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Programmable Data Plane: Many Applications

High throughput, low latency, low energy and capital cost
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Challenges

« Growing applications « Switch limitations

Sgnificant data growtr
Limited programmabity

Increasing line rate Limited per packet processing



Challenge I. Growing Data vs Limited Memory

 Significant data growth « Slow memory growth
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Challenge II:
Program Complexity vs Limited Programmability

* Diverse programs  Limited programmability

] — Was designed for packet processing

Security .

i — — No floating-point operations
N ———
Load balancing ——
% 8 ; — Independent operations within a
Jofr Database stage
% Congestion Control — Limited state sharing across stages

Network
Telemetry



Challenge III: Increasing BW vs Limited Processing Time

ETHERNET SPEEDS
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* For each packet
— More things to do
— Less time to process



Challenges

« Growing applications « Switch limitations

Sgnificant data growtr
Limited programmabity

Increasing line rate Limited per packet processing



Many Theoretical Technigues on Approximation

« Sampling

— Randomly select a subset of data

« Sketch

— Summary data structure for specific query types

 Lossy compression
— Prune values that ensures approximation bounds

« Coding

— Combine multiple values across packets

 Distributed algorithms
— Distributed message passing across nodes
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The Gap Between Theory and Practice

« Theory solutions often focus on one constraint /’“‘\\_\ v
— Sketch: Reduce memory s~
— Coding: Reduce packet bits '\_K//_ "1\2;\-5.__/_;;[
— Distributed algorithms: Reduce #messages _— )
— How to address multiple limitations in practice? j ‘E\,/

« Approximation results in practice
— Will there be errors in the results?
— What does probabilistic guarantee mean?
— How to constrain the impact of errors in practice?



Bridge Theory and Practice: Two Examples

 PINT: Probabilistic In-band network telemetry
— Hashing, coding, sampling, value approximation | — 6
— Handles limited packet bits and programmability N W
— Minimize errors through aggregation

 Cheetah: Database queries with switch pruning
— Sampling, hashing, sketch, lossy compression
— Handles limited memory, programmability, and packet processing time
— Deliver accurate results with server processing



PINT
Probabilistic In-band Network Telemetry
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Measuring Packet-level Events

* Diverse queries on packet lifetime
— Which path do my packets take?

— Which firewall rules do my packets follow?

— Which switch/link has the highest latency for my packets?

e Useful for real-time control and feedback loop

— E.g., congestion control, load balancing, troubleshooting, etc.
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INT: In-band Network Telemetry

* INT: add switch states in packets and analyze at the receiver
— E.g., Switch ID, Queuing delay, link utilization

T [

Sender Receiver

* Key problem: high bit overhead
— Many switches, many types of information
— Up to 20% reduction of goodput
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PINT: Probabilistic In-band Network Telemetry

e Goal

— Encode telemetry information on packets with fewer bits
* |nsight

— Most apps don’t need per-packet per-switch values, but aggregated data
— Leverage probabilistic solutions to aggregate across packets and flows
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Flow-level Path Tracing

e Baseline solution: write a sampled ID on each packet

— We can use the TTL field to get the hop number and run Reservoir
Sampling (Sattari et al., 2010).

— A Coupon Collector process. For k hops it will take kInk (1 + 0(1))
packets to detect the path.
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Coupon Collector Process
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The Power of Coding

0—©O

* Require 2 packets on average to get the second hop ID guun

 Overall: 1+ 2 = 3 packets in expectation. _—

Baseline:

« Get information on the first packet.

Coding solution:
Consider baseline sampling with probability 0.5, and writing A @ B otherwise.
 If the first packet is an ID (e.g., A), we need 4/3 more packets on average.
« If the first packet is A @ B, we need 2 more packets @A
~ ADB

LEA 8/3 packets in expectation. 17

e Overall: 1+



Improving the Coupon Collector
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High Precision Congestion Control over PINT
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PINT Conclusion

* Approximation to reduce packet overhead
— Coding, hashing, sampling, value approximation

— Provable guarantees on #packets and #bits for high accuracy

e Support a variety of aggregation queries
— Path query
— Max queue length, median and tail latency etc.
— And a mix of these queries
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Cheetah:
Accelerating Database Queries with Switch Pruning

SIGMOD"20
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Database Operations

- Large amount of data
- Over 8 billion queries/day in Alibaba Cloud

- Highly optimized for performance
- Parallelize data processing at workers

1 Query Planner f+._
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Why Programmable Switches?
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Spark Workers

Already in the network.

Process Tbps of data
Key Challenge: Switches have

Process cross-partition data. limited programmability and limited memory



The Pruning Abstraction

Query on pruned dataset = Query on original dataset
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Example: Distinct Query Pruning

Selects all the distinct values

Strawman solution: Bloom Filters

— Problem: have false positives which
may drop distinct entries

But a cache works!

— Implement LRU with a rolling
replacement across stages

Our solution: Multi-row LRU cache
— Reduce #per-packet comparison

Cache
Entry 1

Cache
Enty 1

Cache
Entry 2

Cache
Entiv 2

LRU Cache

LRU Cache # 2

Cache

Entry 1

Cache
Entry 2

LRU Cache # 3
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Cheetah Results

« Support a wide variety of database queries
— Join, Group-By, Having, Skyline, Top-K, and Filtering
— And their combinations

« Approximation algorithms for switch pruning

— Sampling, hashing, sketch, lossy compression
— Expected pruning rates

» Integrated with Spark and Tofino switches
— 40-75 % faster completion time on database benchmarks
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Bridge Theory and Practice

 PINT: Probabilistic In-band network telemetry
— Hashing, coding, sampling, value approximation
— Bridge the gap of limited packet bits and programmability ‘[

 Cheetah: Database queries with switch pruning
— Sampling, hashing, sketch, lossy compression

— Bridge the gap of limited memory, programmability, and packet
processing time

e iz

How to make it easier to build the bridge?



Challenges of Programming in the Data Plane

Portability Extensibility Composition

Migrate program across switches Distribute program across multiple switches  Fit multiple programs into one switch
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Lyra: A Data Plane Language & Compiler (SIGCOMM’20)

. . NPL (Trident-4)
Portability: Language synthesizer

P4 (Tofino 32Q)

Topology-aware code allocation

Lyra program _g\

One-big-pipeline model

P4 (Tofino 64Q)

Chip-specific constraint encoding
P4 (Silicon One)

Lyra compiler

From assembly language to “C” language




Going Forward: Bridge Theory and Practice

 From practice to theory
— A theoretical model for programmable data plane

— Computation model, communication model, resource constraints and
tradeoffs

 From theory to practice
— Libraries for approximation operations and data structures
— Automatic compilation to diverse data planes

From “C” language to “MapReduce” models



Thank you!
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