
2020

The nanoPU:
Redesigning the CPU-Network Interface to Minimize 

RPC Tail Latency
Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad 

Shahbaz, Changhoon Kim, Nick McKeown

Stanford University



Towards Fine-Grained Computing
• Serverless computing (deployed as microservices) enables “fine-

grained” computing on thousands of cores, reducing completion times:
• Video encoding (ExCamera NSDI’17)
• Object classification (Sprocket SoCC’18)
• Software compilation (gg ATC’19)
• MapReduce-style analytics (Pyren SoCC’17 , Flint CLOUD’18, Locus NSDI’19)

2

2 Hours 2 Minutes

ExCamera NSDI ‘17

Video
Encoding

Nanoservices
• Composed of nanotasks
• 1µs msg processing times
• Cache resident working sets

Milliseconds?



Tail Latency Matters!

3

N

Average: 1µs
99% Tail: 100µs

P(
Ap

p 
Co

m
pl

et
io

n 
Ti

m
e 

> 
10

0µ
s)

Number of Servers (N)
1 500 1000 1500 2000

.1

0

.2

.3

.4

.5

.6

.7

.8

.9

1

Credit: L. Barroso, et al. “The Datacenter As a Computer”, Ch. 2

99% Tail = 100µs

100 servers
0.63

99.9% Tail = 100µs

99.99% Tail = 100µs
0.18



What causes high RPC tail latency?
Primary Cause

Poor job scheduling access to critical shared resources:
• Network fabric resources
• CPU cores
• Host memory bandwidth and cache space



Problems with Modern CPU/NIC/OS Designs
1. Suboptimal congestion control for scheduling of the network fabric

Network

Client Server

Drop!

Long
Msg

Short
Msg

5
NDP (SIGCOMM’17) Homa (SIGCOMM’18) HPCC (SIGCOMM’19)



App 0 App 1

Load Bal Transport

Problems with Modern CPU/NIC/OS Designs
1. Suboptimal congestion control for scheduling of the network fabric
2. Inefficient load balancing across cores
3. Inefficient thread scheduling on each core
4. Memory bandwidth & cache contention

NIC
P
C
I
e

Memory 6

Cache

CPU

CPU

CPU

CPU

CPU

CPU

msg

Thread Scheduler

App 0

App 1
Hash

p1 p2p0

Wire-to-wire 
Latency

Modern GOAL

Min (ns) 850 <100

Tail (μs) 10-100 1-2

eRPC (NSDI’19)



App 0 & App 1

Problems with Modern CPU/NIC/OS Designs
1. Suboptimal congestion control for scheduling of the network fabric
2. Inefficient load balancing across cores
3. Inefficient thread scheduling on each core
4. Memory bandwidth & cache contention

NIC
P
C
I
e

Memory 7

Cache

CPU

CPU

CPU

CPU

CPU

CPUmsg

p1 p2p0

Wire-to-wire 
Latency

Modern GOAL

Min (ns) 850 <100

Tail (μs) 10-100 1



The nanoPU Design

8

d

E
t
h
e
r
n
e
t
 
M
A
C
 
+
 

S
e
r
i
a
l
 
I
O

NIC

Core 0

Core N-1

• Why directly to/from the core?
1. Minimize wire-to-wire latency (<100ns)
2. Avoid cache & memory BW contention

J-Machine (1989)



nanoPU’s Register File Network Interface

9

HW Thread Sched.

netRX

netTX

R
e
g
i
s
t
e
r
s

L1 I$

Core

L1 D$

RX Queue

TX Queue

MV
Swap



nanoPU’s Register File Network Interface

10

HW Thread Sched.

netRX

netTX

R
e
g
i
s
t
e
r
s

L1 I$

Core

L1 D$

RX Queues

TX Queues

MV

P=1P=0



nanoPU Transport

11

d

E
t
h
e
r
n
e
t
 
M
A
C
 
+
 

S
e
r
i
a
l
 
I
O

NIC Core 0

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

HW Transport

Reassembly

Message Buffer

Packetization

Message Buffer

Pkts
Msgs

Core N-1

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

TONIC (NSDI’20)

PISA
Ingress

Egress

nanoPU Transport

• Programmable Packet Processing
• Packets ⟷ Messages
• Application Interface:

Reliable, One-Way, Message Delivery



nanoPU Core Load Balancing

12

d

PISA
Ingress

Egress

E
t
h
e
r
n
e
t
 
M
A
C
 
+
 

S
e
r
i
a
l
 
I
O

Programmable NIC Core 0

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

Reassembly

Message Buffer

HW Transport

Packetization

Message Buffer

Pkts

Msgs

Core N-1

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

HW Core Sel.

Global RXQs

Global TXQs

NeBuLa (ISCA’20)

nanoPU Load Balancing

• Throughput: 390 Mrps
• Latency: <1ns



The nanoPU Design

13

d

PISA
Ingress

Egress

E
t
h
e
r
n
e
t
 
M
A
C
 
+
 

S
e
r
i
a
l
 
I
O

Programmable NIC Core 0

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

Reassembly

Message Buffer

HW Transport

Packetization

Message Buffer

Pkts

Msgs

Core N-1

HW Thread Sched.

netRX
netTXRX/TXQs

R
e
g
i
s
t
e
r
s

HW Core Sel.

Global RXQs

Global TXQs



nanoPU Prototype
• Quad-core nanoPU based on the open source RISC-V Rocket core
• 4,300 lines of Chisel code
• 1,200 lines of C and RISC-V assembly for custom nanokernel
• Implements NDP transport

14

Programmable 200Gb/s NIC

Ethernet
MAC +
Serial 

IO

Rocket Cores 0 to 3

HW Priority Thread Sched.

netRX
netTX

R
e
g
i
s
t
e
r
s

Local 
RX/TXQs L

1
C

M
a
i
n
 
M
e
m
o
r
y

RISC-V CPU

L
2
C

App reads a message

App writes a message

26ns 5.3ns 2.2ns 3.1ns

0.9ns0.9ns0.6ns26ns

PISA
Pipeline

Packet

Message
Global 
RX/TXQs

HW NDP Transport

Loopback Latency = 13ns
Wire-to-Wire Latency = 65ns

HW JBSQ
Core Sel.



Evaluation Methodology

• nanoPU prototype running on AWS FPGAs
• Large-scale (hundreds of cores), cycle-accurate simulations with Firesim
• FPGA clock rate is 90MHz, simulated target clock rate is 3.2GHz

15

+
ISCA’18



Microbenchmarks

16

Wire-to-Wire Latency (ns) Max Per-Core Throughput (Gb/s)
nanoPU 65 200

eRPC 850 78

Programmable 200Gb/s NIC

Ethernet
MAC +
Serial 

IO

Rocket Cores 0 to 3

HW Priority Thread Sched.

netRX
netTX

R
e
g
i
s
t
e
r
s

Local 
RX/TXQs L

1
C

M
a
i
n
 
M
e
m
o
r
y

RISC-V CPU

L
2
C

App reads a message

App writes a message

26ns 5.3ns 2.2ns 3.1ns

0.9ns0.9ns0.6ns26ns

PISA
Pipeline

Packet

Message
Global 
RX/TXQs

HW NDP Transport

Loopback Latency = 13ns
Wire-to-Wire Latency = 65ns

HW JBSQ
Core Sel.



Thread Scheduling Evaluation

• Single core running two threads: high priority and low priority
• 500ns request processing time
• 10K requests per thread
• nanoPU HW thread scheduler vs. 5us timer-driven thread scheduler

17



Thread Scheduling Evaluation
Msg. Length RX (Gb/s) TX (Gb/s)

Fixed 195 200
Variable 68 71

Table 1: RX/TX throughput of a single-core nanoPU for two ap-

plications processing 1KB messages: one designed for fixed-

length messages and the other for variable-length messages.

connected by C++ switch models running on the AWS x86
host CPUs.

Custom load generation in Firesim: To evaluate our sys-
tem’s tail latency under load, we added a custom (C++) load
generator to Firesim, connected to the nanoPU by a simulated
network link with 43ns latency. In our runs, it generates 20k
requests with Poisson inter-arrival times, and measures the
end-to-end latency of each RPC call.

4.2. Microbenchmarks

a. Wire-to-wire and loopback latency: Figure 2 shows the
latency breakdown for a single 8B application message (in a
72B packet) measured from the Ethernet wire through a simple
loopback application in the core, then back to the wire.4 As
shown, the loopback latency through the nanoPU is only 13ns,
but in practice we also need an Ethernet MAC and serial I/O,
leading to a wire-to-wire latency of 65ns. The wire-to-wire
latency is about 13⇥ faster than the current state-of-the-art on
a commodity server, eRPC [28], which reports a host-stack
latency of 850ns.

b. Single core throughput: Table 1 shows the maximum
sustainable RX and TX throughput for a single nanoPU core,
processing 1KB messages for two applications: one designed
to process fixed-length messages and another designed to pro-
cess variable-length messages. With fixed-length message
processing, the send and receive loops can be unrolled, mak-
ing them three times faster than for variable-length message
processing. With loop unrolling, almost all instructions per-
form network reads and writes, whereas without it, 66% of the
instructions are needed to manage the loop (i.e., branch and
increment instructions). eRPC [28] reports a per-core goodput
of up to 75 Gb/s, corresponding to a wire rate of about 78 Gb/s,
about 2.5 times slower than the nanoPU.

The nanoPU’s programmable NIC is designed to process
packets at a line-rate of 200 Gb/s. Thus, for small 8B RPC
request messages (transported by 72B Ethernet packets), the
NIC supports a maximum throughput of 350 million requests
per second (Mrps), or about 50⇥ higher than existing systems
that perform network packet processing and message load
balancing in software on a dedicated CPU core [27, 41, 28].

c. Thread scheduling: We evaluate the performance of
nanoPU’s hardware thread scheduler (which has its own inter-

4Our prototype does not include MAC & Serial IO, so we add real values
measured on a 100GE switch (with Forward Error Correction disabled).

● ● ● ●
●

●

●

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

0

50

100

150

1.00 1.25 1.50 1.75 2.00
Load (Mrps)

99
%

 T
ai

l L
at

en
cy

 (u
s)

● Timer−LowPri Timer−HiPri nanoPU−LowPri nanoPU−HiPri

Figure 3: Comparing nanoPU’s hardware thread scheduler

performance against a more traditional timer-interrupt driven

thread scheduler. Graph plots 99% tail latency vs load for both

a high-priority and low-priority thread for each experiment.

rupt) against a more traditional timer-interrupt driven sched-
uler. In both cases, scheduling decisions are made in hard-
ware.5 For the timer-interrupt driven thread scheduling policy,
we disable the hardware thread scheduler’s interrupt and in-
stead configure a timer interrupt to fire every 5µs, at which
point the kernel swaps in the highest-priority active thread.
We use 5µs timer interrupts to match the granularity of state-
of-the-art low latency operating systems [27, 41].

We evaluate both schedulers when they are scheduling two
threads: one with priority 0 (high) and one with priority 1
(low). We tell the load generator to generate requests with
an on-core service time of 500ns (i.e., an ideal system will
process 2Mrps).

Figure 3 shows the 99% tail latency vs load for both thread
scheduling policies, with a high and low priority thread. By
allowing the hardware to drive the thread scheduling logic as
messages arrive, the tail latency of the high and low priority
threads are reduced by 4⇥ and 6.5⇥ at low load, respectively;
and it can sustain at least 96% load.6

d. Bounded message processing time: We evaluate the
ability of the nanoPU to bound the tail latency of well-behaved
applications, even when they are sharing a core with misbehav-
ing applications. To do this, we configure one of the nanoPU’s
cores to run two threads, one well-behaved thread and one
misbehaving thread. All requests have an on-core service time
of 500ns, except when a thread misbehaves (once every 100
requests), in which case the request processing time is 5µs.
Both threads are configured to run at priority 0.

Figure 4 shows the 99% tail latency vs load for the well-
behaved and misbehaving threads for the following two exper-
iments:
• Bounded time: the bounded message processing time fea-

ture of the nanoPU thread scheduler is enabled. If a priority
0 thread takes longer than 1µs to process a request then its

5A software scheduler would either need to make scheduling decisions on
a separate core or upon handling the timer interrupt. Hence, its performance
would only be worse than what we evaluate here.

6The nanoPU does not currently allocate NIC buffer space on a per-
application basis. This means that when the RX queue for a low priority
application builds up, it can cause high-priority requests to be dropped. This
will be improved in the next version of the nanoPU.

7

18

96% load
Hi Priority – 2.1μs

Low Priority – 18.2 µs

50% load
Hi Priority – 4x lower (1.4μs)

Low Priority – 6.5x lower (3.2µs)

99
%

 T
ai

l L
at

en
cy

 (µ
s)

Load (Million Requests Per Second)



Additional Evaluations

19

Core Load Balancing

NDP Transport



Real Applications Running on the nanoPU

• MICA Key Value Store
• Chain Replication
• Raft Consensus

20



nanoPU Deployment Possibilities

21

1 nanoPU Cluster

4 nanoPU SmartNIC

100GbE

Host
CPU

nanoPU 
NIC

Memory

P
C
I
e

3 Modified Conventional CPU

Memory

CPU
Pipeline

nanoPU 
NIC

100GbE

DMA

2 nanoPU High IO Capacity Package

• 512 cores
• 256 x 100Gb/s



nanoPU Conclusions

Key Takeaway:
To truly minimize average and tail RPC latency:

1. Fast path directly between network and CPU register file
2. Move key resource scheduling decisions to HW: transport, load balancing, 

thread scheduling

22

Challenges:
• Need to rewrite applications
• Figure out how to use more sophisticated processors



2020

Thank You
sibanez@stanford.edu


