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Key Questions

1

What transport 
and congestion 
control 
capabilities make 
sense in NICs?

2

Which of the 
transport capabilities 
require 
programmability?

3

Can the transport 
functionality be 
expressed with 
P4?
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● Context: Congestion Control @Google and Why it Matters.

● Swift Congestion Control and NIC Time as a Service.

● Example: Expressing Congestion Control Functionalities with 
P4.

This Talk



Congestion Control @Google and 
Why it Matters
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Bandwidth Management @Google

Swift[1], BBR[2] Per-flow congestion control.

QoS

[1] Swift: Delay is Simple and Effective for Congestion Control in the Datacenter, SIGCOMM 2020
[2] BBR: Congestion-based Congestion Control, ACM Queue, 2016
[3] BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing, SIGCOMM 2015.
[4] B4: Experience with a Globally-Deployed Software Defined WAN, SIGCOMM 2013.

BwE [3], B4 TE [4] Centralized control of flow aggregates 
over WAN.

BW configuration based 
on CPU cores, storage etc. 

Static 
Limits

Bandwidth sharing at network 
queues.

https://dl.acm.org/doi/abs/10.1145/3387514.3406591
https://queue.acm.org/detail.cfm?id=3022184
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p1.pdf
http://dl.acm.org/citation.cfm?id=2486019
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Transport in Host Stacks
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Diagram adapted from:
[1] Snap, SOSP 2019.
[2] Swift, SIGCOMM 2020.

https://dl.acm.org/doi/abs/10.1145/3387514.3406591
https://research.google/pubs/pub48630/
https://dl.acm.org/doi/abs/10.1145/3387514.3406591
https://dl.acm.org/doi/10.1145/3387514.3406591


Swift Congestion Control and NIC Time as a Service

Motivated by: 
Swift: Delay-based congestion-control algorithm for 
low-latency networks - External Link
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https://dl.acm.org/doi/abs/10.1145/3387514.3406591


What is Swift?
Swift is a delay based  congestion-control for Datacenters that achieves 
low-latency, high-utilization, near-zero loss implemented completely at 
end hosts supporting diverse workloads like large-scale incast across 
latency-sensitive, byte and IOPS-intensive applications working seamlessly 
in heterogeneous datacenters with minimal switch support

Swift achieves ~50𝜇s tail latency for short-flows while maintaining near 
100% utilization even at 100Gbps line-rate
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End-to-end delay decomposition of a Packet and its ACK

Swift maintains two congestion-windows (in #packets) - one based on fabric-delay and 
one based on endpoint-delay with their respective cwnd 

Effective cwnd is the minimum of the two

Swift Design
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Proprietary + ConfidentialFour Key Timestamps
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T4-T1 Full round trip delay

(T4-T1)-(T3-T2) Fabric only round trip delay

T2-T1 Forward fabric delay

T4-T3 Reverse fabric delay

Local.Swift Local.NIC Remote.NIC

Shaper

T1 T2

T3
T4

Packet

ACK

Remote.Swift



Swift Design contd.

Use of HW and SW 
timestamps

To provide accurate delay 
measurements and separate them 
into fabric and host components

Simple AIMD based 
on a target-delay

Seamless transition 
b/w cwnd and rate

Swift allows cwnd to fall 
below 1 to handle large-scale 
incast

cwnd < 1 implemented via 
pacing using Timing Wheel, 
pacing off when cwnd > 1
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if delay < Target
increase cwnd

   (Additively)
else

decrease cwnd 
   (Multiplicatively)
   



Swift Design contd.

Scaling of target-delay

Topology-based scaling (TBS) 
for RTT-fairness

Flow-based scaling (FBS for 
fairness)

Loss recovery and ACKing policy

Minimal investment in loss-recovery - 
losses are rare: SACK and RTO.

Coexistence via QoS

Multiple CC in shared 
deployments, e.g., WAN 
traffic, Cloud traffic etc.

Subset of QoS queues 
reserved for Swift
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Using P4 to realize programmability in Transport

14



NIC

Connection State

struct ConnectionState {

  bit<16> congestion_window;

  bit<32> last_ack_sequence_number;

};

Register<ConnectionState>(2048) state;
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Swift Overview

Packet Headers

header SwiftAck {
  bit<32> connection_id;
  bit<32> ack_sequence_number;
  // timestamps
  bit<32> t1;
  bit<32> t2;
  bit<32> t3;
  bit<32> t4;
};

RTT Measurement & 
Rate Computation Engine
(we need this to be programmable)

maximum number of 
unacknowledged 

packets in the 
network
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Is P4 right for this?

We think yes.

Fundamentally, P4 transforms:
- a fixed size input, into                               // Packet, Connection State
- a fixed size output, using                         // Connection State
- a fixed amount of computation            // No loops, recursion, etc

But there are also challenges:
- P4/PSA are targeted to switches (e.g. output is a packet).

Portable NIC Architecture (PNA) should help [https://github.com/p4lang/pna]

- Hardware isn't quite right (need more registers/ALUs, and fewer TCAMs).
We need your help.

https://github.com/p4lang/pna
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t1

t2

t3

t4

remote
delay

total
rtt

bit<32> total_rtt = headers.swift.t4 - headers.swift.t1;

bit<32> remote_delay = headers.swift.t3 - headers.swift.t2;

bit<32> fabric_rtt = total_rtt - remote_delay;

Computing Fabric Round Trip Time

host A host B

fabric rtt



if (fabric_rtt > target_delay) {

    bit<32> delay_delta = fabric_rtt - target_delay;

    bit<32> decrease_scale = delay_delta / fabric_rtt;

    bit<32> decrease_factor = 1 - decrease_scale * 0.8;

    connection.congestion_window *= decrease_factor;

}

Decreasing Congestion Window

Adjust congestion window almost proportionally to rtt, e.g.

fabric rtt = 60μs current congestion window = 3 packets
target rtt = 40μs updated congestion window = 2 packets

that's why it's just 
"almost" proportional
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if (fabric_rtt < target_delay) {

    bit<32> num_packets_acked = headers.swift.ack_sequence_number - 

                                connection.last_ack_sequence_number;

    connection.last_ack_num = headers.swift.ack_num;

    connection.congestion_window += num_packets_acked / connection.congestion_window;

}

Increasing Congestion Window

host A host B
Increase congestion 
window by 1 every RTT

e.g. congestion_window = 4, 
increase by ¼ for every ACK

¼
+¼

+¼
+¼

1

rtt



Proprietary + Confidential
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Features:
● Accurate Tx (T1,T3) and Rx (T2,T4) timestamps for every packet.

● Availability of T1,T2,T3,T4 at Senders for LAN and RDMA datapaths.

● Accurate one-way delay (OWD) measurements based on synchronized 
NIC clocks.

Programmability: delay and rate computations.

● Instantaneous RTT; windowed min-RTT.

● Inference of congestion at end-host vs. fabric, sender vs. receiver.

● Congestion window adaptations based on RTT and OWD.

Swift-motivated Features and Programmability



Takeaways

21



22

NIC

Applicationcommand & 
completion 

queues

NIC queues

op scheduler
O

p layer
op streamsop streams

flowsflowsFlow 
Management

Signals

Scheduler & 
Traffic Shaper

Congestion 
ControlCWND/Rat

e

Reliability
Losses

Recovery
Flow/packet 
schedules

Ordering 
(Ops/packets)

Packet-level 
Transport

 layer

Flow Control / 
Admission Control

Expressed 
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TODO

TODO

TODO

TODO TODO

Future work: Express other building blocks that require programmability in P4 / P4++.
Open problem: Building hardware to run P4-expressed-transport.
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Yuliang Li for direct contributions to Swift-on-P4.

Neal Cardwell, Prashant Chandra, Gautam Kumar, Masoud 
Moshref, Arvind Krishnamurthy, Naveen Kumar, Dan Lenoski, 
Parveen Patel, Amin Vahdat, Frank Wang, David Wetherall, 
Haiyong Wang, Hassan Wassel, and the Congestion Control 
Group @Google.

Thanks to Many Contributors


