
Named Data Networking

with Programmable Switches

Rui Miguel
(speaker)

LASIGE, Faculdade de Ciências

Universidade de Lisboa
(Faculty of Sciences, University

of Lisbon), Lisbon

Salvatore Signorello

SnT,

University of Luxembourg,
Luxembourg

Fernando M. V. Ramos

LASIGE, Faculdade de Ciências

Universidade de Lisboa
(Faculty of Sciences, University of

Lisbon), Lisbon

IEEE ICNP 2018
The 26th IEEE International Conference on Network Protocols
Cambridge, UK, September 24-27, 2018

1st P4 European Workshop (P4EU)

PRESENTATION OUTLINE

I
• I Background & Motivation

II
• IArchitecture

 FIB | Pending Interest Table | Content Store

III
• Evaluation

IV
• NConclusion & Future Work

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

PART I

Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

• A network architecture that focuses on content distribution.

– In contrast to the point-to-point IP model.

– Better suits nowadays Internet’s most frequent use cases.

• Machines have no identification (addresses). Only data is
named.
– Consumers request a resource by name with an Interest packet.

– Producers emit a Data packet uniquely bound to that name.

– Routers forward these Interests according to its name.

– Instead of asking a specific host for content, the consumer asks
the network.

Named Data Networks

I Background

IP DNS DHCP ARP

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

4 / 30

INTEREST
uk/ac/cam/
index.html

A

Cambridge Server

Node A requests the main web
page of Cambridge University by
emitting an Interest into the
network. The Interest packet is
the request.

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

PIT

A

/uk/ac

FORWARDING INFO. BASE

*

INTEREST
uk/ac/cam/
index.html

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

Cambridge Server

5 / 30

Similarly to IP, the NDN FIB is

populated by routing protocols.

PIT

A

/uk/ac

FORWARDING INFO. BASE

*

INTEREST
uk/ac/cam/
index.html

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

Cambridge Server

5 / 30

PIT

A

INTEREST
uk/ac/cam/
index.html

/uk/ac

FORWARDING INFO. BASE

/uk/ac/cam

* Drop

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

PIT

A

INTEREST

uk/ac/cam/
index.html

B

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

PIT

A

INTEREST
uk/ac/cam/
index.html

B

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

PIT

A

B

DATA
uk/ac/cam/
index.html

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

Cambridge Server

5 / 30

PIT

A

B
DATA

uk/ac/cam/
index.html

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

PIT

A

B
DATA

uk/ac/cam/
index.html

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

A

B

C

INTEREST
uk/ac/cam/
index.html

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

A

B

C
DATA (cached)
uk/ac/cam/
index.html

Named Data Networks

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

5 / 30

• No line-rate production hardware exists for NDN.

• Existing routers can’t be extended to support the non-
conventional packet processing required by NDN.

– Current solutions are software-based. FIB has thus far always
been implemented in software.

• We leverage the recent availability of programmable
switches to propose the design and implementation of a new
line-rate NDN router written in P4_16.

Motivation

I Background

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

6 / 30

PART II

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

Architecture

• High-level language to express data plane forwarding behavior.

• The programmer specifies headers, parser and the processing
sequence a packet should undergo.

• A compiler maps the program to the underlying device’s
capabilities and hardware.

C
program

ARM Intel MIPS

P4
program

Barefoot
Tofino

FPGA BMv2

P4₁₆ as implementation language

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

8 / 30

Parser

Architecture

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

NDN Router

Content
Store

Pending
Interest

Table
(PIT)

Forwarding
Information

Base
(FIB)

Deparser
INTEREST

uk/ac/cam/

index.html

Parser

Architecture

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

INTEREST
uk/ac/cam/

index.html

NDN Router

• PROBLEM 1: NDN packets do not follow the typical packet
structure. They are a tree of Type-Length-Values (TLVs).

Parser

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

TYPE LENGTH
(in bytes)

VALUE EXTENSION

1 byte 1 byte 0, 2, 4, or 8 bytes size is LENGTH or

EXTENSION bytes

9 / 30

• PROBLEM 1: NDN packets do not follow the typical packet
structure. They are a tree of Type-Length-Values (TLVs).

• What “uk/ac/cam/index” looks like at the network level:

Interest

(TLV0) 22 TLVN TLVC 2 uk TLVC 2 ac TLVC 3 cam TLVC 5 index 20

Parser

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

TYPE LENGTH
(in bytes)

VALUE EXTENSION

1 byte 1 byte 0, 2, 4, or 8 bytes size is LENGTH or

EXTENSION bytes

9 / 30

• In P4_14, parsing this packet structure incurs an
enormous amount of parser states.

Parser

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

10 / 30

• In P4_14, parsing this packet structure incurs an
enormous amount of parser states.

• P4_16 makes it easier. SOLUTION:
1. Use a header_union. The union’s members cover all

the TLV possibilities.

2. Encapsulate TLV extraction logic inside a subparser.
The main parser calls the subparser whenever a TLV
needs to be extracted from the packet.

Parser

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

header_union tlv_hu {
 smallTLV_h stlv;
 mediumTLV_h mtlv;
 largeTLV_h ltlv;
}

header smallTLV_h {
 bit<8> type;
 bit<8> length;
 varbit<252 × 8> value;
}

header mediumTLV_h {
 bit<8> type;
 bit<8> lencode; //=253
 bit<16> extension;
 varbit<0xffff × 8> value;
}

10 / 30

• In P4_14, parsing this packet structure incurs an
enormous amount of parser states.

• P4_16 makes it easier. SOLUTION:
1. Use a header_union. The union’s members cover all

the TLV possibilities.

2. Encapsulate TLV extraction logic inside a subparser.
The main parser calls the subparser whenever a TLV
needs to be extracted from the packet.

• ADVANTAGES:
+ P4 program with less code & more readable

Parser

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

header_union tlv_hu {
 smallTLV_h stlv;
 mediumTLV_h mtlv;
 largeTLV_h ltlv;
}

header smallTLV_h {
 bit<8> type;
 bit<8> length;
 varbit<252 × 8> value;
}

header mediumTLV_h {
 bit<8> type;
 bit<8> lencode; //=253
 bit<16> extension;
 varbit<0xffff × 8> value;
}

10 / 30

• PROBLEM 2: Interest names may have any number of components.

– “uk/ac/cam/index” (4 components)

• SOLUTION:

– Use the header stack P4 type.

– The parser is a state machine that can transition to itself.

– BMv2-ss limitation: one must write MAX parser states, because only
compile-time values are allowed as header stack indexes.

0 1 i Max

extract component i

MAX was defined at compile time

Parser

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

11 / 30

Architecture

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

NDN Router

Forwarding
Information

Base
(FIB)

INTEREST
uk/ac/cam/

index.html

• The FIB routes an Interest packet by longest prefix match of the
name therein.

• PROBLEM: P4 has little support to process strings. We can parse
them to varbit fields, but these can’t be used to match on tables.

Forwarding Information Base (FIB)

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

/uk/ac

FORWARDING INFO. BASE

/uk/ac/cam

* Drop

12 / 30

• The FIB routes an Interest packet by longest prefix match of the
name therein.

• PROBLEM: P4 has little support to process strings. We can parse
them to varbit fields, but these can’t be used to match on tables.

• SOLUTION:

1. Use the hash() primitive to convert to an
unsigned, fixed-length bit type.

2. Perform lpm (longest prefix match) match
 kind on the result (details follow).

Forwarding Information Base (FIB)

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

/uk/ac

FORWARDING INFO. BASE

/uk/ac/cam

* Drop

12 / 30

• Introducing a new data structure, the hashtray.
– DEFINITION: Given an NDN name, a hashtray is a series of blocks each with

the result of hashing a component.

– In our implementation, we used MAX=8 blocks and a 16-bit hash function
(names longer than 8 components match only with the first 8 components).

• The hashtray is used in 2 situations:

1. When building FIB entries. Each FIB entry is a hashtray.

2. Whenever an Interest needs to be routed.

FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

typedef bit<8 × 16> hashtray_t;

13 / 30

• Let’s add the entry:

/ uk / ac / cam  port 2

Constructing the FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

14 / 30

• Let’s add the entry:

 / uk / ac / cam

h

h(“uk”)

Block no.1 Block no.2 Block no.3 Block no.4 Block no.8 Block no.5

Constructing the FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

15 / 30

• Let’s add the entry:

 / uk / ac / cam

h

h(“uk”) h(“ac”)

Block no.1 Block no.2 Block no.3 Block no.4 Block no.8 Block no.5

Constructing the FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

15 / 30

• Let’s add the entry:

 / uk / ac / cam

h

h(“uk”) h(“ac”) h(“cam”)

Block no.1 Block no.2 Block no.3 Block no.4 Block no.8 Block no.5

Constructing the FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

15 / 30

• Let’s add the entry:

 / uk / ac / cam

h(“uk”) h(“ac”) h(“cam”) 0x0000 0x0000 0x0000

Block no.1 Block no.2 Block no.3 Block no.4 Block no.8 Block no.5

Constructing the FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

Add hashtray to the FIB

15 / 30

Constructing the FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

2

lpm mask out port

FIB, collection of hashtrays (in TCAM)

0 0 0 0 0

• Our entry is associated with an lpm mask covering three blocks
(48 bits), as well as the outgoing port.

17 / 30

Constructing the FIB

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 h(“uk”) 7
out port

FIB, collection of hashtrays (in TCAM)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

• All entries are added using the same process.

17 / 30

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 h(“uk”) 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

NAME: uk / ac / cam / index

Interest

18 / 30

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 h(“uk”) 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

NAME: uk / ac / cam / index

Interest

h(“uk”) h(“ac”) h(“cam”) h(“index”) 0x0000

16 bits

0x0000 temp hashtray
(in metadata)

18 / 30

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

NAME: uk / ac / cam / index

Interest

fib.apply()

h(“uk”) h(“ac”) h(“cam”) h(“index”) 0x0000 0x0000

16 bits

h(“uk”)

18 / 30

temp hashtray
(in metadata)

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

NAME: uk / ac / cam / index

Interest

fib.apply()

h(“uk”) h(“ac”) h(“cam”) h(“index”) 0x0000 0x0000

16 bits

h(“uk”)

18 / 30

temp hashtray
(in metadata)

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

NAME: uk / ac / cam / index

Interest

fib.apply()

h(“uk”) h(“ac”) h(“cam”) h(“index”) 0x0000 0x0000

16 bits

h(“uk”) √

18 / 30

temp hashtray
(in metadata)

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

NAME: uk / ac / cam / index

Interest

fib.apply()

h(“uk”) h(“ac”) h(“cam”) h(“index”) 0x0000 0x0000

16 bits

h(“uk”) √

√

18 / 30

temp hashtray
(in metadata)

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

NAME: uk / ac / cam / index

Interest

fib.apply()

h(“uk”) h(“ac”) h(“cam”) h(“index”) 0x0000 0x0000

16 bits

h(“uk”) √

√

×

18 / 30

temp hashtray
(in metadata)

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

 2 h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 h(“uk”) 7
out port

×

×

√

√

√

×
no match √ match √ lower priority match

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

NAME: uk / ac / cam / index

Interest

h(“uk”) h(“ac”) h(“cam”) h(“index”) 0x0000 0x0000

16 bits

18 / 30

temp hashtray
(in metadata)

FIB, collection of hashtrays (in TCAM)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

NAME: uk / ac / cam / index

Interest
 port 2

18 / 30

h(“uk”) h(“ac”) h(“cam”) 48

16 bits

h(“pt”) h(“ul”) h(“fc”) 48 0 0 0 0 0

32 h(“uk”) h(“ac”)

h(“uk”) h(“ac”) h(“kcl”) 48

4

3
9

lpm mask

16 h(“uk”) 7
out port

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0 0

2

FIB, collection of hashtrays (in TCAM)

• Our method guarantees line-rate processing and greatly
reduces memory footprint over the state-of-the-art.

100

2100

4100

6100

8100

10100

12100

8 16 24 32 40 48 56 64

Our FIB solution

NDN.p4 (avg)

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

256 bytes

128 bytes

1024 bytes

Memory weight (per entry)

MAX components 128 bits

19 / 30

• Our method is highly flexible.

– Not all components need to be used to build the hashtray;

– Blocks need not necessarily be the same size;

– So long as the FIB entries and temporary hashtrays from passing
Interests are built the same way, the scheme works.

FIB lpm matching

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

EXAMPLE:

— Doesn’t start with “uk/ac/cam”  port 1

— /uk/ac/cam/dpt/group/resource  consult FIB

5 bits 4 bits 40 bits
ignore

20 / 30

• PROBLEM: Hash collisions may lead to ambiguity between
entries; in some cases, bad routing decisions.

• POSSIBLE SOLUTIONS:
– Wider hash outputs => higher memory requirements (double the width, double

the memory ), but has the advantage of supporting larger namespaces;

– Leave the problem to be solved by the control plane;

– (FUTURE WORK) Double hashing, cuckoo hashing;

FIB hash collisions

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

21 / 30

Architecture

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

NDN Router

Pending
Interest

Table
(PIT)

INTEREST
uk/ac/cam/

index.html

• Memorizes what each port requested.

PIT

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

0 /uk/ac/cam/index

1

2

3 4

1 1 0

0 /pt/ul/fc/index 0 0 1

2 1 3 4

port

22 / 30

• Memorizes what each port requested.

• SOLUTION: Implemented with 2 register arrays.

– Each register index holds a bit vector. Each bit represents a port.

– An additional register array stores hashtrays to deal with index collisions.

– Whenever a hashtray indexes to an occupied cell, it is dropped and the
consumer must reemit.

PIT

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

register<bit<MAX_PORTS>>(PIT_SIZE) PIT;

0 /uk/ac/cam/index

1

2

3 4

1 1 0

0 /pt/ul/fc/index 0 0 1

2 1 3 4

port

22 / 30

Architecture

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

NDN Router

Content
Store

INTEREST
uk/ac/cam/

index.html

• Caches packets.

– Optional, but key to ensuring the network’s efficiency.

• We implemented two versions in BMv2-ss:

– Register implementation;

– Directly implemented in C++ in the switch code.

• Possible solutions when porting to hardware:

– Register implementation;

• Optimal performance, but competes with PIT and FIB for memory.

– Non-volatile storage attached to the device, accessed through extern calls;

– Port mirroring: the content store is a host connected to the device.

• Increased latency.

• Additional mapping required.

Content Store

II Architecture

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

23 / 30

PART III

Evaluation

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

• Tests run on an off-the-shelf computer, using Behavioral Model 2
and its simple_switch target (BMv2-ss). A host emits Interests, the
other receives them.

• Two tests run:
– CPU and throughput: The emitter attempts to exhaust system resources: first with

a P4 Ethernet switch (parses the Ethernet header and matches against two tables)
and then with our NDN router. We collect throughput and CPU usage measures.

– Functional block weight: Without exhausting the system, we find the latency of
each functional block by isolating it from the others. Then, we vary the number of
components in the Interest packets to assess the latency increase that results from
that variation, on each of the functional blocks.

Experimental Setup

III Evaluation

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

25 / 30

E R

CPU and throughput

III Evaluation

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

26 / 30

• The P4 NDN router performs many more activities than the P4
Ethernet switch, so it has less throughput.

Functional block weight

III Evaluation

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

27 / 30

• The parser and the hashtray construction (“Other”) yield higher
latency as the number of components increases.

– The other functional blocks are within the acceptable error margins

PART IV

Conclusions & Future Work

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

• Optimize hashtray construction process, for example by
parallelizing hash calculations.

• Port and adapt our solution to a hardware platform.
– NetFPGA SUME
– Barefoot Tofino

• Larger-scale evaluations.

Ongoing & Future Work

IV Conclusions & Future
Work

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

29 / 30

• NDN is a promising new architecture tailored for the Internet’s
most frequent use case: content distribution.
– However, no NDN line-rate hardware exists.
– By consequence, current NDN implementations are totally or partially

software-based.

• Our contribution is the design and implementation of a P4_16 NDN

router that:
– Includes all of an NDN router’s functional blocks;
– Can be ported to hardware, and takes existing hardware in consideration

(e.g. fast TCAM for the FIB);
– Requires scalable amounts of memory compared to the state-of-the-art

solution.

Conclusions

IV Conclusions & Future
Work

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

30 / 30

Thank you for listening!

Questions?

IEEE ICNP 2018 1st P4 European Workshop Named Data Networking with Programmable Switches

Rui Miguel
(speaker)

LASIGE, Faculdade de Ciências

Universidade de Lisboa
(Faculty of Sciences, University

of Lisbon), Lisbon

