
Event-Driven Packet Processing

Stephen Ibanez*, Gordon Brebner†, Gianni Antichi#, and Nick McKeown*

*Stanford University, †Xilinx Labs, #Queen Mary University of London

ABSTRACT
The current P4 programming model allows programmers to
express packet processing on a synchronous packet-by-packet
basis, motivated by the goal of line-rate processing in feed-
forward pipelines. But some important data-plane operations
do not naturally fit into this programming model. Some-
times we want to perform periodic tasks, or update the same
state variables multiple times, or base a decision on state sit-
ting at a different pipeline stage. While a P4-programmable
ASIC might contain special features to handles these tasks,
such as packet generators and recirculation paths, there is
currently no clean and consistent way to expose them to P4
programmers. We therefore propose a common, general way
to express event processing in a generic P4 pipeline, beyond
just packet arrival and departure events. We believe that this
more general notion of event processing can be supported
without sacrificing line-rate packet processing and we have
developed a prototype event-driven architecture on the NetF-
PGA SUME platform to serve as an initial proof of concept.

1. EVENT-DRIVEN PACKET PROCESSING
Many data-plane programmers tend to think of switches

and NICs as processing one packet followed by another in
synchronous succession. The P4 language has embraced
this line of thinking and exposes a programming model that
is driven by packet arrival and departure events. This pro-
gramming model is convenient because it can be efficiently
mapped to a feed-forward pipeline architecture that deter-
ministically processes packets at line rate. The P4 program-
ming model has become widely accepted as the proper way
to program the data-plane. However, it has lead many data-
plane developers to believe that algorithmic state can only
be updated in reaction to packet arrival or departure events.
This does not necessarily reflect what the underlying hard-
ware is capable of achieving, it is simply an artifact of the
current programming model.

We observe that many data-plane applications do not effi-
ciently map to this purely packet-driven programming model.
The reason is because these data-plane applications must ac-
cess and update algorithmic state in response to events other
than packet arrivals and departures. In particular, we would
highlight two types of data-plane applications that exhibit
this behavior. There are a number of important applications
that must periodically perform a task, for example, Hula that
periodically generates packets with link utilization informa-

Event Type Description
Ingress Packet Packet arrival
Egress Packet Packet departure
Packet Transmission Packet finished transmission
Recirculated Packet Packet sent back to ingress
Buffer Enqueue Packet enqueued in buffer
Buffer Dequeue Packet dequeued from buffer
Buffer Overflow Packet dropped at buffer
Buffer Underflow Buffer becomes empty
Timer expiration Configurable timer expires
Control Plane triggered Control plane invoked
Link status change Link goes down / comes up
State Condition met User-defined condition

Table 1: Set of useful data-plane events to support in an
event-driven packet processing architecture.

tion. Today, these periodic tasks are accomplished either via
the control plane or by manually configuring a packet gen-
erator. Neither of these approaches are convenient for P4
programmers to express. Another important class of data-
plane applications, e.g., Snappy and NDP, are those that up-
date algorithmic state when packets are enqueued, dequeued,
and/or dropped from the buffer, for instance, to derive con-
gestion signals.

Many of the applications that utilize congestion signals are
challenging to implement on today’s P4 target devices and
often use some form of recirculation. In order to facilitate the
deployment of such applications, we propose to generalize
the notion of packet arrival and departure events to the more
general class of data-plane events. Table 1 describes a set of
events that we have identified as being generally useful for
implementing a wide range of data-plane algorithms. Each
particular P4 target architecture would define precisely the
set of events that it supports.

We believe that it is feasible to support our more gen-
eral notion of event processing without sacrificing determin-
istic line-rate packet processing. In order to demonstrate
the practicality of deploying an event-driven architecture in
hardware, we developed the SUME Event Switch using the
P4−→NetFPGA toolchain and used this architecture to imple-
ment and evaluate a version of the FRED AQM policy.


	Event-Driven Packet Processing

