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Background and context



ECMP load-balancing

– ECMP [1] works statelessly on 5-tuples
– Weighted ECMP with active probing [2]
– Common problem: Not resilient to back-end configuration changes

Server 1 removed 3/4 flows reset



Resilient L3 load-balancing: Maglev
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• Maglev [3]:
– Routers dispatch flows (with ECMP) 

between Maglev instances
– Softwarized instances, scalable at will
– Consistent hashing (buckets): with high 

probability, flow-to-server assignment is 
consistent when adding/removing servers

– Virtual IP address (VIP)
– Direct Server Return (DSR)
– Per-flow state (if memory permits)



Maglev resiliency example

Consistent hashing 
table stays very similar 
upon rebuilding

Server 2 removed only 1/4 flows reset

Bucket
Server

Before After
0 1 1
1 2 0
2 0 0
3 1 1
4 0 0
5 2 0
6 0 1



Issues with Maglev

Resiliency Statefulness Fairness

>0.3% of bucket-to-
server assignment 
change when server 
fails occur [3]

One entry per flow in 
the load-balancer
=> vulnerable to SYN 
floods

Does not take the 
current load of servers 
into account



Improving on Maglev resiliency: Beamer
Bucket

Server
Before After

0 1 1
1 2 0
2 0 0
3 1 1
4 0 0
5 2 0
6 0 1

Bucket
Server

Before After
0 1 1
1 2 (0,2)
2 0 0
3 1 1
4 0 0
5 2 (0,2)
6 0 (1,0)

– Beamer [4]: in the previous example,1/7 wrong assignments 
– Main idea: embed the previous configuration in the packet (w/ IP option)
– Allows for stateless implementation of the load-balancer => P4 prototype
– Agent in servers takes care of daisy-chaining upon reaching bad a server
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Improving on Maglev fairness: 6LB
– 6LB [5]: Almost the same hashing algorithm as Maglev’s but…
– Uses the power of two choices [6] with Segment Routing (SR) to 

dispatch new flows among two pseudo-random candidates
– Goal: consider actual server capacities without control messages
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Improving on Maglev fairness: 6LB

Bucket Candidates 
(6LB)

Candidate 
(Maglev)

0 (1, 0) 1
1 (0, 1) 0
2 (0, 1) 0
3 (0, 1) 0
4 (0, 1) 0
5 (1, 0) 1
6 (1, 0) 1 • Server 1 is already loaded, so it forwards the 

connection request to its next candidate, server 0. 
• State is then installed in the LB to map the 5-tuple 

to server 0.



LB Router(s) S0 “busy” S1Client

“SYN”

“SYN-ACK”

“ACK”

“FIN”

Connect if Available (SA.CA)
Create Stickiness (LB.CS)
Acknowledge Stickiness (SA.AS)

SIDs:

Remove Stickiness (LB.RS)

6LB requires state
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STATE



Issues with Maglev

Resiliency Statefulness Fairness

>0.3% of bucket-to-
server assignment 
change when server 
fails occur [3]

One entry per flow in 
the load-balancer
=> vulnerable to SYN 
floods

Does not take the 
current load of servers 
into account

Can we get both?



SHELL Overview



What information do we need?

bucket
Potential servers
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Build SRH with some (e.g. 2) candidates for bucket
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Where to store flow information?
• We don’t want state (flow table) in the LB
• The server accepting the connection (1 or 2) must find a way 
(a field in the packet) to communicate that to the client, 
which will be reflected and used by the LB

• i.e. we need a covert channel
• An agent runs in the servers
– records the index of the accepting server of SYN packets
– transmits it back to the client on subsequent packets, through the 

covert channel
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Resiliency – SHELL History Matrix

bucket
Potential servers

Choice 1 Choice 2

1 1 2
2 1 12

… 2 42

… 13 90

… 77 88

… 21 16

bucket
Potential servers

Choice 1 Choice 2

1 1 2
2 3 12
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… 13 15
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… 21 16

bucket
Potential servers

Choice 1 Choice 2

1 281 12
2 1 8

… 2 42

… 42 90

… 12 20

… 21 16

now-2 now-1 now

choice index choice index choice index 

!SYN

Build SRH with some (e.g. 2) old values of bucket+choice index



History Matrix: Summary
• SYN: build SRH with candidates for bucket (row in matrix)
• Non-SYN: build SRH with history for both bucket and choice 
index as found in covert channel (column in matrix)

SYN

!SYN



Covert channel
– Covert channel: field echoed by the client without him knowing SHELL 

encodes data in it
– Easy in QUIC (64 bits in connection ID), but QUIC isn’t universally adopted
→ Challenge: Use TCP: what fields are echoed in a TCP session?
→ SHELL implementation uses TCP Timestamp, with only a few bits
→ Other possibilites…



Life of a flow
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Life of a flow (3/8)
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Data plane

Server 1 is overloaded, 
the server agent 
forwards the SYN 
request to the second 
candidate



Life of a flow (4/8)
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Server 0 is also 
overloaded, the server 
agent forwards the SYN 
request to the third and 
final candidate, who is 
forced to accept it



Life of a flow (5/8)

History Matrix

3

4

5

6

Data plane

The server agent writes 
encodes in the covert 
channel of the SYN-ACK 
the position in the choice 
list of the server that 
accepted the connection



Life of a flow (6/8)
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The load-balancer reads 
the covert channel value. 
At the moment, the only 
server that can be third 
choice is s2, so the 
packet is sent to s2



Life of a flow (7/8)
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One backend 
reconfiguration happens, 
but choice 3 for bucket 3 
does not change, so 
nothing changes



Life of a flow (8/8)
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Other changes happen, 
the inserted SR header 
(SRH) is modified 
accordingly, and the 
packet reaches s2



Evaluation



P4-NetFPGA Implementation
• P4 dataplane for NETFPGA-SUME: TCP timestamp parsing + SRH insertion

• A bit tricky due to “TLV” (type/length/value) fields
– Only a subset of TCP options parsed
– Namely SACK (different lengths) and timestamps
– Different maximum parsing depths evaluated



P4-NetFPGA dataplane evaluation
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P4-NetFPGA dataplane evaluation
• Latency = 9μs; Throughput = 60 million packets/s
• Different “TCP option parsing complexities” (maximum size 
of TCP option field) implemented/evaluated

Max data
offset LUT LUT as RAM FF BRAM

8 36.9% 19.4% 33.3% 59.3%
11 40.1% 22.0% 36.4% 63.2%
13 43.8% 24.9% 40.2% 67.7%
15 48.7% 28.6% 45.8% 74.1%



Consistent hashing resiliency evaluation
• Connection duration model built from:
– A model of the number of back-end reconfigurations per second [7]
– A model of connection durations [8]

• In real life situations, about 5 times less connections lost 
than with Maglev equivalent (where history depth = 1) 0
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Conclusion/References
– No monitoring, but application-informed decisions
– Using SRv6 to direct one query to multiple candidates
– Using covert channel to steer to server having accepted
– Consistent hashing history matrix for resiliency
– Stateless P4-NetFPGA prototype => low latency/high throughput
– Future work: large-scale experiment on actual H/W
– Future work: hybrid stateful/stateless approach
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