
PISA-Based Application Acceleration
for IO-Intensive Workloads

Xin Jin

Joint work with Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica

The revolution in networking

1

Fixed-function switch

Switch
ASIC

Programmable switch

ASICSwitch
ASIC

PISA: Protocol Independent Switch Architecture

Ø Programmable Parser
Ø Convert packet data into metadata

Ø Programmable Mach-Action Pipeline
Ø Operate on metadata and update memory state

2

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

Programmable switch data planes
enable many innovations

3

SilkRoad [SIGCOMM’17]
Layer 4 Load Balancing

Dapper [SOSR’17]
TCP Diagnosis

HULA [SOSR’16]
Adaptive Multipath Routing

Sonata [SIGCOMM’18]
Network Telemetry

The ending of the Moore’s Law, and
the rise of domain specific processors…

4

GPU

Graphics
Machine learning

TPU

Machine learning

Antminer ASIC

Cryptocurrency

PISA

SilkRoad [SIGCOMM’17]
Layer 4 Load Balancing

Dapper [SOSR’17]
TCP Diagnosis

HULA [SOSR’16]
Adaptive Multipath Routing

Sonata [SIGCOMM’18]
Network Telemetry

Traditional Packet Processing

PISA-Based Accelerator
IO-Intensive Workloads

PISA switches as domain specific
accelerators for IO-intensive workloads

Ø NetCache [SOSP’17]: balancing key-value stores with PISA-
based caching

Ø NetChain [NSDI’18, best paper award]: fast coordination with
PISA-based chain replication

5

Joint work with Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica

NetCache is a rack-scale key-value store that leverages

workloads.

even under

PISA-based caching to achieve

billions QPS throughput ~10 μs latency&

highly-skewed rapidly-changing&

Goal: fast and cost-efficient rack-scale
key-value storage
Ø Store, retrieve, manage key-value objects

Ø Critical building block for large-scale cloud services

Ø Need to meet aggressive latency and throughput objectives
efficiently

Ø Target workloads
Ø Small objects
Ø Read intensive
Ø Highly skewed and dynamic key popularity

7

…

low throughput high tail latency&

Server

Load

Key challenge: highly-skewed and
rapidly-changing workloads

Opportunity: fast, small cache for load balancing

Balanced load

Cache absorbs hottest queries

Opportunity: fast, small cache for load balancing

N: # of servers

E.g., 100 backends with 100 billions items

Cache O(N log N) hottest items

E.g., 10,000 hot objects

[B.	Fan	et	al.	SoCC’11,	X.	Li	et	al.	NSDI’16]

Requirement: cache throughput ≥ backend aggregate throughput

NetCache: towards billions QPS key-value storage rack

storage layer

flash/disk

each: O(100) KQPS
total: O(10) MQPS

Cache needs to provide the aggregate throughput of the storage layer

in-memory

each: O(10) MQPS
total: O(1) BQPS

cache layer

in-memory

O(10) MQPS

cache

O(1) BQPS

cache

storage layer

flash/disk

each: O(100) KQPS
total: O(10) MQPS

Cache needs to provide the aggregate throughput of the storage layer

in-memory

each: O(10) MQPS
total: O(1) BQPS

cache layer

in-memory

O(10) MQPS

cache

O(1) BQPS

cache

Small on-chip memory?
Only cache O(N log N) small items

PISA-based

NetCache: towards billions QPS key-value storage rack

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate ?!

PISA: Protocol Independent Switch Architecture
Ø Programmable Parser

Ø Parse custom key-value fields in the packet
Ø Programmable Mach-Action Pipeline

Ø Read and update key-value data
Ø Provide query statistics for cache update

14

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

15

Match + Action

Programmable Parser Programmable Match-Action Pipeline

Memory ALU

… … ……

Data plane (ASIC)

Control plane (CPU)

Network
Functions

Network
Management

Run-time API

P
C

Ie

16

Network
Functions

Network
Management

Run-time API

P
C

Ie

Ø Switch data plane
Ø Key-value store to serve queries for cached keys
Ø Query statistics to enable efficient cache updates

Ø Switch control plane
Ø Insert hot items into the cache and evict less popular items
Ø Manage memory allocation for on-chip key-value store

Storage Servers

Clients

Top of Rack (ToR) Switch

Key-Value
Cache

Query
Statistics

Cache
Management

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

NetCache Packet Format

Ø Application-layer protocol: compatible with existing L2-L4 layers

Ø Only the top of rack switch needs to parse NetCache fields

ETH IP TCP/UDP OP KEY VALUE

Existing Protocols NetCache Protocol

read, write,
delete, etc.

reserved
port #L2/L3 Routing

SEQ

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Key-value store using register arrays

20

Match Action
Key = X Read RA[0]
Key = Y Read RA[5]
Key = Z Read RA[2]
Default Drop()

Register Array (RA)Match-Action Table

0
1
2
3
4
5

Key Challenges:

q No loop or string due to strict timing requirements

q Need to minimize hardware resources consumption
§ Number of table entries

§ Size of action data from each entry

§ Size of intermediate metadata across tables

q How to identify application-level packet fields ?

q How to store and serve variable-length data ?

q How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

Cache insertion and eviction
q Challenge: cache the hottest O(N log N) items with limited insertion rate

q Goal: react quickly and effectively to workload changes with minimal updates

Key-Value
Cache

Query
Statistics

Cache Management

P
C
Ie

1

2

3

4

1 Data plane reports hot keys

2 Control plane compares loads of
new hot and sampled cached keys

3 Control plane fetches values for
keys to be inserted to the cache

4 Control plane inserts and evicts keys

Storage ServersToR Switch

Query statistics in the data plane

Ø Cached key: per-key counter array
Ø Uncached key

Ø Count-Min sketch: report new hot keys
Ø Bloom filter: remove duplicated hot key reports

Per-key counters for each cached item

Count-Min sketch

pkt.key

not cached

cached

hot

Bloom filter

report

Cache
Lookup

The “boring life” of a NetCache switch
test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

0 32 64 96 128
9alue 6ize (Byte)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hS

ut
 (B

4
3

6
)

(a) Throughput vs. value size. (b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

test the switch performance at full traffic load. The value
process is executed each time when the packet passes an
egress port. To avoid packet size keeps increasing for read
queries, we remove the value field at the last egress stage
for all intermediate ports. The servers can still verify the
values as they are kept in the two ports connected to them.

• Server rotation for static workloads (§6.3). We use one
machine as a client, and the other as a storage server. We
install the hot items in the switch cache as for a full stor-
age rack and have the client send traffic according to a Zipf
distribution. For each experiment, the storage server takes
one key-value partition and runs as one node in the rack.
By rotating the storage server for all 128 partitions (i.e.,
performing the experiment for 128 times), we aggregate
the results to obtain the result for the entire rack. Such
result aggregation is justified by (i) the shared-nothing
architecture of key-value stores and (ii) the microbench-
mark that demonstrates the switch is not the bottleneck.

To find the maximum effective system throughput, we
first find the bottleneck partition and use that server in the
first iteration. The client generates queries destined to this
particular partition, and adjusts its sending rate to control
the packet loss rate between 0.5% to 1%. This sending rate
gives the saturated throughput of the bottleneck partition.
We obtain the traffic load for the full system based on this
sending rate, and use this load to generate per-partition
query load for remaining partitions. Since the remaining
partitions are not the bottleneck partition, they should be
able to fully serve the load. We sum up the throughputs of
all partitions to obtain the aggregate system throughput.

• Server emulation for dynamic workloads (§6.4). Server
rotation is not suitable for evaluating dynamic workloads.
This is because we would like to measure the transient be-
havior of the system, i.e., how the system performance
fluctuates during cache updates, rather than the system
performance at the stable state. To do this, we emulate
128 storage servers on one server by using 128 queues.
Each queue processes queries for one key-value partition
and drops queries if the received queries exceed its pro-
cessing rate. To evaluate the real-time system throughput,
the client tracks the packet loss rate, and adjusts its send-
ing rate to keep the loss rate between 0.5% to 1%. The
aggregate throughput is scaled down by a factor of 128.
Such emulation is reasonable because in these experiments
we are more interested in the relative performance fluctu-
ations when NetCache reacts to workload changes, rather
than the absolute performance numbers.

6.2 Switch Microbenchmark
We first show switch microbenchmark results using snake

test (as described in §6.1). We demonstrate that NetCache is
able to run on programmable switches at line rate.

Throughput vs. value size. We populate the switch cache
with 64K items and vary the value size. Two servers and

(a) Throughput vs. value size.

0 16. 32. 48. 64.
CacKe 6ize

0.0

0.5

1.0

1.5

2.0

2.5

TK
ro

ug
KS

ut
 (B

4
3

6
)

(b) Throughput vs. cache size.

Figure 9: Switch microbenchmark (read and update).
one switch are organized to a snake structure. The switch
is configured to provide 62 100Gbps ports, and two 40Gbps
ports to connect servers. We let the two servers send cache
read and update queries to each other and measure the maxi-
mum throughput. Figure 9(a) shows the switch provides 2.24
BQPS throughput for value size up to 128 bytes. This is bot-
tlenecked by the maximum sending rate of the servers (35
MQPS). The Barefoot Tofino switch is able to achieve more
than 4 BQPS. The throughput is not affected by the value size
or the read/update ratio. This is because the switch ASIC is
designed to process packets with strict timing requirements.
As long as our P4 program is complied to fit the hardware
resources, the data plane can process packets at line rate.

Our current prototype supports value size up to 128 bytes.
Bigger values can be supported by using more stages or using
packet mirroring for a second round of process (§4.4.2).

Throughput vs. cache size. We use 128 bytes as the value
size and change the cache size. Other settings are the same
as the previous experiment. Similarly, Figure 9(b) shows that
the throughput keeps at 2.24 BQPS and is not affected by the
cache size. Since our current implementation allocates 8 MB
memory for the cache, the cache size cannot be larger than
64K for 128-byte values. We note that caching 64K items is
sufficient for balancing a key-value storage rack.

6.3 System Performance
We now present the system performance of a NetCache

key-value storage rack that contains one switch and 128 stor-
age servers using server rotation (as described in §6.1).

Throughput. Figure 10(a) shows the system throughput un-
der different skewness parameters with read-only queries and
10,000 items in the cache. We compare NetCache with No-
Cache which does not have the switch cache. In addition,
we also show the the portions of the NetCache throughput
provided by the cache and the storage servers respectively.
NoCache performs poorly when the workload is skewed.
Specifically, with Zipf 0.95 (0.99) distribution, the NoCache
throughput drops down to only 22.5% (15.6%), compared to
the throughput under the uniform workload. By introducing
only a small cache, NetCache effectively reduces the load
imbalances and thus improves the throughput. Overall, Net-
Cache improves the throughput by 3.6⇥, 6.5⇥, and 10⇥ over
NoCache, under Zipf 0.9, 0.95 and 0.99, respectively.

10

Single switch benchmark

And its “not so boring” benefits

3-10x throughput improvements

uQiforP ziSf-0.9 ziSf-0.95 ziSf-0.99
WorNloDd DisWribuWioQ

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hS

uW
 (B

Q
P

S
)

1oCDche 1eWCDche(servers) 1eWCDche(cDche)

1 switch + 128 storage servers

NetCache is a rack-scale key-value store that leverages

workloads.

even under

PISA-based caching to achieve

billions QPS throughput ~10 μs latency&

highly-skewed rapidly-changing&

NetCache: lighting fast key-value cache
enabled by PISA switches

NetCache: lighting fast key-value cache
enabled by PISA switches

NetChain: lightning fast coordination
enabled by PISA switches

NetChain: lightning fast coordination
enabled by PISA switches

Conventional wisdom: avoid coordination

Open the door to rethink distributed systems design

30

Applications

Coordination services: fundamental
building block of the cloud

Coordination
Service Chubby

31

Configuration
Management

Distributed
Locking

Group
Membership Barrier

Applications

Coordination
Service

Provide critical coordination functionalities

32

Configuration
Management

Distributed
Locking

Group
Membership Barrier

Applications

Coordination
Service

Servers

Strongly-Consistent, Fault-Tolerant Key-Value Store

The core is a strongly-consistent,
fault-tolerant key-value store

This Talk

33

client
coordination servers

running a consensus protocol

request

reply

Workflow of coordination services

Can we do better?

Ø Throughput: at most server NIC throughput
Ø Latency: at least one RTT, typically a few RTTs

34

client
coordination servers

running a consensus protocol

request

reply

Opportunity: PISA-based coordination

Server Switch
Example [NetBricks, OSDI’16] Barefoot Tofino
Packets per second 30 million A few billion
Bandwidth 10-100 Gbps 6.5 Tbps
Processing delay 10-100 us < 1 us

Distributed coordination is
IO-intensive,

not computation-intensive.

35

client
coordination switches

running a consensus protocol

request

reply

Opportunity: PISA-based coordination

Ø Throughput: switch throughput
Ø Latency: half of an RTT

Design goals for coordination services

Ø High throughput

Ø Low latency

Ø Strong consistency

Ø Fault tolerance

36

Directly from
high-performance switches

How?

Design goals for coordination services

Ø High throughput

Ø Low latency

Ø Strong consistency

Ø Fault tolerance

37

Directly from
high-performance switches

Chain replication with PISA switches

What is chain replication

38

S0 S1 S2

Head Replica Tail

Read
Request

Read
Reply

Ø Storage nodes are organized in a chain structure
Ø Handle operations

Ø Read from the tail

What is chain replication

Ø Storage nodes are organized in a chain structure
Ø Handle operations

Ø Read from the tail
Ø Write from head to tail

Ø Provide strong consistency and fault tolerance
Ø Tolerate f failures with f+1 nodes

39

S0 S1 S2

Head Replica Tail

Write
Request

Read
Request

Read/Write
Reply

Division of labor in chain replication:
a perfect match to network architecture

40

• Optimize for high-performance to
handle read & write requests

• Provide strong consistency

Storage Nodes

• Handle less frequent reconfiguration
• Provide fault tolerance

Auxiliary Master

• Handle packets at line rate

Network Data Plane

• Handle network reconfiguration

Network Control Plane

Chain
Replication

Network
Architecture

NetChain

NetChain overview

41

Host
Racks

S2 S3 S4 S5

S0 S1 Network
Controller

Handle reconfigurations
(e.g., switch failures)

Handle read & write requests
at line rate

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

42

Data
Plane

Control
Plane

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

43

Data
Plane

Control
Plane

NetCache J

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

44

Data
Plane

Control
Plane

NetChain routing: segment routing
according to chain structure

45

S0 S1 S2

Head Replica Tail

Write Request Write Reply
H0

Client
… dstIP

= S0
… SC

= 2 S1 S2 …

… dstIP
= S1

… SC
= 1 S2 … … dstIP

= S2
… SC

= 0 …

… dstIP
= H0

… SC
= 0 …

NetChain routing: segment routing
according to chain structure

46

S0 S1 S2

Head Replica Tail

Read Reply

H0

Client
Read Request

… dstIP
= S2

… SC
= 2 S1 S0 …

… dstIP
= H0

… SC
= 2 S1 S0 …

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

47

Data
Plane

Control
Plane

Problem of out-of-order delivery

48

S0 S1 S2

Head Replica Tail

time

foo=B
foo=C foo=C

foo=B foo=B
foo=C

foo=A foo=A foo=A

W1: foo=B
W2: foo=C

Concurrent Writes

Inconsistent values between three replicasSerialization with sequence number

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

Ø How to store and serve key-value items?

Ø How to route queries according to chain structure?

Ø How to handle out-of-order delivery in network?

Ø How to handle switch failures?

49

Data
Plane

Control
Plane

Handle a switch failure

50

S0 S1 S2

Fast Failover Failure Recovery

S0 S3 S2S0 S2

Ø Failover to remaining f nodes
Ø Tolerate f-1 failures
Ø Efficiency: only need to update

neighbor switches of failed switch

Ø Add another switch
Ø Tolerate f failures again
Ø Consistency: two-phase atomic

switching
Ø Minimize disruption: virtual groups

Before failure: tolerate f failures with f+1 nodes

Implementation
Ø Testbed

Ø 4 Barefoot Tofino switches and 4 commodity servers
Ø Switch

Ø P4 program on 6.5 Tbps Barefoot Tofino
Ø Routing: basic L2/L3 routing
Ø Key-value store: up to 100K items, up to 128-byte values

Ø Server
Ø 16-core Intel Xeon E5-2630, 128 GB memory, 25/40 Gbps Intel NICs
Ø Intel DPDK to generate query traffic: up to 20.5 MQPS per server

51

Orders of magnitude higher throughput

52

0 32 64 96 128
9alue 6ize (Byte)

10-2

10-1

100

101

102

103

104

TK
ro

ug
KS

ut
 (0

4
3

6
)

1etCKaiQ(Pax) 1etCKaiQ(4) ZooKeeSer

0 20K 40K 60K 80K 100K
6tore 6ize

10-2

10-1

100

101

102

103

104

TK
ro

ug
KS

ut
 (0

4
3

6
)

1etCKaiQ(Pax) 1etCKaiQ(4) ZooKeeSer

82 MQPS

2000 MQPS

0.15 MQPS

82 MQPS

2000 MQPS

0.15 MQPS

Orders of magnitude lower latency

53

(a) Throughput vs. value size. (b) Throughput vs. store size. (c) Throughput vs. write ratio.

(d) Throughput vs. loss rate.

10-3 10-2 10-1 100 101 102 103 104

TKrougKSut (043S)

100

101

102

103

104

/a
te

Qc
y

(µ
s)

ZooKeeSer (ZrLte)
ZooKeeSer (read)
1etCKaLQ (read/ZrLte)

(e) Latency vs. throughput. (f) Scalability (simulation).

Figure 9: Performance results. (a-e) shows the experimental results of a three-switch NetChain prototype. Netchain(1),
Netchain(2), Netchain(3) and Netchain(4) correspond to measuring the prototype performance with one, two, three
and four servers respectively. NetChain(max) is the theoretical maximum throughput achievable by a three-switch
chain; it is not a measured throughput. (f) shows the simulation results of spine-leaf networks of various sizes.

four server machines. Each server machine is equipped
with a 16-core CPU (Intel Xeon E5-2630) and 128 GB
total memory (four Samsung 32GB DDR4-2133 mem-
ory). Three server machines are equipped with 40G NICs
(Intel XL710) and the other one is equipped with a 25G
NIC (Intel XXV710). The testbed is organized in a topol-
ogy as shown in Figure 8.

Comparison. We compare NetChain to Apache
ZooKeeper-3.5.2 [33]. We implement a client to mea-
sure ZooKeeper’s performance with Apache Curator-
4.0.0 [34], which is a popular client library for
ZooKeeper. The comparison is slightly unfair: NetChain
does not provide all features of ZooKeeper (§6), and
ZooKeeper is a production-quality system that compro-
mises its performance for many software-engineering
objectives. But at a high level, the comparison uses
ZooKeeper as a reference for server-based solutions to
demonstrate the performance advantages of NetChain.

8.1 Throughput
We first evaluate the throughput of NetChain. We use
three switches to form a chain [S0,S1,S2], where S0 is
the head and S2 is the tail. Each server can send and re-
ceive queries at up to 20.5 MQPS. We use NetChain(1),
NetChain(2), NetChain(3), NetChain(4) to denote the
measured throughput by using one, two, three and four
servers, respectively. We use Tofino switches in a mode
that guarantees up to 4 BQPS throughput and each query

packet is processed twice by a switch (e.g., a query from
H0 follows path H0-S0-S1-S2-S1-S0-H0). Therefore, the
maximum throughput of the chain is 2 BQPS in this
setup. As the four servers cannot saturate the chain, we
use NetChain(max) to denote the maximum throughput
of the chain (shown as dotted lines in figures). For com-
parison, we run ZooKeeper on three servers, and a sepa-
rate 100 client processes on the other server to generate
queries. This experiment aims to thoroughly evaluate the
throughput of one switch chain under various setups with
real hardware switches. For large-scale deployments, a
packet may traverse multiple hops to get from one chain
switch to the next, and we evaluate the throughput with
simulations in §8.3. Figure 9(a-d) shows the through-
puts of the two systems. The default setting uses 64-
byte value size, 20K store size (i.e., the number of key-
value items), 1% write ratio, and 0% link loss rate. We
change one parameter in each experiment to show how
the throughputs are affected by these parameters.

Figure 9(a) shows the impact of value size. NetChain
provides orders of magnitude higher throughput than
ZooKeeper and both systems are not affected by the
value size in the evaluated range. NetChain(4) keeps
at 82 MQPS, meaning that NetChain can fully serve all
the queries generated by the four servers. This is due
to the nature of a switch ASIC: as long as the P4 pro-
gram is compiled to fit the switch resource requirements,
the switch is able to run NetChain at line rate. In fact,

170 us

2350 us

9.7 us

Conclusion
Ø Moore’s law is ending…

Ø Specialized processors for domain-specific workloads: GPU servers,
FPGA servers, TPU servers…

Ø PISA servers: new generation of ultra-high performance
systems for IO-intensive workloads enabled by PISA switches
Ø NetCache: fast key-value caching built with PISA switches
Ø NetChain: fast coordination built with PISA switches

54

55

Thanks!

