Approximation in Programmable Data Plane

Minlan Yu
Harvard University

Joint works with Rui Miao, Mohammad Tirmazi, Jiagi Gao, Sivaramakrishnan Ramanathan,
Yuliang Li, Michael Mitzenmacher (Harvard), Ran Ben Basat (UCL), Ennan Zhai, Honggiang
Liu, Ming Zhang (Alibaba), Gianni Antichi (QueenMary), and many others

Programmable Data Plane: Many Applications

High throughput, low latency, low energy and capital cost

oy U 8 E

Network Telemetry
[OpenSketch, FlowRadar,
LossRadar, PINT]

BAREFCOIT MMellgcgagggs BROADCOM

‘a2 facebook
Po0 | T Douppeee 2

Load balancing Security Congestion Control Database
[SilkRoad] [Jagen] [HPCC] [Cheetah]

Challenges

« Growing applications « Switch limitations

Sgnificant data growtr
Limited programmabity

Increasing line rate Limited per packet processing

Challenge I. Growing Data vs Limited Memory

 Significant data growth « Slow memory growth

50x | Traffic generated by servers in our datacenters

¥ __ ‘ Year Mem (MB)
: Google

“ W

% [SIGCOMM’15] 2014 30-60
E. |

&
<

SilkRoad [SIGCOMM’17]

pas Time —»

Jul‘08 Jun‘09 May*‘10 Apr‘1l Mar ‘12 Feb‘13 Dec‘13 Nov‘l4

Challenge II:
Program Complexity vs Limited Programmability

* Diverse programs Limited programmability

] — Was designed for packet processing

Security .

i — — No floating-point operations
N ———
Load balancing ——
% 8 ; — Independent operations within a
Jofr Database stage
% Congestion Control — Limited state sharing across stages

Network
Telemetry

Challenge III: Increasing BW vs Limited Processing Time

ETHERNET SPEEDS

1T
400G

100G

400%-in-20
years

40G

10G

)

100Mb/s

Link Speed (b/s)
o)
o
=

10Mb/s
Ethernet

Ethernet
i ®

10M +—Q@

1980

|
1990 2000 2010 2020 2030

Standard Completed

@ Ethernet Speed '\:‘, Possible Future Speed

* For each packet
— More things to do
— Less time to process

Challenges

« Growing applications « Switch limitations

Sgnificant data growtr
Limited programmabity

Increasing line rate Limited per packet processing

Many Theoretical Technigues on Approximation

« Sampling

— Randomly select a subset of data

« Sketch

— Summary data structure for specific query types

 Lossy compression
— Prune values that ensures approximation bounds

« Coding

— Combine multiple values across packets

 Distributed algorithms
— Distributed message passing across nodes

"

The Gap Between Theory and Practice

« Theory solutions often focus on one constraint /’“‘_\ v
— Sketch: Reduce memory s~
— Coding: Reduce packet bits '_K//_ "1\2;\-5.__/_;;[
— Distributed algorithms: Reduce #messages _—)
— How to address multiple limitations in practice? j ‘E\,/

« Approximation results in practice
— Will there be errors in the results?
— What does probabilistic guarantee mean?
— How to constrain the impact of errors in practice?

Bridge Theory and Practice: Two Examples

 PINT: Probabilistic In-band network telemetry
— Hashing, coding, sampling, value approximation | — 6
— Handles limited packet bits and programmability N W
— Minimize errors through aggregation

 Cheetah: Database queries with switch pruning
— Sampling, hashing, sketch, lossy compression
— Handles limited memory, programmability, and packet processing time
— Deliver accurate results with server processing

PINT
Probabilistic In-band Network Telemetry

(SIGCOMM’20)

11

Measuring Packet-level Events

* Diverse queries on packet lifetime
— Which path do my packets take?

— Which firewall rules do my packets follow?

— Which switch/link has the highest latency for my packets?

e Useful for real-time control and feedback loop

— E.g., congestion control, load balancing, troubleshooting, etc.

12

INT: In-band Network Telemetry

* INT: add switch states in packets and analyze at the receiver
— E.g., Switch ID, Queuing delay, link utilization

T [

Sender Receiver

* Key problem: high bit overhead
— Many switches, many types of information
— Up to 20% reduction of goodput

13

PINT: Probabilistic In-band Network Telemetry

e Goal

— Encode telemetry information on packets with fewer bits
* |nsight

— Most apps don’t need per-packet per-switch values, but aggregated data
— Leverage probabilistic solutions to aggregate across packets and flows

14

Flow-level Path Tracing

e Baseline solution: write a sampled ID on each packet

— We can use the TTL field to get the hop number and run Reservoir
Sampling (Sattari et al., 2010).

— A Coupon Collector process. For k hops it will take kInk (1 + 0(1))
packets to detect the path.

A B

Coupon Collector Process

k=25

o\

[E|missing

150 ______________ ; ______________ _____________ AAAAAAAAAAAAAA
hops| ‘ . . | ‘ ‘ ‘

3 R T NV N N SO O

S N

O 10 20 30 40 50 60 70 80

Number of samples

16

The Power of Coding

0—©O

* Require 2 packets on average to get the second hop ID guun

 Overall: 1+ 2 = 3 packets in expectation. _—

Baseline:

« Get information on the first packet.

Coding solution:
Consider baseline sampling with probability 0.5, and writing A @ B otherwise.
 If the first packet is an ID (e.g., A), we need 4/3 more packets on average.
« If the first packet is A @ B, we need 2 more packets @A
~ ADB

LEA 8/3 packets in expectation. 17

e Overall: 1+

Improving the Coupon Collector

25

AN

[E|missing

sl A T T
hops] ' ' | ' ' ' A

3 R T NV N N SO O

2 T O I I O T B

O 10 20 30 40 50 60 70 80

Number of samples

18

19

High Precision Congestion Control over PINT

O

SEENESS mﬁ_ EEEEES Aﬁ{
) [m] [m] [m] [w] [m] [m] Llnk_l [m] [m] [m] [w] [m] [m] Llnk_z
Adjust rate) [.

- ——— [— 1

per ACK Sender

ACK

Receiver

10

Slowdown
(@)

HPCC(PINT) 7

L g
s R
-
- L
: L
'O
-

*

. TR
- -
: TR Bl

— = = :

L g

7iK 26K 3(3K 56K 7§K 19i7K 98l9K 2iM
Flow Size [Bytes]

30M

HPCC
(SIGCOMM’19)

PINT Conclusion

* Approximation to reduce packet overhead
— Coding, hashing, sampling, value approximation

— Provable guarantees on #packets and #bits for high accuracy

e Support a variety of aggregation queries
— Path query
— Max queue length, median and tail latency etc.
— And a mix of these queries

20

Cheetah:
Accelerating Database Queries with Switch Pruning

SIGMOD"20

21

Database Operations

- Large amount of data
- Over 8 billion queries/day in Alibaba Cloud

- Highly optimized for performance
- Parallelize data processing at workers

1 Query Planner f+._

TS~

Spark Workers

!// \\‘ \\!
Spark Master |« Spark Workers S APACHE
\‘\ p QrKTM
\ ‘
Spark Workers

22

Why Programmable Switches?

) uery Planner -
ry A

S~

Spark Workers

. Y

. < ‘\\
¢ Switch \
Spark Master Spark Workers

D

Spark Workers

Already in the network.

Process Tbps of data
Key Challenge: Switches have

Process cross-partition data. limited programmability and limited memory

The Pruning Abstraction

Query on pruned dataset = Query on original dataset

A1 Query Planner -

€

Spark Master

A,B,C D, E

- . < \\\
¢ Switch \
Spark Workers

A) B) A) C) D) E)
B,AJE,A; A, C

BT

Spark Workers

Y

AB,AAC D, D,

3
Spark Workers E) A, B, C, C, D, A,

Pruned data set
Using switches

E,A,D,A,C

Original dataset

Example: Distinct Query Pruning

Selects all the distinct values

Strawman solution: Bloom Filters

— Problem: have false positives which
may drop distinct entries

But a cache works!

— Implement LRU with a rolling
replacement across stages

Our solution: Multi-row LRU cache
— Reduce #per-packet comparison

Cache
Entry 1

Cache
Enty 1

Cache
Entry 2

Cache
Entiv 2

LRU Cache

LRU Cache # 2

Cache

Entry 1

Cache
Entry 2

LRU Cache # 3

25

Cheetah Results

« Support a wide variety of database queries
— Join, Group-By, Having, Skyline, Top-K, and Filtering
— And their combinations

« Approximation algorithms for switch pruning

— Sampling, hashing, sketch, lossy compression
— Expected pruning rates

» Integrated with Spark and Tofino switches
— 40-75 % faster completion time on database benchmarks

26

Bridge Theory and Practice

 PINT: Probabilistic In-band network telemetry
— Hashing, coding, sampling, value approximation
— Bridge the gap of limited packet bits and programmability ‘[

 Cheetah: Database queries with switch pruning
— Sampling, hashing, sketch, lossy compression

— Bridge the gap of limited memory, programmability, and packet
processing time

e iz

How to make it easier to build the bridge?

Challenges of Programming in the Data Plane

Portability Extensibility Composition

Migrate program across switches Distribute program across multiple switches Fit multiple programs into one switch

_ filter (100)
Chip Vendors Languages Programs

©® BROADCOM' EBHNPL 5 1
vtfran]e, m m{_ @ gil:l)e

CISCO SR
— (300)

BAREFCO:T Jor :
NETWORKS <O —
M Mellanox: OV — e R e

EEEEEEEEEEEE \ V. [r—— r———

28

Lyra: A Data Plane Language & Compiler (SIGCOMM’20)

. . NPL (Trident-4)
Portability: Language synthesizer

P4 (Tofino 32Q)

Topology-aware code allocation

Lyra program _g\

One-big-pipeline model

P4 (Tofino 64Q)

Chip-specific constraint encoding
P4 (Silicon One)

Lyra compiler

From assembly language to “C” language

Going Forward: Bridge Theory and Practice

 From practice to theory
— A theoretical model for programmable data plane

— Computation model, communication model, resource constraints and
tradeoffs

 From theory to practice
— Libraries for approximation operations and data structures
— Automatic compilation to diverse data planes

From “C” language to “MapReduce” models

Thank you!

31

