PISA-Based Application Acceleration
for |0O-Intensive Workloads

Xin Jin
&

JOHNS HOPKINS

LLLLLLLLLLL

Joint work with Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and lon Stoica

The revolution in networking

Switch

Switch »
... ASIC

Fixed-function switch Programmable switch

. ASIC 4

PISA: Protocol Independent Switch Architecture

» Programmable Parser
» Convert packet data into metadata

» Programmable Mach-Action Pipeline
» QOperate on metadata and update memory state

Match + Action

-

W

o [C L
—— IR R [ER
e B> >

Programmable Parser

Programmable Match-Action Pipeline

HHEH

AR

Programmable switch data planes
enable many innovations

Sonata [SIGCOMM’18] Dapper [SOSR’17]
Network Telemetry TCP Diagnosis
SilkRoad [SIGCOMM’17] HULA [SOSR’16]

Layer 4 Load Balancing Adaptive Multipath Routing

The ending of the Moore’s Law, and
the rise of domain specific processors...

GPU TPU Antminer ASIC

Graphics Machine learning Cryptocurrency
Machine learning

Traditional Packet Processing

%IE Sonata [SIGCOMM’18] Dapper [SOSR'17]
EE Network Telemetry TCP Diagnosis
= PISA-Based Accelerator
|O-Intensive Workloads
SilkRoad [SIGCOMM’17] HULA [SOSR’16]
Layer 4 Load Balancing Adaptive Multipath Routing

switches as domain specific
accelerators for workloads

» NetCache [SOSP’17]: balancing key-value stores with PISA-
based caching

» NetChain [NSDI’'18, best paper award]: fast coordination with
PISA-based chain replication

Joint work with Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and lon Stoica

NetCache 1s a rack-scale key-value store that leverages
PISA-based caching to achieve

billions QPS throughput % ~10 ps latency

even under

highly-skewed & rapidly-changing

workloads.

Goal: fast and cost-efficient rack-scale
key-value storage

> Store, retrieve, manage key-value objects
» Ciritical building block for large-scale cloud services

~ o W A
G a oo a2 M

» Need to meet aggressive latency and throughput objectives
efficiently

» Target workloads
» Small objects
» Read intensive
» Highly skewed and dynamic key popularity

Key challenge: highly-skewed and
rapidly-changing workloads

low throughput WY high tail latency

Opportunity: fast, small cache for load balancing

Cache absorbs hottest queries -

Balanced load oo -

Opportunity: fast, small cache for load balancing

[B. Fan et al. SoCC’11, X. Li et al. NSDI'16]

Cache O(Vlog N) hottest items

E.g., 10,000 hot objects -
—

N: # of servers S| e]

E.g., 100 backends with 100 billions items

Requirement: cache throughput > backend aggregate throughput

NetCache: towards billions QPS key-value storage rack

Cache needs to provide the aggregate throughput of the storage layer
i i @ flash/disk cache , in-memory

i i each: O(100) KQPS O(10) MQPS
total: O(10) MQPS

I

storage layer cache layer

, In-memory cache | ,
each: O(10) MQPS o 73 PS
total: O(1) BQPS (HBQ

NetCache: towards billions QPS key-value storage rack

Cache needs to provide the aggregate throughput of the storage layer

i i , flash/disk cache , in-memory
i i each: O(100) KQPS —)

total: O(10) MQPS

0(10) MQPS

storage layer cache layer

@ inmemory & &= PISA-based
each: O(10) MQPS

total: O(1) BQPS O(1) BQPS

Small on-chip memory?
Only cache O(Vlog N) small items

Key-value caching in network ASIC at line rate ?!

0 How to identify application-level packet fields ?
a How to store and serve variable-length data ?

0 How to efficiently keep the cache up-to-date ?

PISA: Protocol Independent Switch Architecture

» Programmable Parser
» Parse custom key-value fields in the packet

» Programmable Mach-Action Pipeline
» Read and update key-value data
» Provide query statistics for cache update
Match + Action

-

W

wemoy JAo N T I
N | N | N
> > I >

Programmable Parser

Programmable Match-Action Pipeline

HHEH

WL

14

Control plane (CPU)

Data plane (ASIC)

Management

Network]

Run-time API

Network
Functions

Match + Action

W
|

I

=
— N

Y

HHEH

AR

Programmable Parser

Programmable Match-Action Pipeline

15

Clients ll

Network Cache
Management Management
Run-time API
Network Key-Value Query
Functions Cache Statistics
Top of Rack (ToR) Switch

aaoo

Storage Servers

» Switch data plane

» Key-value store to serve queries for cached keys
> Query statistics to enable efficient cache updates

» Switch control plane

» Insert hot items into the cache and evict less popular items
» Manage memory allocation for on-chip key-value store

16

Key-value caching in network ASIC at line rate

—» 0 How to identify application-level packet fields ?
a How to store and serve variable-length data ?

0 How to efficiently keep the cache up-to-date ?

NetCache Packet Format

Existing Protocols NetCache Protocol
A A

Y . ' reserved read, write,
L2/L3 Routing port # delete, etc.

» Application-layer protocol: compatible with existing L2-L.4 layers

» Only the top of rack switch needs to parse NetCache fields

Key-value caching in network ASIC at line rate

0 How to identify application-level packet fields ?
—» 0O How to store and serve variable-length data ?

0 How to efficiently keep the cache up-to-date ?

Key-value store using register arrays

Match-Action Table Register Array (RA)

0

Key = X Read RA[0] — [

Key = Y Read RA[5] g

Key =Z Read RA[2] 4

Default Drop() S
Key Challenges:

0 No loop or string due to strict timing requirements

0 Need to minimize hardware resources consumption
= Number of table entries
= Size of action data from each entry
= Size of intermediate metadata across tables

20

Key-value caching in network ASIC at line rate

0 How to identify application-level packet fields ?
a How to store and serve variable-length data ?

—» 0 How to efficiently keep the cache up-to-date ?

Cache insertion and eviction

0 Challenge: cache the hottest O(V log N) items with limited insertion rate

0 Goal: react quickly and effectively to workload changes with minimal updates

—

(

[Cache Management J(

)

P— o Data plane reports hot keys

A A

(2

2
&
A 4 0 A 4
| Key-Value Query
' y Cache Statistics
ToR Switch

9 P 9 Control plane compares loads of

new hot and sampled cached keys

— e Control plane fetches values for
L J keys to be inserted to the cache

@) Control plane inserts and evicts keys

Storage Servers

Query statistics in the data plane

freport
- T T]
not cached . hot
> = [[T T T 1N
pkt.key Cache N H EEEN
B—
Lookup Count-Min sketch Bloom filter
cached | .

Per-key counters for each cached item
» Cached key: per-key counter array
» Uncached key
» Count-Min sketch: report new hot keys
» Bloom filter: remove duplicated hot key reports

The “boring life” of a NetCache switch

Single switch benchmark

25

o—@ @ @

0

32 64 96
Value Size (Byte)

128

25
)]

o I
g 2.0
o0

= 15 ¢

e
-
Q

c 10}

()}
>

05 ¢}
c

|_
0.0

4

0

16K 32K 48K 64K
Cache Size

And its “not so boring” benefits

1 switch + 128 storage servers

1 NoCache Il NetCache(servers) lll NetCache(cache)
~ 2.0}
7))

RN
(@)

o
o

Throughput (BQP
o

o
o

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

3-10x throughput improvements

NetCache 1s a rack-scale key-value store that leverages
PISA-based caching to achieve

billions QPS throughput % ~10 ps latency

even under

highly-skewed & rapidly-changing

workloads.

&= NetCache: lighting fast key-value cache
enabled by PISA switches

==
= & ?
=

&= NetCache: lighting fast key-value cache
enabled by PISA switches

= . = NetChain: lightning fast coordination
N = ™ enabled by PISA switches
I

Conventional wisdom: avoid coordination

= =~ = NetChain: lightning fast coordination
=5 = enabled by PISA switches

Open the door to rethink distributed systems design

Coordination services: fundamental
building block of the cloud

Coordination GO gle 4 QL
Servic; Chub by l?; Zookeeper 0 eth

30

Provide critical coordination functionalities

AVAVA
AVAVAVA
VAVAVAY

VAVAY

MESOS

Configuration Group Distributed Barrier
Management Membership Locking

Coordination
Service

31

The core is a strongly-consistent,
fault-tolerant key-value store

MESOS

Configuration Group Distributed Barrier
Management Membership Locking

AVAVA
AVAVAYA
VAVAVAY

VAVAY

Coordination

Service Strongly-Consistent, Fault-Tolerant Key-Value Store
SEEE--EEEE
This Talk SEMVENS

Workflow of coordination services

request

reply

client

» Throughput: at most server NIC throughput
» Latency: at least one RTT, typically a few RTTs

33

Opportunity: PISA-based coordination

request
i | 10-intensive,
client
reply

Example [NetBricks, OSDI’16] Barefoot Tofino
Packets per second 30 million A few billion
Bandwidth 10-100 Gbps 6.5 Tbps
Processing delay 10-100 us <1us

Opportunity: PISA-based coordination

request g? g? @ g?

— I I I I

U o & o
client coordination switches
reply running a consensus protocol

» Throughput: switch throughput
» Latency: half of an RTT

35

Design goals for coordination services

» High throughput
» Low latency
» Strong consistency

» Fault tolerance

36

Design goals for coordination services

» High throughput a
Directly from

high-performance switches

i

» Low latency

» Strong consistency
L Chain replication with PISA switches

> Fault tolerance _

37

What is chain replication

Read Read
Request Reply

o0—©0 y

Head Replica Tail

» Storage nodes are organized in a chain structure

» Handle operations
» Read from the tall

38

What is chain replication

Write Read Read/Write
Request Request Reply
Head Replica Tail

» Storage nodes are organized in a chain structure

» Handle operations
» Read from the tall
» \Write from head to tall

» Provide strong consistency and fault tolerance
» Tolerate f fallures with f+1 nodes

39

Division of labor in chain replication:
a perfect match to network architecture

Storage Nodes Auxiliary Master

Chain « Optimize for high-performance to : :
Replication handle read & write requests . Iljnianv?cljeelf asusltf;iclqeurzrr]]tcreeconflguratlon
* Provide strong consistency
Network Data Plane Network Control Plane
Network :
Architecture » Handle packets at line rate

* Handle network reconfiguration

40

NetChain overview

NetChain
Handle read & write requests Handle reconfigurations
at line rate (e.g., switch failures)

Network
Controller

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

» How to store and serve key-value items?]
. . , Data
» How to route queries according to chain structure? - Plane
» How to handle out-of-order delivery in network? _
Control

» How to handle switch failures?
Plane

42

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

» How to store and serve key-value items?]
. . , Data
» How to route queries according to chain structure? - Plane
» How to handle out-of-order delivery in network? _
Control

» How to handle switch failures?
Plane

43

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

» How to store and serve key-value items?]
| | | Data
» How to route queries according to chain structure? [~ Plane
» How to handle out-of-order delivery in network? _
Control

» How to handle switch failures?
Plane

44

NetChain routing: segment routing
according to chain structure

Write Request /E\ Write Reply
. dstIP SC s/ |s, ..) dstIP SC

l=s, | |=2 | =Ho | | =0]
> >
Head Replica Tail
dstIP SC S dstIP SC
“e =S1 SR 2| ... =Sg =0l

45

NetChain routing: segment routing
according to chain structure

Client Read Reply

Read Request dstlP
dstIP SC = Hp
~l2s, | |22 Si|So| ...
> >

Head Replica Tail

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

» How to store and serve key-value items?]
| . | Data
» How to route queries according to chain structure? - Plane
» How to handle out-of-order delivery in network? —
Control

» How to handle switch failures?
Plane

47

Problem of out-of-order delivery

Concurrent Writes
W,: foo=B

W.,: foo=C

Head Replica Tail
®—0—©
foo=A foo=A foo=A
foo=B
foo=C £00=C
foo=B f00=B
foo=C

48

How to build a strongly-consistent,
fault-tolerant, PISA-based key-value store

» How to store and serve key-value items?]
. . , Data
» How to route queries according to chain structure? - Plane
» How to handle out-of-order delivery in network? _
Control

» How to handle switch failures?
Plane

49

Before failure: tolerate f failures with f+1 nodes

Handle a switch failure (s —&F—(=)

Fast Failover ‘ Failure Recovery

» Failover to remaining f nodes » Add another switch

» Tolerate -1 failures » Tolerate f failures again

» Efficiency: only need to update » (Consistency: two-phase atomic
neighbor switches of failed switch switching

» Minimize disruption: virtual groups

50

Implementation

» Testbed
» 4 Barefoot Tofino switches and 4 commodity servers

» Switch

» P4 program on 6.5 Tbps Barefoot Tofino

» Routing: basic L2/L3 routing

» Key-value store: up to 100K items, up to 128-byte values
> Server

» 16-core Intel Xeon E5-2630, 128 GB memory, 25/40 Gbps Intel NICs
» Intel DPDK to generate query traffic: up to 20.5 MQPS per server

51

Orders of magnitude higher throughput

=@ = NetChain(max) == NetChain(4) == ZooKeeper =@ = NetChain(max) == NetChain(4) == ZooKeeper
__10* ¢ (2000 MQPS __10% 2000 MQPS
@ 108 L - ----@--=-=-@-=---9 @ 10 | @ @===@-==-0
g 1t ([L82MQPS] g , [8maps |
= 10° | A A A A = 10° | A A A A
- 1 [-+ 1 [
é_ 10 é_ 10
2 10° | ((0.15MQPs) 2 10° | ((0.15MQPS)
é 107" 0 m m m r% 10" m r 0 0
102 | * * * * 1072 1 * * * * *
0 32 64 96 128 0 20K 40K 60K 80K 100K
Value Size (Byte) Store Size

52

Orders of magnitude lower latency

10% ¢ !i i -fli= ZooKee ite) "
per (wrlte)I

-a&= Z0oKeeper (read) »

2 10° | =@= NetChain (read/wrife)
2 170 us | :
g 10% | ,
) [|
810" | é—e—o—o—o00 -0-0
100 T T T T R
10 102 10" 10° 10" 10% 10° 10*

Throughput (MQPS)

53

Conclusion

» Moore’s law is ending...

» Specialized processors for domain-specific workloads: GPU servers,
FPGA servers, TPU servers...

» PISA servers: new generation of ultra-high performance
systems for 10-intensive workloads enabled by PISA switches
» NetCache: fast key-value caching built with PISA switches
» NetChain: fast coordination built with PISA switches

54

Thanks!

