtime server

| BMv2 driver

simple_switch

https://github.com/p4lang/PI/blob/master/proto/p4/config/p4info.proto

P4Info examEIe

basic_router.p4

action 1ipv4_forward(bit<48> dstAddr,
bit<9> port) {
/* Action implementation */

table dipv4_lpm {
key = {
hdr.ipv4.dstAddr: 1lpm;
}
actions = {
ipv4_forward;

=)) =

P4 compiler

g\w"’
. @ Q

Copyright © 2017 — P4.org

basic_router.p4info

actions {
id: 16786453
name: "1dipv4_forward"
params {
id: 1
name: "dstAddr"
bitwidth: 48

id: 2

name: "port"
bitwidth: 9
}
}
tables {

id: 33581985
name: "dipv4_lpm"
match_fields {
id: 1
name: "hdr.ipv4.dstAddr"
bitwidth: 32
match_type: LPM
}
action_ref_id: 16786453
}

(e

P4Runtime example

basic_router.p4

action dipv4_forward(bit<48> dstAddr,
bit<9> port) {
/* Action implementation */
}
table dipv4_1lpm {
key = {
hdr.ipv4.dstAddr: 1lpm;
}
actions = {
ipv4_forward;

‘ Logical view of table entry

hdr.ipv4.dstAddr=10.0.1.1/32

Control plane
generates

-> 1dpv4_forward(00:00:00:00:00:10, 7)

Copyright © 2017 — P4.org

Protobuf message

table_entry {
table_+id: 33581985
match {
field_id: 1
lpm {
value: "\n\000\001\001"
prefix_len: 32
}
}
action {
action_id: 16786453
params {
param_id: 1
value: "\000\000\000\000\000\n"
}
params {
param_id: 2
value: "\000\007"
}
}
}

10

Remote control

taiiﬁiszﬁf §3581985 Target-independent OSPF BGP P4-defined etc
ma%:ZI{J_‘id:) protobuf format custom protoco' :
l:)valﬁe.: {\f\ogo\. 0o p4|nf0
prefix_len:
}
D Remote control plane
action_id: 16786453 Fes--__
params { \\:“::: -------
param_id: 1 AN ‘~\\\
value: "\000\0... ‘\\ S~<
} N
params { \\\ _____
param_id: 2 TTme--ll
value: 7 | S =L T T .
3 -
}
}
P R—
J/ P4Runtime P4Runtime)/ P4Runtime

control server control server control server

AY

Copyright © 2017 — P4.org 1 1

Local control

table_entry {
[T TTTTTmT ST TS S mmmmm T | Same table_id: 33581085
e " ! i match {
/[oser][-][P4-defined] G | target-independent fioia:
Fo protocol : protobuf format e "\Fies0n. ..
, pdinfo :) prefix_len: 8
/ Local control plane : }
K p % : action {
t _____________________ : __________________________ action_id: 16786453
pdinfo : P paramf'id: 1
. 1 value: "\000\0O...
P4Runtime L o
1 params
control server ! paran.id: 2
|) ’
Target driver ! -

!

P4 target

The P4 Runtlme API can be used equally well
by a remote or local control plane

Copyright © 2017 — P4.org 12

Set PiEeIine Config

p4runtime.proto simplified excerpt

message ForwardingPipelineConfig { ‘ Pipeline config
P4Info p4info; ieleleleleisinietnieieleleieletely ,
/* Target-specific P4 configuration. ;‘@ dinf : |
y 0 son
e.g JSON bits for BMv2 x/ 5 A P J :‘ Control plane
bytes p4_device_config; % T N
T p4c-bm2-ss el .
} (compiler) SetPipelineConfig()

Pipeline config bits

/ P4Runtime server

e | BMv2 driver

N simple_switch

o
<
N}
o o L

Copyright © 2017 — P4.org 1 3

P4Runtime API recap

Things we covered:

P4info .
Table entries
Set pipeline config

What we didn’t cover:

How to control other P4 entities
Externs, counters, meters
Packet-in/out support
Controller replication
Via master-slave arbitration
Batched reads/writes
Switch configuration
Outside the P4 Runtime scope

Achieved with other mechanisms
m e.g., OpenConfig and gNMI

Work-in-progress by the p4.org API WG

Expect API changes in the future

Copyright © 2017 — P4.org 1 4

P4 Runtime exercise

Copyright © 2017 — P4.org

15

Exercise Overview

Controller’s responsibilities:
1. Establish a gRPC connection to the
switches for the P4Runtime service mycontroller.py
2. Push the P4 program to each switch
3. Write the tunnel forwarding rules:
da. myTunnel ingressruleto
encapsulate packets on the ingress

switch e Y
b. myTunnel forward ruleto (10.0.1.1) ' 2 2 T (10022)

j (dst_id: 1) s1 3 37 82 (dst_id: 2)
forward packets on the ingress

switch
C. myTunnel egress ruleto
decapsulate and forward packets 2 e 3
on the egress switch 1 2
4. Read the tunnel ingress and egress p—
counters every 2 seconds h3

(10.0.3.3) (dst_id: 3)

Copyright © 2017 — P4.org 1 6

Getting started

The source code has already been downloaded on your VM:
~/tutorials/P4D2 2017 Fall/exercises/p4runtime

You should start by reading the README . md

In this exercise, you will need to complete the
implementation of writeTunnelRules
in mycontroller.py

You will need two Terminal windows: one for
your dataplane network (Mininet) that you will
start using make, and the other is for your
controller program.

To find the source code:

README.md

Implementing a Control Plane using P4 Runtime

Introduction

In this exercise, we will be using P4 Runtime to send flow entries to the switch instead of using the switch's CLI. We
will be building on the same P4 program that you used in the basic_tunnel exercise. The P4 program has been
renamed to advanced_tunnel.py and has been augmented with two counters (ingressTunnelCounter ,
egressTunnelCounter) and two new actions (myTunnel_ingress , myTunnel_egress).

You will use the starter program, mycontroller.py , and a few helper libraries in the p4runtime_lib directory to
create the table entries necessary to tunnel traffic between host 1 and 2.

Spoiler alert: There is a reference solution in the solution sub-directory. Feel free to compare your

implementation to the reference.

Step 1: Run the (incomplete) starter code

The starter code for this assignment is in a file called mycontroller.py , and it will install only some of the rules that
you need to tunnel traffic between two hosts.

Let's first compile the new P4 program, start the network, use mycontroller.py to install a few rules, and look at the
ingressTunnelCounter to see that things are working as expected.

1. In your shell, run:

https://github.com/p4lang/tutorials/ ke
m Copyright © 2017 — P4.org 17

https://github.com/p4lang/tutorials/

ONOS demo

Open Network Operating System (ONQOS) is an open source
SDN network operating system, originally created by ON.Lab
and currently hosted by the Linux Foundation.

Copyright © 2017 — P4.org 1 8

ONOS - SDN Controller

Distributed Core

(state management, notifications, high-availability & scale-out)

I B I B e
Southbound Core API

Providers Providers Providers

Protocols Protocols Protocols
[

Providers

Protocols

ONOS Core Subsystems

N I T T

OpenFlow P4 Runtime NETCONF _

oM

ONOS Core Subsystems

Topology Network Cfg.

P4 Runtime

P4 Runtime takeawaxs

* Program-independent API

o APl doesn’t change with the P4 program
> No need to restart the control-plane with a different P4 program

- Device does not need to be fully programmable

o Can be used on fixed-function devices
o Provided that their behavior can be expressed in P4

* Protobuf-based format

o Well-supported serialization format in many languages
o Supported by many RPC frameworks, e.g., gRPC

m Auto-generate client/server code for different languages
m No need to define common RPC features (e.g., authentication)

Copyright © 2017 — P4.org

22

P4 support in ONOS

Pipeline-agnostic Pipeline-aware

applications application

Pl APIs &

Pipeline-specific
entities

PD APIs
Flow Rule

Flow Objectives
Intents

Events
(Packet, Topology, etc.)

Pl Framework

Pl models
(table, match, actions,
groups, counters, etc.)

NEW NEW
Other drivers Tofino BMv2
Default NEW o T ittt
erau. o
B drivers P4Runtime

P4info,
bin, JSON

Device (Tofino, BMv2, etc.)

PD-to-PI translation serv.
(flow rule, groups, etc.)

Other protocols

PD = protocol-dependent
Pl = protocol-independent

