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ABSTRACT
Emerging trends such as cloud computing, the internet of

things, and augmented and virtual reality demand highly

responsive, available, secure, and scalable networks to meet

users’ quality of experience expectations. Operators cur-

rently manage these networks and protocols using a variety

of ad-hoc tools and scripts; however, the unpredictable and

complex interactions between network conditions and work-

loads make such manual tuning difficult.

Machine learning (ML) can help approximate and auto-

mate these complex interactions that govern today’s hyper-

scale datacenter networks [3, 4, 7]. Recent proposals generate

ML models for networks to produce recommendations for

policies like routing and congestion control [16]. At present,

these models run on a logically-centralized control plane that

infers learned polices, causing delays of tens of milliseconds

when updating network devices [5, 9]. This is because mod-

ern reconfigurable switching devices (e.g., RMT [1]) lack the

necessary operations (i.e., loops and multiplication) needed

to run these ML models in the data plane. Therefore, for poli-

cies like anomaly detection where inputs to the ML model

may vary over time (e.g., payload size or time-windowed

features [15]), most packets—even of a single flow—need to

traverse the control plane, thus, significantly increasing load

on the controller and inflating flow latencies [11].

In this paper, we present Taurus, an intelligent data plane

architecture for ML inference at line rate. Taurus extends

the Protocol Independent Switch Architecture (PISA) [1, 8]

by adding an ML-capable block with a map-reduce abstrac-

tion to the match-action table pipeline (Figure 1a). The map-

reduce block receives pre-processed network and packet fea-

tures from the preceding match-action tables and the parser,

and feeds results to the following match-action tables for

post processing to set the network action (e.g., drop, route, or

encapsulate a packet based on the prediction). The design of

the map-reduce block is based on a spatial SIMD architecture

that can support a variety of ML models. It is composed of

Compute Units (CU) and Memory Units (MU) interleaved in

a grid, joined by a static interconnect (Figure 1b) [13]. CUs

are composed of programmable Functional Units (FUs) and

registers organized across lanes and stages; a CU can per-

form either a map, reduction, or both. This restriction allows

high performance for regularly-structured applications (e.g.,

ML) with low configuration overhead.
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Figure 1: Taurus data plane architecture

Perf. Area Power

App Model GPkt/s ns mm
2

+% mW +%

Anomaly SVM 1.00 68 4.59 6.1 263 1.1

Anomaly DNN 1.00 362 8.80 11.7 506 2.0

Indigo LSTM 0.08 380 17.73 23.6 1018 4.1

Table 1: Performance, area, and power overheads for
three different application models. Overheads are cal-
culated relative to a 300mm

2 chip with 4 reconfig-
urable pipelines [6], each drawing an estimated 25W.

Table 1 shows that that cost of adding ML models to a

network data plane is small. Taurus can run simple models

such as SVM-based anomaly detection [10] with as little

as 6.1% area and 1.1% power overhead. The Deep Learning

(DL) network [14] consumes more resources but the area

and power utilization is still under 12% and 2%, respectively.

Both models meet the high-end switch line rates of a billion

packets per second (i.e., 1 GPkt/s). The third application,

Indigo [16], is an endpoint application for congestion control

that could be deployed on Taurus-based network interface

cards (NICs). Indigo’s DL network is unrolled tomeet 40 Gbps

line rate for minimum-sized packets (i.e., 0.08 GPkt/s). While

the original DL network ran once every 10ms, a Taurus-based

NIC pipeline runs Indigo in 12.5ns intervals. With Taurus,

we demonstrate that data plane devices can infer from ML

models at line rate with several orders of magnitude lower

latencies than traditional control-plane approaches [2, 5, 12].
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