
Goodbye Scapy,
Hello snappi

Dataplane testing from DC to Daylight
Using the Open Traffic Generator API

Chris Sommers, SW Architect
Ankur Sheth, Director of Engineering

Keysight Technologies

2

Chris Sommers is a software architect with decades of experience in the design of hardware and software
for wireless and wireline networking. Chris works at Keysight Networking Labs where he investigates
emerging technologies. Chris also participates in several P4.org working groups. He holds a Bachelor’s
degree in Electronic Engineering from Cal Poly San Luis Obispo, CA.

Ankur Sheth is a member of Product Strategy Group at Keysight where he works on NPIs and also leads
Keysight’s Network Test Virtualization products. Over the years Ankur has led numerous teams that have
built high quality breakthrough products in wired and wireless networking space. Ankur holds a Master’s
degree in Electrical Engineering (Computer Networks) from University of Southern California, CA.

Chris and Ankur have helped develop the well-known Ixia line of packet testers manufactured by Keysight
Technologies.

3

• Write some really cool P4 code

• Run it in bmv2 or a vendor P4 simulator (e.g. Tofino Model)

• Throw packets at it with Scapy/PTF, Trex, custom SW tools, etc.

• Test it on real P4 switching device (Device Under Test, or DUT)

• Use a hardware-based traffic generator for precision & performance

• Problem – can’t re-use your scripts! Scapy/PTF doesn’t natively support
true line-rate testers
• Write custom libraries/wrappers for PTF?
• Rewrite scripts from scratch?

• Lots of extra work!
• Maintenance headache!
• May not work the same!
• Vendor lock-in!

Bmv2,
Tofino
Model

PTF,
scapy

Veth’s

SW Sim

Script A

D.U.T.

Line-Rate Tester

cablingScript B
DevTest/
Simulate

CI/CD
Line-Rate

DevTest/
Line-rate

CI/CD
Simulate

Don’t forget
Q/A!

How to avoid
scripting silos?

Developer
Automation

4

Bmv2,
Tofino Model,
other

PTF, pytests,
scapy, proprietary

D.U.T.

Line-Rate Tester

cabling

Veth’s

Script A

Script C

D.U.T.

1 or more servers
w/ fast NICs

Script B

Test
runner

cabling

Complete sim
environment

Speed/sca
le

Problem – test scripts/tools change
from simulation to real HW

Script A != Script B != Script C

Proprietary
API/GUI

Scapy,
Trex
Custom DPDK?

100G-
400G

Fanout switch(es)?

5

As a developer, I want it all, and I want it now:

• Write my test script once, run it everywhere

• Speeds from slow simulators (“DC”) up to line rate (“Daylight”)

• Model-based, declarative API – config as a “document”

• Open standard – vendor-agnostic, community ecosystem

• Free, software-based solutions

• Commercial, full-performance solutions

• Easy onramp – download and go in minutes

Introducing…Open Traffic Generator, snappi & Ixia-c

On the
web! https://github.com/open-traffic-generator

6

HW-based testers

Ixia-c SW-based tester – Free version available

Ixia-c Controller

Ixia-c
Traffic Engine

Ixia-c
Traffic Engine

R
ES

T
AP

I

OpenAPI
Datamodels

Single source of truth

REST
Client/Server API

Contract
Vendor-Neutral

Lean and
clean
Pythonic client
libraries

Full performance
requries1 CPU core

per port/direction

Your snappi-based
Test Scripts

(Pytest, PTF, other)

Roll your own REST
test scripts in your
language of choice.

Auto-generated

UHD100T32: 32x100Gbps – Tofino-based (P4)

Up to 400Gbps – traditional HW platform

Many HW
models

Auto-generated

veth or NIC

veth or NIC

“Concrete”
OpenTrafficGenerator

“Abstract”
OpenTrafficGenerator

Traffic Device Under Test (DUT)Other traffic generators
More adaptors sought!

for SW and HW Traffic generators
Community participation welcome!

SW D.U.T.

HW D.U.T.

7

(((

(((

Bmv2,
Tofino Model,
other

D.U.T.

Line-Rate Tester

cabling

Veth’s

SW Sim
D.U.T.

1 or more servers
w/ fast NICsTest

runner

cabling

Complete sim
environment +
Test Runner

Speed/sca
le

One Script to rule them all

Ixia-c TG

Test
runner

Ixia-c TG

OpenAPI
Datamodels

“The” script

Fanout switch(es)?
< 100Gbps

400Gbps

8

• As an exercise, I converted an existing PTF test “demo1” from Andy Fingerhut’s well-known p4-guide
repo: https://github.com/jafingerhut/p4-guide

• I forked the repo: https://github.com/chrispsommers/p4-guide/tree/snappi-tests2 and made a new test directory demo1-snappi

• I modified one of the existing tests FwdTest and replaced Scapy with snappi

• I added several other tests to illustrate other snappi techniques and features

• Today’s demo will showcase the added snappiFwdTest4PortMesh test which does some cool things:
• Sets up 4 Ixia-c traffic engines + one Ixia-c controller (5 Docker containers)
• Configures 12 flows to establish a 4x4 port mesh.

• Each flow includes auto-increment in the IP dest address to cover a /24 subnet
• Send 100-byte packets at a precise 50 PPS using the built-in Ixia-c scheduler

• Retrieve all per-port and per-flow Tx and Rx statistics and compare to expected values
• Retrieve all captured packets, examine the IP addresses and confirm the complete port-mesh was received.

Note this same test could easily be enhanced to control line-rate testers, at full speed and scale, by changing a few parameters

https://github.com/jafingerhut/p4-guide
https://github.com/chrispsommers/p4-guide/tree/snappi-tests2

9

Bmv2
P4 Simulator

Port 0
Port 1

Port 2
Port 3

Port 4
Port 5
Port 6
Port 7

P4RT Server

P4
Dataplane

Match/Action
Tables

Ixia-c
Traffic Engine

Ixia-c
Traffic Engine

demo1.p4_16.p4

p4c compiler demo1.p4_16.json

P4 “executable”

Ixia-c Controller

Ixia-c
Traffic Engine

Ixia-c
Traffic Engine

demo1-snappi.py

demo1.p4_16.p4rt.txt

P4Runtime
“P4Info” Metadata

snappi lib P4RT lib

OpenTraffic
Generator

REST

P4Runtime gRPC

Transmit & capture

PTF Script
“Simple Switch” behavior:

- IP dest LPM Lookup
- MAC rewrite
- Port Redirect or drop

2 CPU cores per engine1 CPU core for controller

veth0 veth1
veth2 veth3
veth4 veth5
veth6 veth7

veth8 veth9
veth10 veth11
veth12 veth13
veth14 veth15

veth2 veth3

veth4 veth5

veth6 veth7

veth8 veth9

veth2veth3

veth4veth5

veth6veth7

veth8veth9

Tx Rx

1. Create 12 “flows” of 255 TCP packets with auto-increment of DIP to include entire /24 subnet in each mesh path. Payload
includes several bytes of “instrumentation” for flow tracking.

2. Send and capture forwarded packets and count the stats per-port and per-flow
3. Verify per-port and per-flow packet counts, also verify the entire IP address mesh was received.

snappiFwdTest4PortMesh

pip install
snappi

12 flows x 255 packets

10

i = 0
for src in self.port_ndxs:

for dst in self.port_ndxs:
if src == dst:

continue # no hairpin switching

print("Configuring flow[%d]: %s => %s" % (i, ports[src].name, ports[dst].name))
flow = self.cfg.flows.flow(name='port%d-%d' %(src+1, dst+1))[-1]
flow endpoints
flow.tx_rx.port.tx_name = ports[src].name
flow.tx_rx.port.rx_name = ports[dst].name
configure rate, size, frame count
flow.size.fixed = 100
flow.rate.pps = 50
flow.duration.fixed_packets.packets = self.tx_count
configure protocol headers with defaults fields
flow.packet.ethernet().ipv4().tcp()

eth = flow.packet[0]
eth.src.value = host_macs[src]
eth.dst.value = host_macs[dst]

ipv4 = flow.packet[1]
ipv4.dst.increment.start = ip_hosts[dst]
ipv4.dst.increment.step = '0.0.0.1'
ipv4.dst.increment.count = self.tx_count
ipv4.src.value = ip_hosts[src]
ipv4.time_to_live.value = 64

tcp = flow.packet[2]
tcp.src_port.value = 1234
tcp.dst_port.value = 80

i+=1

Instantiate a flow

src1

src2

src3

src4

dst1

dst2

dst3

dst4

Precision scheduler: PPS, BPS or % line rate

Scapy Equivalent: Ether()/TCP()/IP()

Auto-increment a packet header– built-in to Snappi!

11

• Configure Ixia-c for 12 traffic flows, into veth2, veth4, veth6 and veth8 (dataplane ports 1-4 respectively in the P4 code). The 12 flows
comprise a full-mesh, full-duplex test of port forwarding. Each flow will send 256 packets into its port, incrementing the last byte of the DIP
from 1 to 256. Each flow will emit packets at 50 packets per second. We wait until the pipeline finishes processing all packets (or timeout
while waiting).

• Configure Ixia-c to capture all the return traffic

• Start the traffic flows and capture the results

• Verify no packets were captured because the P4 dataplane forwarding tables have not been programmed: the default action is drop.

• Configure the P4 tables to match on the DIPs as configured in the traffic flows and forward to the correct egress ports, also performing MAC
rewrite.

• Start traffic flow a second time and capture everything. We wait until the received packet counts match the expected values on all flows (or
timeout waiting).

• Verify several expectations:
• Each port transmits the correct count of packets (3*255, i.e. 255 packets to each of the other ports in the mesh)

• Port Tx stats = port Rx stats = 3*255

• The captured results has the correct number of packets for each flow (same as transmitted to each flow)
• Examine each captured packet, extract IP src and dest address, and confirm exactly one packet was sent between each "host" and each of 255 "destinations" on

the other port's subnets.

Demo available at https://github.com/chrispsommers/p4-guide/tree/snappi-tests2
Thanks to Andy Fingerhut for his p4-guide repo at https://github.com/jafingerhut/p4-guide

https://github.com/chrispsommers/p4-guide/tree/snappi-tests2
https://github.com/jafingerhut/p4-guide

12Optional Title of the Presentation

13

14

15

Item snappi Scapy
Portability • One script to cover SW and HW traffic generators • Only works for SW generator. Migration to HW = start over

Scalability
(# ports)

• Add CPU cores (SW) or line cards/chassis (HW) to scale-out to any size
• Controller and Traffic Engines/Line cards talk over sockets, easy to scale-out

• Limited by #NICs; can use fanout switches with additional ad-hoc
automation – cumbersome!

Automation • snappi and/or REST automation, designed for automation • Pytest or PTF; framework and dataplane are synonymous

Performance/
Throughput

• HW Traffic-generators: 400Gbps port speeds
• Ixia-c SW traffic generator: 10Gbps @ 64 byte frame size using one Xeon class core,

approaching 100Gbps depending upon packet length; uses DPDK

• Limited by CPU speed – “slow-ish”
• Not optimized for DPDK

CPU Resources
(SW Traffic Gen)

• 1 core (shared) for controller
• Hi-performance: 1 core per direction, per port
• Best-Effort: 1 core per direction (shared among ports)

• Unclear, but scapy believed to run on one core.
• Roll your own multi-core version for higher performance

Scheduler • Precision scheduling of multiple flows, nsec precision in HW
• Specified as packets-per-second, bits-per-second, % of max line rate
• Burst Mode

• Roll-your-own scheduler – good luck!

Packet types • Ethernet, VLAN, GRE, GTPv1, GTPv2, IPv4, IPv6, ICMP, ICMPv6, UDP, TCP, custom.
More protocols are on the way.

• Essentially unlimited, easy to design new ones

Header patterns • Built-in patterns like increment, decrement, list, etc. directly executed by the engines at
speed, to generate millions of unique packets.

• Hand-build your own patterns in python, “manually” send them in
sequence.

Flow tracking • Built-in “instrumentation” header tracks up to 256 unique flows per port • Not supported

Statistics • Per-port and per-flow transmit and receive statistics
• Latency measurements (min, max, avg) per flow

• Roll your own!

Capture • Capture packets with filters, access via port or flow
• Process in memory, write to Pcap file, send to tcpdump

• Capture packets per port

Statefulness/
Interactivity

• Not supported • Good support, easy to perform interactive sessions

16

Find us on GitHub!
• Use Ixia-c & snappi
• Report bugs
• Log feature requests
• Contribute to models
• Contribute other backends

Thank You
chris.sommers@keysight.com
ankur.sheth@keysight.com

https://github.com/open-traffic-generator

https://github.com/open-traffic-generator

18

BACKUP SLIDES

19

src1

src2

src3

src4

dst1

dst2

dst3

dst4

20

Pytest Script

snappi lib

Hardware-based traffic tester
Network Appliance

(12.8TB ASIC)
32x100/400Gbps
Device Under Test

cabling

Code repo
Pipeline Runners

On-prem development lab

This workflow is being used in
one of our projects. We’re using

snappi to drive an Ixia traffic tester
to verify yet another product.

Commit

Joe Cool,
programmer

New build

21

Pytest Script

snappi lib

Hardware-based traffic tester
SONiC Whitebox

32x100Gbps
Device Under Test

cabling

Test are being added to the SONiC
testbed suite using snappi to

control a traffic generator.

