
Programmability in NICs for Congestion
Control and Transport

Talk @P4 Workshop, May 2021

Nandita Dukkipati, Konstantin Weitz

2

Key Questions

1

What transport
and congestion
control
capabilities make
sense in NICs?

2

Which of the
transport capabilities
require
programmability?

3

Can the transport
functionality be
expressed with
P4?

3

● Context: Congestion Control @Google and Why it Matters.

● Swift Congestion Control and NIC Time as a Service.

● Example: Expressing Congestion Control Functionalities with
P4.

This Talk

Congestion Control @Google and
Why it Matters

4

5

Bandwidth Management @Google

Swift[1], BBR[2] Per-flow congestion control.

QoS

[1] Swift: Delay is Simple and Effective for Congestion Control in the Datacenter, SIGCOMM 2020
[2] BBR: Congestion-based Congestion Control, ACM Queue, 2016
[3] BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing, SIGCOMM 2015.
[4] B4: Experience with a Globally-Deployed Software Defined WAN, SIGCOMM 2013.

BwE [3], B4 TE [4] Centralized control of flow aggregates
over WAN.

BW configuration based
on CPU cores, storage etc.

Static
Limits

Bandwidth sharing at network
queues.

https://dl.acm.org/doi/abs/10.1145/3387514.3406591
https://queue.acm.org/detail.cfm?id=3022184
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p1.pdf
http://dl.acm.org/citation.cfm?id=2486019

6

Transport in Host Stacks

NIC

Applicationcommand &
completion

queues

NIC queues

op scheduler

O
p layer

op streamsop streams

flowsflowsFlow
Management

Signals

Scheduler &
Traffic Shaper

Congestion
ControlCWND/Rate

Reliability
Losses

Recovery
Flow/packet
schedules

Ordering
(Ops/packets)

Packet-level
Transport

 layer

Flow Control /
Admission Control

Diagram adapted from:
[1] Snap, SOSP 2019.
[2] Swift, SIGCOMM 2020.

https://dl.acm.org/doi/abs/10.1145/3387514.3406591
https://research.google/pubs/pub48630/
https://dl.acm.org/doi/abs/10.1145/3387514.3406591
https://dl.acm.org/doi/10.1145/3387514.3406591

Swift Congestion Control and NIC Time as a Service

Motivated by:
Swift: Delay-based congestion-control algorithm for
low-latency networks - External Link

7

https://dl.acm.org/doi/abs/10.1145/3387514.3406591

What is Swift?
Swift is a delay based congestion-control for Datacenters that achieves
low-latency, high-utilization, near-zero loss implemented completely at
end hosts supporting diverse workloads like large-scale incast across
latency-sensitive, byte and IOPS-intensive applications working seamlessly
in heterogeneous datacenters with minimal switch support

Swift achieves ~50𝜇s tail latency for short-flows while maintaining near
100% utilization even at 100Gbps line-rate

8

End-to-end delay decomposition of a Packet and its ACK

Swift maintains two congestion-windows (in #packets) - one based on fabric-delay and
one based on endpoint-delay with their respective cwnd

Effective cwnd is the minimum of the two

Swift Design

9

5. Remote NIC Tx Delay

3. Remote NIC Rx Delay

2. Forward Fabric Delay

Lo
ca

l E
nd

po
in

t

Tx

Rem
ote Endpoint

Tx

Rx

Switch Queue

Switch Queue

6. Reverse Fabric Delay

1. Local NIC Tx Delay

7. Local NIC Rx Delay

Rx

4. Rem
ote Processing D

elay

Proprietary + ConfidentialFour Key Timestamps

10

T4-T1 Full round trip delay

(T4-T1)-(T3-T2) Fabric only round trip delay

T2-T1 Forward fabric delay

T4-T3 Reverse fabric delay

Local.Swift Local.NIC Remote.NIC

Shaper

T1 T2

T3
T4

Packet

ACK

Remote.Swift

Swift Design contd.

Use of HW and SW
timestamps

To provide accurate delay
measurements and separate them
into fabric and host components

Simple AIMD based
on a target-delay

Seamless transition
b/w cwnd and rate

Swift allows cwnd to fall
below 1 to handle large-scale
incast

cwnd < 1 implemented via
pacing using Timing Wheel,
pacing off when cwnd > 1

11

if delay < Target
increase cwnd

 (Additively)
else

decrease cwnd
 (Multiplicatively)

Swift Design contd.

Scaling of target-delay

Topology-based scaling (TBS)
for RTT-fairness

Flow-based scaling (FBS for
fairness)

Loss recovery and ACKing policy

Minimal investment in loss-recovery -
losses are rare: SACK and RTO.

Coexistence via QoS

Multiple CC in shared
deployments, e.g., WAN
traffic, Cloud traffic etc.

Subset of QoS queues
reserved for Swift

12

13

RTT
Measurement

Engine

RTT Rate
Computation

Engine
Shaping Engine

CWND,
Rate

Paced
Packets

Increase / Decrease based on
distance from target RTT

RTT
Target RTT

Swift Building Blocks

Timestamps,
Congestion
Signals

Data plane Programmable
Plane

Using P4 to realize programmability in Transport

14

NIC

Connection State

struct ConnectionState {

 bit<16> congestion_window;

 bit<32> last_ack_sequence_number;

};

Register<ConnectionState>(2048) state;

15

Swift Overview

Packet Headers

header SwiftAck {
 bit<32> connection_id;
 bit<32> ack_sequence_number;
 // timestamps
 bit<32> t1;
 bit<32> t2;
 bit<32> t3;
 bit<32> t4;
};

RTT Measurement &
Rate Computation Engine
(we need this to be programmable)

maximum number of
unacknowledged

packets in the
network

16

Is P4 right for this?

We think yes.

Fundamentally, P4 transforms:
- a fixed size input, into // Packet, Connection State
- a fixed size output, using // Connection State
- a fixed amount of computation // No loops, recursion, etc

But there are also challenges:
- P4/PSA are targeted to switches (e.g. output is a packet).

Portable NIC Architecture (PNA) should help [https://github.com/p4lang/pna]

- Hardware isn't quite right (need more registers/ALUs, and fewer TCAMs).
We need your help.

https://github.com/p4lang/pna

17

t1

t2

t3

t4

remote
delay

total
rtt

bit<32> total_rtt = headers.swift.t4 - headers.swift.t1;

bit<32> remote_delay = headers.swift.t3 - headers.swift.t2;

bit<32> fabric_rtt = total_rtt - remote_delay;

Computing Fabric Round Trip Time

host A host B

fabric rtt

if (fabric_rtt > target_delay) {

 bit<32> delay_delta = fabric_rtt - target_delay;

 bit<32> decrease_scale = delay_delta / fabric_rtt;

 bit<32> decrease_factor = 1 - decrease_scale * 0.8;

 connection.congestion_window *= decrease_factor;

}

Decreasing Congestion Window

Adjust congestion window almost proportionally to rtt, e.g.

fabric rtt = 60μs current congestion window = 3 packets
target rtt = 40μs updated congestion window = 2 packets

that's why it's just
"almost" proportional

19

if (fabric_rtt < target_delay) {

 bit<32> num_packets_acked = headers.swift.ack_sequence_number -

 connection.last_ack_sequence_number;

 connection.last_ack_num = headers.swift.ack_num;

 connection.congestion_window += num_packets_acked / connection.congestion_window;

}

Increasing Congestion Window

host A host B
Increase congestion
window by 1 every RTT

e.g. congestion_window = 4,
increase by ¼ for every ACK

¼
+¼

+¼
+¼

1

rtt

Proprietary + Confidential

20

Features:
● Accurate Tx (T1,T3) and Rx (T2,T4) timestamps for every packet.

● Availability of T1,T2,T3,T4 at Senders for LAN and RDMA datapaths.

● Accurate one-way delay (OWD) measurements based on synchronized
NIC clocks.

Programmability: delay and rate computations.

● Instantaneous RTT; windowed min-RTT.

● Inference of congestion at end-host vs. fabric, sender vs. receiver.

● Congestion window adaptations based on RTT and OWD.

Swift-motivated Features and Programmability

Takeaways

21

22

NIC

Applicationcommand &
completion

queues

NIC queues

op scheduler
O

p layer
op streamsop streams

flowsflowsFlow
Management

Signals

Scheduler &
Traffic Shaper

Congestion
ControlCWND/Rat

e

Reliability
Losses

Recovery
Flow/packet
schedules

Ordering
(Ops/packets)

Packet-level
Transport

 layer

Flow Control /
Admission Control

Expressed

in P4

TODO

TODO

TODO

TODO TODO

Future work: Express other building blocks that require programmability in P4 / P4++.
Open problem: Building hardware to run P4-expressed-transport.

23

Yuliang Li for direct contributions to Swift-on-P4.

Neal Cardwell, Prashant Chandra, Gautam Kumar, Masoud
Moshref, Arvind Krishnamurthy, Naveen Kumar, Dan Lenoski,
Parveen Patel, Amin Vahdat, Frank Wang, David Wetherall,
Haiyong Wang, Hassan Wassel, and the Congestion Control
Group @Google.

Thanks to Many Contributors

