
The Extensible Network
Evolution in Protocol and Data Plane Agility

Daniel Bernier, Bell Canada; Milad Sharif, Barefoot Networks; Clarence Filsfils,
Cisco Systems

P4 Workshop 2017

Page 2 | P4 Workshop 2017

A Bit of Context
With the Network 3.0 initiative, Bell Canada is evolving toward heterogeneous, highly interoperable
platform that supports an array of relevant business and residential services.
.
o Large investment in fiber (FTTH, FTTN, etc.) to support future requirements and exponential bandwidth growth.
o Massive network simplification, automation and virtualisation program.

• Fueled by it’s CO/DC transformation (https://www.youtube.com/watch?v=66M8ipFaTeM)
o Disaggregation of connectivity and value-add services from the underlying physical network.

Make the Bell Network Seamless and Personalized

Page 3 | P4 Workshop 2017

But … “Winter is Coming”

5G	will	tax	the	network	from	multiple	ends.	From	low	
latency	and	edge	proximity	to	high	capacity	and	
flexible	orchestration.
The	old	“throw	bandwidth	at	it”	will	not	suffice.	

We’re	gonna need	
a	bigger	boat!

While	the	industry	is	still	working	to	virtualize	the	network	efficiently,	only	few	VNFs	have	
moved	to	micro-services	and	yet	cloud	as	already	moved	further	(e.g.	FaaS,	AWS	F1,	etc.).

An	estimated	50	Billion	devices	will	be	connected	
by	2020.		Interconnecting	and	securing	these	at	
scale	cannot	use	our	current	network	toolkit.

Infrastructure	challenges	associated	to	converting	60+	year	old	central	
offices	to	data	centers,	using	commodity	hardware	has	limited	the	ability	
for	Telco’s	to	leverage	proximity	to	the	end	users.	We	are	now	seeing	a	
return	to	specialized	hardware	(FPGAs,	GPUs,	etc.).

Page 4 | P4 Workshop 2017

How Do We Rethink our Network ?

Page 5 | P4 Workshop 2017

Scaling Things Out
o Make the underlying network stateless

• Push state to the edges
• Simplify the protocol soup.

o Distribute functions where they make most sense
• Functions can be placed anywhere … from network elements to the cloud.
• That’s where a common language for multiple targets comes in handy.

o Distribute function processing
• 100s of distributed functions will scale better then a few big ones.

o Leverage abstracted function identifiers
• Make them referenceable and potentially supporting resolution

Page 6 | P4 Workshop 2017

The “Network-as-an-ASIC”

SA:2605::1:1
DA:2605::F1:E100
NH:RH IPv6

Type:4(SRH)
NH:IPv4|SL:4
Segment List:
[0]:2605::F5:E100
[1]:2605::F4:E100
[2]:2605::F3:E100
[3]:2605::F2:E100
[4]:2605::F1:E100

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

2605::1:1 2605::F1:E100 2605::F2:E100 2605::F3:E100 2605::F4:E100 2605::F5:E100

SA:2605::1:1
DA:2605::F2:E100
NH:RH IPv6

Type:4(SRH)
NH:IPv4|SL:3
Segment List:
[0]:2605::F5:E100
[1]:2605::F4:E100
[2]:2605::F3:E100
[3]:2605::F2:E100
[4]:2605::F1:E100

SA:2605::1:1
DA:2605::F3:E100
NH:RH IPv6

Type:4(SRH)
NH:IPv4|SL:2
Segment List:
[0]:2605::F5:E100
[1]:2605::F4:E100
[2]:2605::F3:E100
[3]:2605::F2:E100
[4]:2605::F1:E100

SA:2605::1:1
DA:2605::F4:E100
NH:RH IPv6

Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]:2605::F5:E100
[1]:2605::F4:E100
[2]:2605::F3:E100
[3]:2605::F2:E100
[4]:2605::F1:E100

SA:2605::1:1
DA:2605::F5:E100
NH:RH IPv6

Type:4(SRH)
NH:IPv4|SL:0
Segment List:
[0]:2605::F5:E100
[1]:2605::F4:E100
[2]:2605::F3:E100
[3]:2605::F2:E100
[4]:2605::F1:E100

SA:10.10.1.10
DA:192.168.0.10
NH:UDP

UDP Header/Data

SA:2605::1:1
DA:2605::F4:E100
NH:RH IPv6

Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]:2605::F5:E100
[1]:2605::F4:E100
[2]:2605::F3:E100
[3]:2605::F2:E100
[4]:2605::F1:E100

SRv6

o Traffic classification at the edge of the network à e.g. parsing.
o Simplified Match/Action primitive looking at the function Identifier.
o Contextual metadata carried through TLVs
o Programming at all Layers

• P4 to define the END and TRANSIT behaviors in data plane.
• SRv6 to define the “end to end network behavior”

Page 7 | P4 Workshop 2017

How Can This Be Achieved ?

Page 8 | P4 Workshop 2017

A Bit of SRv6 Theory

TLVs

Version Traffic Class
Next = 43 Hop LimitPayload Length

Source Address = A::
Destination Address = C::

Segment List [0] = D::
Segment List [1] = C::

Next Header Len= 6 Type = 4 SL = 1
First = 2 Flags Tag

IP
v6

Segment List [2] = B::

SR
H

Payload

Flow LabelFlow Label

o SRv6 SIDs are 128-bit addresses
• Locator: most significant bits are used to route the segments to its parent node
• Function: least significant bits identify the action to be performed on the parent node
• Argument:[optional] last bits can be used as a local function argument

o Specific SID formatting only needs to be understood by the parent node

o SIDs have to be specifically enabled as such on their parent node
• A IPv6 address is not necessarily a local SID
• A local SID is not necessarily bound to an interface.

o Each segment is an IPv6 Address

o The SID list is encoded in reverse order.
• Last segment in the list as an index value of 0.
• First Segment indexes the first segment in the list.
• Segments Left refers to the active segment index.

o The Destination Address of the IPv6 header is copied
from the Active Segment in the SID list.

o TLVs can be used to convey contextual information.
• HMAC
• Metadata
• OAM values (e.g. INT)

https://tools.ietf.org/html/draft-filsfils-spring-srv6-network-programming-00
https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-06

SRv6 SIDs as Universal Identifiers

2605: A800: FFFE: 1111: A100: C1: 0010: 2222
Locator Function [Arguments]

Page 9 | P4 Workshop 2017

Predefined END and TRANSIT Behaviors

Page 10 | P4 Workshop 2017

source: https://wiki.fd.io

Key Enablers - Software Data Plane (VPP)

set sr encaps source addr A1::

sr policy add bsid B::999:1 next B2:: next D3::2 encap

sr steer l2 GigabitEthernet0/4/0 via sr policy bsid B::999:1

sr localsid address A1::2 behavior end.dx2 GigabitEthernet0/4/0

o Deployable in multiple scenarios
• Hypervisor/Host Networking
• Embedded Systems
• vNF/cNF Data Plane

o Fully open programmable data plane implementation using directed graphs

o Plugin architecture allows for deviation from core implementation
• Hardware Offload or Augmentation (e.g. SmartNICs)
• Capabilities add-on

o SRv6 already Implemented (release 17.04)
• Sample LocalSID plugin to create new functions

o VPP as a P4 target is a reality
PVPP: A Programmable Vector Packet Processor (SOSR ‘17)
http://www.cs.princeton.edu/~mshahbaz/papers/sosr17demos-pvpp.pdf

Page 11 | P4 Workshop 2017

Key Enablers - P4 and Programmable Hardware
o P4 on SmartNICs (FPGAs, NFPs) can tie END behaviors from the data plane directly to the app.

• e.g. SR-SPRAY on a NIC

o P4 to FPGA/NPU compilers give access to existing brownfield.
• Can’t replace all the hardware in the field … but some can be reprogrammed.
• Configuring actions based on an EH might prove simpler than trying to support shiny new encaps.

o Consolidating on P4 helps with usability
• Keeping developers focused on a single language greatly accelerates innovation.
• Simpler for end users then support target dependent languages.
• Builds a larger development community.

o Leveraging Binding SIDs can abstract complex policies for resource limited targets.

o Potentially leverage P4 to parse beyond Ethernet (e.g. Optical) ?
• Opens the door to new possibilities (LocalSID for wavelength?)

2605: A800: FFFE: 1111: A100: D1: :: 1024
Locator Rate-Limit [Threshold]

2605: A800: FFFE: 1111: A100: F1: A: 0512
Locator Encoder [Format/Bit-Rate]

2605: A800: FFFE: 1111: A100: B1: A000: 2222
Locator Storage [Block Address]

2605: A800: FFFE: 1111: A100: C1: :: 0100
Locator Firewall [Policy ID]

Firewall with policy identifier

Distributed Storage

Rate-Limiting Policy

“Just-in-Time” Encoding

Example of potential END behaviors

Page 12 | P4 Workshop 2017

Extending the Network With a New Behavior

o Program the new data plane behavior in P4.
o Compile to multiple targets.

Continuously Extending the Network … With no new Protocol

o Program the control plane and/or northbound APIs required.
o Configure the new function using the behavior (e.g. attach a LocalSID to the behavior).

Page 13 | P4 Workshop 2017

SRv6 Implementation in P4
o Idea initiated after the review of the SRv6 Network Programming concept and its surrounding

academic work.
• Lead Operators face to face in January 2017.

o Collaborative work between the SR team at Cisco Systems, Barefoot Networks and Bell Canada.

o Provided a great use case to prove the disruptiveness of PISA.
• Evaluate behavior of P4 syntax versus hardware taxing encapsulation scheme.
• Demonstrate rapid innovation open programmable data planes offer.

o Based on SRv6 network programming draft
• https://tools.ietf.org/html/draft-filsfils-spring-srv6-network-programming-00
• ~90% of predefined behaviors implemented before draft submission at IETF98
• 10 segments in two SRH with L2/L3 forwarding
• ~400 lines of P4 codes

o Complete virtual and physical interop topologies in Bell Canada labs.
• Demo will be public in a few week

SRv6 Lead-Operators Session
SRv6-Net-Programming Intro.
Review with lead operators, Get
consensus, Identify Next-Steps

Barefoot and Clarence Intro
Review current SRH
implementation in P4, Define
achievable target for May
timeframe

Jan 28 – Feb 2nd 2017 Feb 28 2017 March 28th 2017 April 9th 2017

VPP release 17.04
Initial release of SRv6 code
including END functions, SR-
Policy and SR Steering

IETF 98 – SPRING WG
Presentation of SRv6-Net-
Programming draft. Barefoot
announces they have a
running implementation.

May 17th 2017

SRv6 – P4 Interop Demo
Virtual and Physical interop
demoes out of Bell Canada
posted on YouTube

May 31st 2017

P4 Workshop 2017

SRv6 in P4 Development Timeline

May 15th 2017

SRv6VPN Demo
Demonstration of
SRv6-VPN and SRv6-TE
on Broadcom Jericho

Page 14 | P4 Workshop 2017

SRv6 Implementation in P4
o Concurrent design and implementation.

• Changes are frequent - 4 revisions of SRH draft in 2017 alone.
• Can track the latest spec.

o Rapid Prototyping and Testing
• New SRv6 endpoint functionalities can be added and tested in

just a few hours !!

o Zero Effort Silicon Migration
o Can develop/test with simulation or P4 targets seamlessly.

table srv6_transit {
reads {
ipv6.dstAddr : lpm;

}
actions {
t;
t_insert;
t_encaps;

}
}

P
a
r
s
e
r

D
e
p
a
r
s
e
r

S
I
D

L
o
o
k
u
p

I
P
v
6

T
r
a
n
s
i
t

table srv6_local_sid {
reads {
ipv6.dstAddr : lpm;
ipv6_srh.valid : ternary;
ipv6_srh.segLeft : ternary;
ipv6_srh.nextHdr : ternary;

}
actions {
drop_;
transit; /* T, T.INSERT, T.ENCAPS */
end; /* END */
end_x; /* END.X */
end_t; /* END.T */
end_dx2; /* END.DX2 */
end_dx4; /* END.DX4 */
end_dx6; /* END.DX6 */
end_dt4; /* END.DT4 */
end_dt6; /* END.DT6 */
end_b6; /* END.B6 */
end_b6_encaps; /* END.B6.ENCAPS */

}
}

Page 15 | P4 Workshop 2017

… it’s not that easy

Are	we	out	of	the	
woods	yet	?

Page 16 | P4 Workshop 2017

Still a Lot of Work To Do
Programmable data planes and P4 are key in achieving this Extensible Network but there are still a lot
of pieces to link together:

o Coding in P4 does not equal to knowing how to program a data plane.
• Effective data plane programming is an expertise not easily found.
• Co-development with OEMs will be helpful (code revision, sanity checking, etc.).
• There will be an industry need for services around P4 code development and multi-target SDE environments.

o A programmable data plane alone does not make a network.
• We can now rapidly create new SID behaviors to address a requirement or new network function.
• Leveraging them still needs a control-plane element (e.g. mapping generated APIs to CP, northbound

orchestration is essential).

o Lots of standardization efforts at IETF
• Header insertion is still progressing in the working groups (https://tools.ietf.org/html/draft-ietf-6man-

rfc2460bis-11, https://www.ietf.org/id/draft-voyer-6man-extension-header-insertion-00.txt)
• For interoperability, providers still need standards … but these need to follow the pace of innovation.
• Programmable data planes give us the ability to move forward iteratively and still reach standardisation (e.g.

coding a draft revision in hours instead of months).

Thank You

-

