
Approximation in Programmable Data Plane

Minlan Yu
Harvard University

Joint works with Rui Miao, Mohammad Tirmazi, Jiaqi Gao, Sivaramakrishnan Ramanathan, 
Yuliang Li, Michael Mitzenmacher (Harvard), Ran Ben Basat (UCL), Ennan Zhai, Hongqiang

Liu, Ming Zhang (Alibaba), Gianni Antichi (QueenMary), and many others
1



Programmable Data Plane: Many Applications

2

Database
[Cheetah]

Load balancing
[SilkRoad]

Network Telemetry
[OpenSketch, FlowRadar, 

LossRadar, PINT]

Congestion Control
[HPCC]

Security
[Jaqen]

High throughput, low latency, low energy and capital cost 



Challenges

3

Significant data growth Limited memory

Diverse programs Limited programmability

Increasing line rate Limited per packet processing

• Growing applications • Switch limitations



• Significant data growth

Challenge I: Growing Data vs Limited Memory

4

[SIGCOMM’15]

• Slow memory growth

Year Mem (MB)
2012 10-20
2014 30-60
2016 50-100

SilkRoad [SIGCOMM’17]



• Diverse programs

Challenge II: 
Program Complexity vs Limited Programmability

5

• Limited programmability

– Was designed for packet processing

– No floating-point operations

– Independent operations within a 
stage

– Limited state sharing across stages

Database

Load balancing

Network 
Telemetry

Congestion Control

Security



• For each packet
– More things to do
– Less time to process

Challenge III: Increasing BW vs Limited Processing Time

6

400x in 20 
years



Challenges

7

Significant data growth Limited memory

Diverse programs Limited programmability

Increasing line rate Limited per packet processing

• Growing applications • Switch limitations



• Sampling
– Randomly select a subset of data

• Sketch
– Summary data structure for specific query types

• Lossy compression
– Prune values that ensures approximation bounds

• Coding
– Combine multiple values across packets

• Distributed algorithms
– Distributed message passing across nodes

Many Theoretical Techniques on Approximation

8



• Theory solutions often focus on one constraint
– Sketch: Reduce memory
– Coding: Reduce packet bits
– Distributed algorithms: Reduce #messages
– How to address multiple limitations in practice?

• Approximation results in practice
– Will there be errors in the results?
– What does probabilistic guarantee mean?
– How to constrain the impact of errors in practice?

The Gap Between Theory and Practice

9



• PINT: Probabilistic In-band network telemetry
– Hashing, coding, sampling, value approximation
– Handles limited packet bits and programmability
– Minimize errors through aggregation

• Cheetah: Database queries with switch pruning
– Sampling, hashing, sketch, lossy compression 
– Handles limited memory, programmability, and packet processing time
– Deliver accurate results with server processing

Bridge Theory and Practice: Two Examples

10



PINT
Probabilistic In-band Network Telemetry

11

(SIGCOMM’20)



Measuring Packet-level Events

• Diverse queries on packet lifetime
– Which path do my packets take?
– Which firewall rules do my packets follow?
– Which switch/link has the highest latency for my packets?

• Useful for real-time control and feedback loop
– E.g., congestion control, load balancing, troubleshooting, etc.

12



INT: In-band Network Telemetry

13

pkt pkt pkt

INT INT

Sender Receiver

• INT: add switch states in packets and analyze at the receiver
– E.g., Switch ID, Queuing delay, link utilization

• Key problem: high bit overhead
– Many switches, many types of information
– Up to 20% reduction of goodput



PINT: Probabilistic In-band Network Telemetry

• Goal
– Encode telemetry information on packets with fewer bits

• Insight
– Most apps don’t need per-packet per-switch values, but aggregated data
– Leverage probabilistic solutions to aggregate across packets and flows

14



Flow-level Path Tracing

• Baseline solution: write a sampled ID on each packet
– We can use the TTL field to get the hop number and run Reservoir 

Sampling (Sattari et al., 2010).
– A Coupon Collector process. For 𝑘 hops it will take 𝑘ln 𝑘 (1 + 𝑜 1 )

packets to detect the path.

A B C D
C
A
A
D
A
C
B



Coupon Collector Process

𝔼[missing
hops]

Number of samples
16

𝑘 =



The Power of Coding

17

A BBaseline:
• Get information on the first packet.

• Require 2 packets on average to get the second hop ID. 

• Overall: 1 + 2 = 3 packets in expectation.

Coding solution:
Consider baseline sampling with probability 0.5, and writing 𝐴⊕ 𝐵 otherwise.

• If the first packet is an ID (e.g., 𝐴), we need 4/3 more packets on average.

• If the first packet is 𝐴⊕ 𝐵, we need 2 more packets

• Overall: 1 + !/#$%
%

= 8/3 packets in expectation.

𝑨
𝐴⊕𝐵

𝑨
𝑨
𝑩



Improving the Coupon Collector

18

𝔼[missing
hops]

Number of samples

Baseline XOR &
'



High Precision Congestion Control over PINT

19

ACK

Adjust rate 
per ACK

pkt pkt pkt

INT INT

Sender Receiver

Link-1 Link-2
HPCC

(SIGCOMM’19)



PINT Conclusion

• Approximation to reduce packet overhead
– Coding, hashing, sampling, value approximation
– Provable guarantees on #packets and #bits for high accuracy

• Support a variety of aggregation queries
– Path query
– Max queue length, median and tail latency etc.
– And a mix of these queries

20



Cheetah: 
Accelerating Database Queries with Switch Pruning

21

SIGMOD’20



Database Operations

- Large amount of data
- Over 8 billion queries/day in Alibaba Cloud

- Highly optimized for performance
- Parallelize data processing at workers

22

Query Planner

Spark Master

Spark Workers

Spark Workers

Spark Workers



Already in the network.

Process cross-partition data. 23

Query Planner

Spark Master

Spark Workers

Spark Workers

Spark Workers

Switch

Process Tbps of data
Key Challenge: Switches have 

limited programmability and limited memory 

Why Programmable Switches?



24

The Pruning Abstraction

Query on pruned dataset = Query on original dataset

Query Planner

Spark Master

Spark Workers

Spark Workers

Spark Workers

Switch

A, B, A, A, C, D, D, 
E, A, B, C, C, D, A, 
E, A, D, A, C

A, B, A, C, D, E, 
B, A, E, A, A, C

A, B, C, D, E

Pruned data set
Using switches

Original dataset



Example: Distinct Query Pruning 
• Selects all the distinct values
• Strawman solution: Bloom Filters
– Problem: have false positives which 

may drop distinct entries

• But a cache works!
– Implement LRU with a rolling 

replacement across stages

• Our solution: Multi-row LRU cache
– Reduce #per-packet comparison

25



• Support a wide variety of database queries
– Join, Group-By, Having, Skyline, Top-K, and Filtering 
– And their combinations

• Approximation algorithms for switch pruning
– Sampling, hashing, sketch, lossy compression 
– Expected pruning rates

• Integrated with Spark and Tofino switches
– 40-75 % faster completion time on database benchmarks

Cheetah Results

26



• PINT: Probabilistic In-band network telemetry
– Hashing, coding, sampling, value approximation
– Bridge the gap of limited packet bits and programmability

• Cheetah: Database queries with switch pruning
– Sampling, hashing, sketch, lossy compression 
– Bridge the gap of limited memory, programmability, and packet 

processing time

Bridge Theory and Practice

27
How to make it easier to build the bridge?



Distribute program across multiple switches

Extensibility
Fit multiple programs into one switch

Composition
Migrate program across switches

Portability

28

Challenges of Programming in the Data Plane

LanguagesChip Vendors Programs
filter (100)

ARP
table
(300)

filter (200)

routing



29

Lyra program

NPL (Trident-4)

P4 (Tofino 32Q)

Lyra compiler

Frontend Backend

Chip-specific constraint

Parser Language synthesizer

Preprocessor

Analyzer ExtensibilityOne-big-pipeline model

Portability: Language synthesizer

Chip-specific constraint encoding

Topology-aware code allocation

P4 (Silicon One)

P4 (Tofino 64Q)

Lyra: A Data Plane Language & Compiler (SIGCOMM’20)

From assembly language to “C” language



• From practice to theory
– A theoretical model for programmable data plane
– Computation model, communication model, resource constraints and 

tradeoffs

• From theory to practice
– Libraries for approximation operations and data structures
– Automatic compilation to diverse data planes

Going Forward: Bridge Theory and Practice

30
From “C” language to “MapReduce” models



Thank you!

31


