
SHELL: Stateless Load-Aware Load Balancing in P4

Benoît Pit-Claudel*†, Yoann Desmouceaux*†, Pierre Pfister†, Mark Townsley†*, Thomas Clausen*

S tateless
H ardware-
E nabled
L oad-aware
L oad-balancing

1st P4EU workshop @IEEE ICNP, Cambridge UK, 24th September 2018
*École Polytechnique † Cisco Systems

Background and context

ECMP load-balancing

– ECMP [1] works statelessly on 5-tuples
– Weighted ECMP with active probing [2]
– Common problem: Not resilient to back-end configuration changes

Server 1 removed 3/4 flows reset

Resilient L3 load-balancing: Maglev

…

…

…

ECMP

Consistent
Hashing

Routers

Maglev

Application
Server

• Maglev [3]:
– Routers dispatch flows (with ECMP)

between Maglev instances
– Softwarized instances, scalable at will
– Consistent hashing (buckets): with high

probability, flow-to-server assignment is
consistent when adding/removing servers

– Virtual IP address (VIP)
– Direct Server Return (DSR)
– Per-flow state (if memory permits)

Maglev resiliency example

Consistent hashing
table stays very similar
upon rebuilding

Server 2 removed only 1/4 flows reset

Bucket
Server

Before After
0 1 1
1 2 0
2 0 0
3 1 1
4 0 0
5 2 0
6 0 1

Issues with Maglev

Resiliency Statefulness Fairness

>0.3% of bucket-to-
server assignment
change when server
fails occur [3]

One entry per flow in
the load-balancer
=> vulnerable to SYN
floods

Does not take the
current load of servers
into account

Improving on Maglev resiliency: Beamer
Bucket

Server
Before After

0 1 1
1 2 0
2 0 0
3 1 1
4 0 0
5 2 0
6 0 1

Bucket
Server

Before After
0 1 1
1 2 (0,2)
2 0 0
3 1 1
4 0 0
5 2 (0,2)
6 0 (1,0)

– Beamer [4]: in the previous example,1/7 wrong assignments
– Main idea: embed the previous configuration in the packet (w/ IP option)
– Allows for stateless implementation of the load-balancer => P4 prototype
– Agent in servers takes care of daisy-chaining upon reaching bad a server

M
ag

le
v:

Be
am

er
:

Issues with Maglev

Resiliency Statefulness Fairness

>0.3% of bucket-to-
server assignment
change when server
fails occur [3]

One entry per flow in
the load-balancer
=> vulnerable to SYN
floods

Does not take the
current load of servers
into account

Improving on Maglev fairness: 6LB
– 6LB [5]: Almost the same hashing algorithm as Maglev’s but…
– Uses the power of two choices [6] with Segment Routing (SR) to

dispatch new flows among two pseudo-random candidates
– Goal: consider actual server capacities without control messages

Improving on Maglev fairness: 6LB
– 6LB [5]: Almost the same hashing algorithm as Maglev’s but…
– Uses the power of two choices [6] with Segment Routing (SR) to

dispatch new flows among two pseudo-random candidates
– Goal: consider actual server capacities without control messages

SR
Hdr

IPv6
Hdr

SA = A::
DA = B::

D::
C::
B::

SL=2

SR
Hdr

IPv6
Hdr

SA = A::
DA = C::

D::
C::
B::

SL=1

SR
Hdr

IPv6
Hdr

SA = A::
DA = D::

D::
C::
B::

SL=0

B:: C::

SR SR

A:: D::

SR

Improving on Maglev fairness: 6LB

Bucket Candidates
(6LB)

Candidate
(Maglev)

0 (1, 0) 1
1 (0, 1) 0
2 (0, 1) 0
3 (0, 1) 0
4 (0, 1) 0
5 (1, 0) 1
6 (1, 0) 1 • Server 1 is already loaded, so it forwards the

connection request to its next candidate, server 0.
• State is then installed in the LB to map the 5-tuple

to server 0.

LB Router(s) S0 “busy” S1Client

“SYN”

“SYN-ACK”

“ACK”

“FIN”

Connect if Available (SA.CA)
Create Stickiness (LB.CS)
Acknowledge Stickiness (SA.AS)

SIDs:

Remove Stickiness (LB.RS)

6LB requires state

LB Router(s) S0 “busy” S1Client

“SYN”

“SYN-ACK”

“ACK”

“FIN”

Connect if Available (SA.CA)
Create Stickiness (LB.CS)
Acknowledge Stickiness (SA.AS)

SIDs:

Remove Stickiness (LB.RS)

6LB requires state

STATE

Issues with Maglev

Resiliency Statefulness Fairness

>0.3% of bucket-to-
server assignment
change when server
fails occur [3]

One entry per flow in
the load-balancer
=> vulnerable to SYN
floods

Does not take the
current load of servers
into account

Can we get both?

SHELL Overview

What information do we need?

bucket
Potential servers

Choice 1 Choice 2

1 281 12

2 1 8

… 2 42

… 42 90

… 12 20

… 21 16

Consistent hashing table

S
iz

e
~

20
 x

 n
um

be
r

of
 s

er
ve

rs

What information do we need?

bucket
Potential servers

Choice 1 Choice 2

1 281 12
2 1 8

… 2 42

… 42 90

… 12 20

… 21 16

Consistent hashing table

S
iz

e
~

20
 x

 n
um

be
r

of
 s

er
ve

rs

SYN

Lookup = bucket (from 5 tuple)
Build SRH with some (e.g. 2) candidates for bucket

What information do we need?

bucket
Potential servers

Choice 1 Choice 2

1 281 12
2 1 8

… 2 42

… 42 90

… 12 20

… 21 16

Consistent hashing table

S
iz

e
~

20
 x

 n
um

be
r

of
 s

er
ve

rs Five tuple Assigned server

(fd00::0, fd00::1,
TCP, 9999, 80) 281

… 7
… 231
… 182
… 12
… 16
… …
… …
… …
… …
… …
… …
… …
… …

S
ize ~ num

ber of flow
s

Flow table

Lookup = bucket (from 5 tuple)
Build SRH with some (e.g. 2) candidates for bucket

SYN

Where to store flow information?
• We don’t want state (flow table) in the LB
• The server accepting the connection (1 or 2) must find a way
(a field in the packet) to communicate that to the client,
which will be reflected and used by the LB

• i.e. we need a covert channel
• An agent runs in the servers
– records the index of the accepting server of SYN packets
– transmits it back to the client on subsequent packets, through the

covert channel

What information do we need?

bucket
Potential servers

Choice 1 Choice 2

1 281 12

2 1 8

… 2 42

… 42 90

… 12 20

… 21 16

Consistent hashing table
S

iz
e

~
20

 x
 n

um
be

r
of

 s
er

ve
rs Five tuple Assigned server

(fd00::0, fd00::1, TCP,
9999, 80) 1

… 7
… 231
… 182
… 12
… 16
… …
… …
… …
… …
… …
… …
… …
… …

S
ize ~ num

ber of flow
s

Flow table

Lookup = bucket (from 5 tuple)
+ choice index (from covert channel

in packet)

Resiliency – SHELL History Matrix

bucket
Potential servers

Choice 1 Choice 2

1 1 2
2 1 12

… 2 42

… 13 90

… 77 88

… 21 16

bucket
Potential servers

Choice 1 Choice 2

1 1 2
2 3 12

… 2 42

… 13 15

… 60 88

… 21 16

bucket
Potential servers

Choice 1 Choice 2

1 281 12
2 1 8

… 2 42

… 42 90

… 12 20

… 21 16

now-2 now-1 now

choice index choice index choice index

!SYN

Build SRH with some (e.g. 2) old values of bucket+choice index

History Matrix: Summary
• SYN: build SRH with candidates for bucket (row in matrix)
• Non-SYN: build SRH with history for both bucket and choice
index as found in covert channel (column in matrix)

SYN

!SYN

Covert channel
– Covert channel: field echoed by the client without him knowing SHELL

encodes data in it
– Easy in QUIC (64 bits in connection ID), but QUIC isn’t universally adopted
→ Challenge: Use TCP: what fields are echoed in a TCP session?
→ SHELL implementation uses TCP Timestamp, with only a few bits
→ Other possibilites…

Life of a flow

Life of a flow (1/8)

History Matrix

3

4

5

6

Data plane

Life of a flow (2/8)

History Matrix

3

4

5

6

Data plane

Life of a flow (3/8)

History Matrix

3

4

5

6

Data plane

Server 1 is overloaded,
the server agent
forwards the SYN
request to the second
candidate

Life of a flow (4/8)

History Matrix

3

4

5

6

Data plane

Server 0 is also
overloaded, the server
agent forwards the SYN
request to the third and
final candidate, who is
forced to accept it

Life of a flow (5/8)

History Matrix

3

4

5

6

Data plane

The server agent writes
encodes in the covert
channel of the SYN-ACK
the position in the choice
list of the server that
accepted the connection

Life of a flow (6/8)

History Matrix

3

4

5

6

Data plane

The load-balancer reads
the covert channel value.
At the moment, the only
server that can be third
choice is s2, so the
packet is sent to s2

Life of a flow (7/8)

History Matrix

3

4

5

6

Data plane

One backend
reconfiguration happens,
but choice 3 for bucket 3
does not change, so
nothing changes

Life of a flow (8/8)

History Matrix

3

4

5

6

Data plane

Other changes happen,
the inserted SR header
(SRH) is modified
accordingly, and the
packet reaches s2

Evaluation

P4-NetFPGA Implementation
• P4 dataplane for NETFPGA-SUME: TCP timestamp parsing + SRH insertion

• A bit tricky due to “TLV” (type/length/value) fields
– Only a subset of TCP options parsed
– Namely SACK (different lengths) and timestamps
– Different maximum parsing depths evaluated

P4-NetFPGA dataplane evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Latency (μs)

doff_max = 8
doff_max = 11
doff_max = 13
doff_max = 15

buffer filling

steady state

• Latency = 9μs; Throughput = 60 million packets/s
• Different “TCP option parsing complexities” (maximum size
of TCP option field) implemented/evaluated

P4-NetFPGA dataplane evaluation
• Latency = 9μs; Throughput = 60 million packets/s
• Different “TCP option parsing complexities” (maximum size
of TCP option field) implemented/evaluated

Max data
offset LUT LUT as RAM FF BRAM

8 36.9% 19.4% 33.3% 59.3%
11 40.1% 22.0% 36.4% 63.2%
13 43.8% 24.9% 40.2% 67.7%
15 48.7% 28.6% 45.8% 74.1%

Consistent hashing resiliency evaluation
• Connection duration model built from:
– A model of the number of back-end reconfigurations per second [7]
– A model of connection durations [8]

• In real life situations, about 5 times less connections lost
than with Maglev equivalent (where history depth = 1) 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

Infinite connections

C
o

n
n

e
c
ti
o

n
 r

e
s
e

t
p

ro
b

a
b

ili
ty h = 1

h = 2
h = 3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 50 100 150 200 250 300

Connection durations from model

C
o

n
n

e
c
ti
o

n
 r

e
s
e

t
p

ro
b

a
b

ili
ty

Number of server reconfigurations

h = 1
h = 2
h = 3

Conclusion/References
– No monitoring, but application-informed decisions
– Using SRv6 to direct one query to multiple candidates
– Using covert channel to steer to server having accepted
– Consistent hashing history matrix for resiliency
– Stateless P4-NetFPGA prototype => low latency/high throughput
– Future work: large-scale experiment on actual H/W
– Future work: hybrid stateful/stateless approach
[1] Thaler, D., & Hopps, C. (2000). Multipath issues in unicast and multicast next-hop selection. IETF RFC 2991.
[2] Aghdai, A., et al. (2018). Spotlight: Scalable Transport Layer Load Balancing for Data Center Networks. arXiv preprint arXiv:1806.08455.
[3] Eisenbud, D. E., et al. (2016). Maglev: A Fast and Reliable Software Network Load Balancer. In USENIX NSDI (pp. 523-535).
[4] Olteanu, V., et al. (2018). Stateless datacenter load-balancing with Beamer. In USENIX NSDI (pp. 125-139).
[5] Desmouceaux, Y., et al. (2018). 6LB: Scalable and Application-Aware Load Balancing with Segment Routing. IEEE/ACM TON 26(2), 819-834.
[6] Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE TPDS, 12(10), 1094-1104.
[7] Miao, R et al. (2017). Silkroad: Making stateful layer-4 load balancing fast and cheap using switching ASICs”. In ACM SIGCOMM (pp. 15–28).
[8] Roy, A. et al. (2015) Inside the social network’s (datacenter) network. In ACM SIGCOMM (pp. 123–137)

