
High-Throughput  
Publish/Subscribe  
in the Forwarding Plane

Theo Jepsen, Masoud Moushref, Antonio Carzaniga,  
Nate Foster, Xiaozhou Li, Milad Sharif, Robert Soulé  
Università della Svizzera italiana (USI) and Barefoot Networks 

1

Publish/Subscribe Is Critical  
to Distributed Applications

2

Publish/Subscribe Is Critical  
to Distributed Applications

3

Publish/Subscribe Is Critical  
to Distributed Applications

4

Publish/Subscribe Is Critical  
to Distributed Applications

5

Publish/Subscribe Is Critical  
to Distributed Applications

6

Publish/Subscribe Is Critical  
to Distributed Applications

7

Motivating Example: 
ITCH Market Feed

8

End-Points filter
based on trading
strategy: 
stock == MSFT

2
1 NASDAQ publishes feed:

Ether/IP/UDP
MOLD

GOOGL
MSFT
ORCL

Motivating Example: 
ITCH Market Feed

8

End-Points filter
based on trading
strategy: 
stock == MSFT

2
1 NASDAQ publishes feed:

High volume,
High tail latency

Ether/IP/UDP
MOLD

GOOGL
MSFT
ORCL

In-software Processing:  
Multicast + Kernel Bypass

Unnecessary congestion
in the network

Burden of filtering on
hosts leads to queuing

Highlights need for  
“in network” solution

9

Nasdaq 9/30/17, 0.5% GOOGL

Challenges

Different applications have different message formats

Filter content based on expressive conditions

Deep packets and multiple messages per packet

10

Camus: Dataplane Pub/Sub

11

Controller

P4 Compiler

Camus Compiler
Filters (subscriptions)

Control plane
rules

P4 program

P4 header spec

P4 parser spec

Publisher Interface

A publisher simply composes and sends packets

Camus generates application-specific parsing logic

Parsing logic is static, installed once with Camus

12

Subscriber Interface

Filters are boolean formulas of atomic predicates and an action

 stock == GOOGL : fwd(1)

A forwarding action may be unicast or multicast:

 stock == GOOGL : fwd(1,2,3)

Rules may be stateful or compute a function:

 stock == GOOGL ∧ avg(price) > 50 : fwd(1)

13

Compiling Static Pipeline

14

header_type itch_add_order_t {
 fields {
 stock_locate: 16;
 /* … */
 shares: 32;
 stock: 64;
 price: 32;
 }
}
header itch_add_order_t add_order;
@pragma query_field(add_order.shares)
@pragma query_field(add_order.price)
@pragma query_field_exact(add_order.stock)
@pragma query_counter(my_counter, 100, 1024)

Compiling Static Pipeline

14

header_type itch_add_order_t {
 fields {
 stock_locate: 16;
 /* … */
 shares: 32;
 stock: 64;
 price: 32;
 }
}
header itch_add_order_t add_order;
@pragma query_field(add_order.shares)
@pragma query_field(add_order.price)
@pragma query_field_exact(add_order.stock)
@pragma query_counter(my_counter, 100, 1024)

P4 header for 
message format

Compiling Static Pipeline

14

header_type itch_add_order_t {
 fields {
 stock_locate: 16;
 /* … */
 shares: 32;
 stock: 64;
 price: 32;
 }
}
header itch_add_order_t add_order;
@pragma query_field(add_order.shares)
@pragma query_field(add_order.price)
@pragma query_field_exact(add_order.stock)
@pragma query_counter(my_counter, 100, 1024)

P4 header for 
message format

Pragmas for
pipeline and  

state

Compiling Dynamic Filters: 
Representing Rules with BDDs

15

shares==2 : fwd(1)

price>1 ∧ shares==2 : fwd(2)

Compiling Dynamic Filters: 
Representing Rules with BDDs

15

price > 1

shares = 2

[1, 2][] [1]

truefalse

truefalse
shares = 2

shares==2 : fwd(1)

price>1 ∧ shares==2 : fwd(2)

Compiling Dynamic Filters: 
BDD Reductions

16

share<5

share<8 share>6

share<5

share<8 share>6

share=5

ticker=GOOGL

share<7

share=9 share=8

(i) Remove isomorphic 
(Standard)

(iii) Remove implicit 
(Domain-specific)

(ii) Remove redundant
(Standard)

Compiling Dynamic Filters: 
BDDs to Forwarding Table (1/4)

17

price > 1

[]

shares = 5

[2]

price = 3

shares = 5

[3] [1,3] [1,2,3]

Compiling Dynamic Filters: 
BDDs to Forwarding Table (1/4)

Partition into sub-graphs by field

18

price > 1

[]

shares = 5

[2]

price = 3

shares = 5

price fields

shares fields

[3]leaves [1,3] [1,2,3]

Compiling Dynamic Filters: 
BDDs to Forwarding Table (2/4)

19

price > 1

[]

shares = 5

[2]

price = 3

shares = 5

price fields

shares fields

[3]leaves [1,3] [1,2,3]

Identify entry and exit node sets

price entry node
Assign an ID

1

2 3

Compiling Dynamic Filters: 
BDDs to Forwarding Table (3/4)

20

price > 1

[]

shares = 5

[2]

price = 3

shares = 5

[3] [1,3] [1,2,3]

1

2 3

For each path, the tuple (entry ID, match, exit ID)
corresponds to an entry in its field’s table

State Match Next
state

1 * 2

1 =3 3

1 >1 6

State Match Next
state

2 * 4

2 =5 5

3 * 7

3 =5 8

5 6 7 84

Compiling Dynamic Filters: 
BDDs to Forwarding Table (4/4)

21

price table

State Match Next
state

1 * 2

1 =3 3

1 >1 6

shares table

State Match Next
state

2 * 4

2 =5 5

3 * 7

3 =5 8

State Actions

4 []

5 [2]

6 [3]

7 [1,3]

8 [1,2,3]

Encode BDD as finite state machine 
in the forwarding tables

Multiple Messages Per Packet

22

Parsing deep: recirculate packet and advance index

Routing multiple messages: prune unwanted messages at egress

Evaluation

23

Compiler Efficiency

Used synthetic workload generator to create queries of the form:

 stock = S ∧ price > P: fwd(H)

Can fit O(100K) queries in switch memory!

Compiling 100K subscriptions required  
21,401 table entries and 198 multicast groups

24

Experiment: 
In-Network ITCH Filtering

25

Publisher sends
feed (add order)

Switch filters for:
stock = “GOOGL”

Client calculates
latency

1

23

Machine has 2 x 25 GB/s NICs

Forward: switch forwards packets; queries evaluated in software

Filter: switch evaluates queries

Workloads

26

Workload Messages per packet % GOOGL

Synthetic 1-12 (Zipf dist.) 1%

Synthetic (worst case) Exactly 12 100%

Nasdaq sample
08302017 Exactly 1 0.1%

Synthetic Workload 
CDF of Latency

27

1% GOOGL, 1-12 messages / packet

With Camus, 99% finish under 20us  
Without Camus, 99% finish under 500us

Worst-Case Workload 
CDF of Latency

28

100% GOOGL, 12 messages / packet

NASDAQ Workload (8/30/17)
CDF of Latency

29

0.1% GOOGL, 1 messages / packet

With Camus, 100% finish under 100us  
Without Camus, 84% finish under 100us

Conclusion

30

Camus is a pub/sub service implemented on programmable
network ASICs

Uses a novel BDD-based algorithm to translate predicates into P4
tables that can support O(100K) expressions

Increases system flexibility and reduces latency for clients

http://inf.usi.ch/phd/jepsen/

http://www.inf.usi.ch/phd/jepsen/

