Goodbye Scapy,
Hello snappi ===

Dataplane testing from DC to Daylight
Using the Open Traffic Generator API

MAY 18-20

2021
Workshop

Hosted by O \—

Chris Sommers, SW Architect
Ankur Sheth, Director of Engineering
Keysight Technologies

Speaker Biographies

- Chris Sommers is a software architect with decades of experience in the design of hardware and software
s for wireless and wireline networking. Chris works at Keysight Networking Labs where he investigates

| emerging technologies. Chris also participates in several P4.org working groups. He holds a Bachelor's
degree in Electronic Engineering from Cal Poly San Luis Obispo, CA.

Ankur Sheth is a member of Product Strategy Group at Keysight where he works on NPIs and also leads
Keysight's Network Test Virtualization products. Over the years Ankur has led numerous teams that have
built high quality breakthrough products in wired and wireless networking space. Ankur holds a Master’s
degree in Electrical Engineering (Computer Networks) from University of Southern California, CA.

IXI Chris and Ankur have helped develop the well-known Ixia line of packet testers manufactured by Keysight
Technologies.

KEYSIGHT

TECHNOLOGIES

I’m a typical P4 Dataplane Developer — What’s my workflow ?

- -

 Write some really cool P4 code " SWsim A PTF.
* Run itin bmv2 or a vendor P4 simulator (e.g. Tofino Model) scapyfg

e

» Throw packets at it with Scapy/PTF, Trex, custom SW tools, etc.

Bmv2, /
« Test it on real P4 switching device (Device Under Test, or DUT) Tofino ./
_ o _ = scriptA del .-’
» Use a hardware-based traffic generator for precision & performance A ’ M?,?’

- -

* Problem — can’t re-use your scripts! Scapy/PTF doesn’t natively support
true line-rate testers

) i] Lots of extra work!
» Write custom libraries/wrappers for PTF? Maintenance headache!
. . May not work the same!
* Rewrite scripts from scratch? Vendor lock-in! /

Cl/CcD
Simulate

DeveloPe

Cl/CD
Line-Rate

DevTest/
Line-rate

1 - \
) 1
I 1
\ =5 scriptB !
Don't forget L !

/
Q/A! B ;
. T
| //
'
7

DevTest/
Simulate

How to avoid h D.U.T.

scripting silos?

NS_—_—_——"

KEYSIGHT

TECHNOLOGIES

Traditional Test Environments vs. SpeedlScaIe T -

Problem — test scripts/tools change
from simulation to real HW

Script A != Script B = Script C

1 or more servers
w/ fast NICs

@_.

Scrlpt B /

\ I.“ﬁ%%?/;i?

\ Fanout switch(es)?

Scrlpt A

PTF pyTesTs . .
scapy proprietary = T-___ Pttty

Bmv2
Tofino Model,

7/
/
N othe %
\\ T r‘ m //
7

-
S~ -

KEYSIGHT

TECHNOLOGIES

Wish-List for Packet Testing

As a developer, | want it all, and | want it now:

« Write my test script once, run it everywhere

» Speeds from slow simulators (“DC”) up to line rate (“Daylight”)
* Model-based, declarative API — config as a “document”

* Open standard — vendor-agnostic, community ecosystem

* Free, software-based solutions

* Commercial, full-performance solutions

« Easy onramp — download and go in minutes N Snappl

Introducing...Open Traffic Generator, snappi & Ixia-c

https://github.com/open-traffic-generator

EEEEEEEEEEEE

Open Traffic Generator — Model-based Packet Testing!

Ixia-c SW-based tester — Free version available

&>
dociug SWD.UT.
oo

docker /@) !?J.DBK e

v

)

Roll your own REST
test scripts in your

2
o
o
Q
o
0

.\‘z Auto-generated
K

language of choice. H Full performance
1 requries1 CPU core _
1 per port/direction ..."\?'\:“;T; —

More adaptors sought!

Other traffic generatorsl for SW and HW Traffic generators
Community participation welcome!

n
>

REST
Auto-generated Client/Server API
OpenAPI Contract
Datamodels Vendor-Neutral HW-based testers
Single source of truth

—— .

in = ’

A —» *snappi I

N Lean and Many HW
Your snappi-based | == clean models UHD100T32: 32x100Gbps — Tofino-based (P4)
Test Scripts — Pythonic client
Pytest, PTF, other) | s
(Py) | — libraries

KEYSIGHT Up to 406Gbps — traditional HW platform

TECHNOLOGIES

Wish-list answered! snappi + OpenTrafficGenerator

4’ ~

- -

One Script to rule them all

—+-*snappi e —

A =7 1 or more servers N
P ., w/ fast NICs
“The” script — f *ﬁm-- v
w Ixia-c TG !
A ‘
L g <100Gbps
OpenAPI ' Fanout switch(es)? !
Datamodels N
e
/7
/
/
/
1
1
1
| Bmve,
' Tofino Model,
\
" other m)
KEYSIGHT T~ -7 '

-~ -

TECHNOLOGIES

How to demonstrate Snappi?

* As an exercise, | converted an existing PTF test “demo1” from Andy Fingerhut’s well-known p4-guide
repo: https:/github.com/jafingerhut/p4-guide

| forked the repo: https:/qgithub.com/chrispsommers/p4-guide/tree/snappi-tests2 and made a new test directory demo1-snappi

* | modified one of the existing tests FwdTest and replaced Scapy with snappi

| added several other tests to illustrate other snappi techniques and features

Today’s demo will showcase the added snappiFwdTest4PortMesh test which does some cool things:
* Sets up 4 Ixia-c traffic engines + one Ixia-c controller (5 Docker containers)

» Configures 12 flows to establish a 4x4 port mesh.
» Each flow includes auto-increment in the IP dest address to cover a /24 subnet
* Send 100-byte packets at a precise 50 PPS using the built-in Ixia-c scheduler

* Retrieve all per-port and per-flow Tx and Rx statistics and compare to expected values
» Retrieve all captured packets, examine the IP addresses and confirm the complete port-mesh was received.

Note this same test could easily be enhanced to control line-rate testers, at full speed and scale, by changing a few parameters

KEYSIGHT

TECHNOLOGIES

https://github.com/jafingerhut/p4-guide
https://github.com/chrispsommers/p4-guide/tree/snappi-tests2

Demo

Setup: PTF Test using bmv2, snappi+ixia-c Tgen

“Simple Switch” behavior: snappiFwdTest4PortMesh
PTF Script - IP dest LPM Lookup
- MAC rewrite
A - Port Redirect or drop ‘
B=
demo1-snappi.py P4Runtime demo1.p4_16.p4
“P4Info” Metadata ‘ 12 flows x 255 packets

pip install ! v S -
snappi snappi |Ib PART lib _ . « %} >

demo1.p4_16.p4rt.txt p4c compiler demo1.p4_16.json

OpenTraffic

Generator
REST

Ixia-c

P4Runtime gRPC
P4 “executable”

Transmit & capture

Port 0 P4RT Server
g veth2 | veth3 |POHN
I > Port 2 Match/Action
| N veth | veth7 |POMS P4 IERES
| T Veths | vetho IO Dataplane |_ i
Port 5
Port 6

Ixia-c
Traffic Engine -

Lidile chyiie

Controller Lialie liyiie

L S N Ivll le

1 CPU core for controller 2 CPU cores per engine veth14 veth15 |POrtT Bmv2

KEYSIGHT

TECHNOLOGIES

1. Create 12 “flows” of 255 TCP packets with auto-increment of DIP to include entire /24 subnet in each mesh path. Payload

P4 Simulator
includes several bytes of “instrumentation” for flow tracking.

2. Send and capture forwarded packets and count the stats per-port and per-flow 9
3. Verify per-port and per-flow packet counts, also verify the entire IP address mesh was received.

snappi code snippet — creating 12 flows

i=0
for src in self.port ndxs:
for dst in self.port ndxs: -

if src == dst:
continue # no hairpin switching

o

print ("Configuring flow[%d]: %s => %$s" % (i, ports[src].name, ports[dst].name))

flow = self.cfg.flows.flow(name='port%d-%d' % (src+l, dst+l)) [-1] Instantiate a flow |
flow endpoints T
flow.tx rx.port.tx name = ports[src].name

flow.tx rx.port.rx name = ports[dst].name

configure rate, size, frame count

flow.size.fixed = 100 ~ Precision scheduler: PPS, BPS or % line rate ‘

flow.rate.pps = 50

flow.duration.fixed packets.packets = self.tx count

configure protocol headers with defaults fields

flow.packet.ethernet() .ipv4 () . tcp() Scapy Equivalent: Ether() TCP()/IP() |

eth = flow.packet[0]
eth.src.value = host macs[src]
eth.dst.value = host macs[dst]

ipv4d = flow.packet[1]
ipv4.dst.increment.start = ip hosts[dst]
ipv4.dst.increment.step = '0.0.0.1"
ipv4.dst.increment.count = self.tx count
ipvéd.src.value = ip hosts[src]
ipv4.time7toilive.vglue = 64

Auto-increment a packet header— built-in to Snappi! |

tcp = flow.packet[2]
tcp.src port.value
tcp.dst port.value

1234
80

i+=1

KEYSIGHT

TECHNOLOGIES

Test Outline - snappiFwdTest4PortMesh

» Configure Ixia-c for 12 traffic flows, into veth2, veth4, veth6 and veth8 (dataplane ports 1-4 respectively in the P4 code). The 12 flows
comprise a full-mesh, full-duplex test of port forwarding. Each flow will send 256 packets into its port, incrementing the last byte of the DIP
from 1 to 256. Each flow will emit packets at 50 packets per second. We wait until the pipeline finishes processing all packets (or timeout
while waiting).

» Configure Ixia-c to capture all the return traffic
« Start the traffic flows and capture the results
 Verify no packets were captured because the P4 dataplane forwarding tables have not been programmed: the default action is drop.

» Configure the P4 tables to match on the DIPs as configured in the traffic flows and forward to the correct egress ports, also performing MAC
rewrite.

« Start traffic flow a second time and capture everything. We wait until the received packet counts match the expected values on all flows (or
timeout waiting).

+ Verify several expectations:
Each port transmits the correct count of packets (3*255, i.e. 255 packets to each of the other ports in the mesh)

Port Tx stats = port Rx stats = 3255
The captured results has the correct number of packets for each flow (same as transmitted to each flow)

» Examine each captured packet, extract IP src and dest address, and confirm exactly one packet was sent between each "host" and each of 255 "destinations" on
the other port's subnets.

Demo available at https://github.com/chrispsommers/p4-guide/tree/snappi-tests2

Thanks to Andy Fingerhut for his p4-guide repo at https://github.com/jafingerhut/p4-guide

KEYSIGHT

TECHNOLOGIES

https://github.com/chrispsommers/p4-guide/tree/snappi-tests2
https://github.com/jafingerhut/p4-guide

-~
%
r

Run the Demo!

”

Optional Title of the Presentation

Demo1 - Screen Layout and Commands

chris@chris-VirtualBox: ~/p4-guide/demo1-snappi
chris@chris-VirtualBox: ~/p4-guide/demo1-snappi 112x56 chris@chris-VirtualBox: ~

chris@chris-VirtualBox: ~ uide/demo1-athena 89x10

chris@chris-VirtualBox: ~/p4-guide/demo1-athena 89x10

chris@chris-VirtualBox: ~/p4-guide/demo1-athena 89x10

chris@chris-VirtualBox: ~/p4-guide/demo1-athena 89x10

KEYSIGHT : sudo . /runptf.sh Il

TECHNOLOGIES

Demo1 - snappiFwdTest4PortMesh Results

chris@chris-VirtualBox: ~/p4-guide/demo1-snappi
a chris@chris-VirtualBox: ~/p4-guide/demo1-snappi 112x56 chris@chris-VirtualBox: ~/p4-quide/demo1-snappi 89x9
Fetching all flow stats
Done waiting for stats to settle
Fetching all port stats
Fetching all flow stats

Tx Frames Tx Bytes Rx Frames Rx Bytes
765 76500 765 76500

765 76500 765 76500

765 76500 765 76500

76500

Stats

Max latency (ns) Avg Latency (ns
35453840 46018
41778940 6036705
39027040 6788164
47561180 5601407
43944880 6504447
40257680 7068737
40677340 6466530
39745560 6531734
43394740 7733077
36029660 5858524
36937880 6967418
51298100 7434157

port & flow statistics...
each port transmits 255*3 = 765 packets...
tx & rx port stats are identical...
each Rx flow received 255 packets...
captured packet contents...

from port porti1

from port port2

from port port3

from port port4

address mesh was received...

0K
Killing Ixia-C traffic engines and controller...
5b9a37175bc8
21c22bf71ddb
2b21d552369a
1c4e58e2feda
KEYSIGHT d7906ad2cb12

TECHNOLOGIES

snappi vs. Scapy

Portability

Scalability
(# ports)
Automation

Performance/
Throughput

CPU Resources
(SW Traffic Gen)

Scheduler

Packet types

Header patterns

Flow tracking

Statistics

Capture

Statefulness/
Interactivity

KEYSIGHT

TECHNOLOGIES

One script to cover SW and HW traffic generators

Add CPU cores (SW) or line cards/chassis (HW) to scale-out to any size
Controller and Traffic Engines/Line cards talk over sockets, easy to scale-out

snappi and/or REST automation, designed for automation

HW Traffic-generators: 400Gbps port speeds
Ixia-c SW traffic generator: 10Gbps @ 64 byte frame size using one Xeon class core,
approaching 100Gbps depending upon packet length; uses DPDK

1 core (shared) for controller
Hi-performance: 1 core per direction, per port
Best-Effort: 1 core per direction (shared among ports)

Precision scheduling of multiple flows, nsec precision in HW
Specified as packets-per-second, bits-per-second, % of max line rate
Burst Mode

Ethernet, VLAN, GRE, GTPv1, GTPv2, IPv4, IPv6, ICMP, ICMPv6, UDP, TCP, custom.

More protocols are on the way.

Built-in patterns like increment, decrement, list, etc. directly executed by the engines at
speed, to generate millions of unique packets.

Built-in “instrumentation” header tracks up to 256 unique flows per port
Per-port and per-flow transmit and receive statistics
Latency measurements (min, max, avg) per flow

Capture packets with filters, access via port or flow
Process in memory, write to Pcap file, send to tcpdump

Not supported

Only works for SW generator. Migration to HW = start over

Limited by #NICs; can use fanout switches with additional ad-hoc
automation — cumbersome!

Pytest or PTF; framework and dataplane are synonymous

Limited by CPU speed — “slow-ish”
Not optimized for DPDK

Unclear, but scapy believed to run on one core.
Roll your own multi-core version for higher performance

Roll-your-own scheduler — good luck!

Essentially unlimited, easy to design new ones
Hand-build your own patterns in python, “manually” send them in
sequence.

Not supported

Roll your own!

Capture packets per port

Good support, easy to perform interactive sessions

github.com/open-traffic-generator

Open Traffic Generator

Find us on GitHub!
] Repositories 7) Packages A People [l Projects o USG IXla'C & Snappl
* Report bugs

Pinned repositories

» Log feature requests

B models B snappi B Ixia-c

Open Traffic Generator models Snappi Ixia-c Traffic Generator ° Contri bute to models
@Python w10 %3 @Python w2 %1 w1 .
+ Contribute other backends
B ixnetwork B snappi-tests
The Keysight IxNetwork implementation of the End-to-end test scripts written in snappi

open-traffic-generator models.

@Python W4 %1 @ Python

KEYSIGHT

TECHNOLOGIES

MAY 18-20

Thank You
Workshop B A

Hosted by ©M https://github.com/open-traffic-generator

https://github.com/open-traffic-generator

BACKUP SLIDES

EEEEEEEEEEEE

Flow-Tracking, Instrumentation Explained

Ixia packet testers utilize a proprietary flow-tracking technique which involves inserting a special “instrumentation header” into the packet. It
gets inserted after the last valid protocol header, i.e. it forms the first portion of "payload.” This header, which is decribed in the
ptf/scapy_contrib/ixia_scapy.py Scapy file, contains several interesting fields:

e 12-byte fixed "signature” which serves as a marker to indicate start of header
e 4-byte PGID or "port group ID" field; think of this as a flow ID

e 32-bit sequence number which can be used to detect packet drops

e 32-bit timestamp which can be used to measure latency or delay

| Protocol Headers |
>

| qi >

INSTRUMENTATION & avioad remander FCS
(background pattern)

'SIGNATURE - 12 bytes. Marks start of instrumentation: |
0x87736749 42871180 08711805 {

PGID - 4 bytes (identifies a unique flow) ====="=""
§Sequence Number - 4 bytes (detect drops) !

lemestamp (4 bytes) - latency measurements {

This technique was originally pioneered to enable hardware-based testers to perform real-time analysis of line-rate traffic prior to

economically-viable protocol parsing engines (like P4 ASICs). The same technique can be done in CPUs (Athena) at lower speeds (approaching

KEYSIGHT 100Gbps for larger packet sizes, limited by the packet-per-second rate).

19

Use-case: CI/CD Pipeline End-to-End Test using snappi

GltLab

This workflow is being used in
one of our projects. We’re using

=3 'L

Joe Cool, Code repo
programmer

Plpellne Runners

snappi to drive an Ixia traffic tester
to verify yet another product.

|<——

Pytest Script

Hardware-based traffic tester

i

On-prem development lab

KEYSIGHT

TECHNOLOGIES

Network Appliance
(12.8TB ASIC)
32x100/400Gbps
Device Under Test

Use-case: SONIC PFC test using + snappi + Ixia tester

"
| —

& Pytest Script
SONIC Whitebox

Hardware-based traffic tester 32x100Gbps

Test are being added to the SONIC Device Under Test
testbed suite using snappi to
control a traffic generator.

KEYSIGHT

EEEEEEEEEEEE

