
Leveraging P4 for Fixed Function Switches
Konstantin Weitz (konne@google.com) Stefan Heule (heule@google.com)
Waqar Mohsin (wmohsin@google.com) Lorenzo Vicisano (vicisano@google.com)
Amin Vahdat (vahdat@google.com) Google, USA

To use a fully-programmable switch chip, one has to describe the switch pipeline using P4. However,
Google, like most of the industry, still relies on �xed-function switch chips in our infrastructure. This will
continue for years to come. We believe that using a single contract to specify forwarding behavior
across our entire infrastructure has huge value, beyond the bene�ts of dynamic switch recon�guration
in a subset of the fabric. In this talk, we show how modeling a pipeline in P4 can provide value even in
deployments that consist of mostly �xed function switches. The advantages are:

1) Having a P4 program that clearly describes the semantics of our switches enables automated
validation [1][2]. This approach is becoming ever more impo�ant as we move toward a world
with more heterogeneous switches, more stringent availability requirements, and faster release
cycles. The traditional, manual approach to writing tests cannot scale fu�her.

2) Making our requirements use-case-centric, rather than based on vendor capability, simpli�es
po�ability across vendors. Our P4 programs model what we need from the switch in a pa�icular
role, not what the switch provides. For example, we have a logical encap table of size 13,
because that's all we need; or we have multiple logical tables, which most pla�orms will
implement with a single physical table. This makes it easier to operate a heterogeneous �eet,
which could consist of both �xed-function and programmable switches.

3) By using a P4 program to clearly describe our requirements for a switch, we decuple the
speci�cation from the implementation, potentially removing “vendor lock in”: The combination
of po�able speci�cation and standard APIs (P4Runtime) gives us access to a larger pool of
vendor switches.

4) Many �xed function switch chips have some programmable pa�s. We have a compiler that
inspects our P4 programs, and generates the appropriate switch con�guration for these
programmable subsets. Our compiler also veri�es that our logical tables �t within the limits of
the hardware.

5) In some cases, we need our switches to provide as many table resources as possible. In such
cases, our P4 program is instantiated with the limit for each pla�orm. Our SDN controller can
then inspect these limits, for example, to make tradeo�s between optimal link utilization and
table resource consumption.

In conclusion, we have found that describing our switch pipelines in P4 enables us to pe�orm automated
testing, operate a heterogeneous �eet, make our switches a commodity, generate con�guration, and
improve our hardware utilization.

[1]: Nötzli et al. p4pktgen: Automated Test Case Generation for P4 Programs. SOSR '18.
[2]: Freire et al. Uncovering Bugs in P4 Programs with Asse�ion-based Veri�cation. SOSR '18.

mailto:konne@google.com
mailto:heule@google.com
mailto:wmohsin@google.com
mailto:vicisano@google.com
mailto:vahdat@google.com

