
PL2: Towards Predictable Low Latency in Rack-Scale Networks

Yanfang Le †, Radhika Niranjan Mysore ††, Lalith Suresh ††, Gerd Zellweger††,
Sujata Banerjee††, Aditya Akella†, Michael Swift†

University of Wisconsin-Madison†, VMware Research††

1 Introduction
Rack-scale data center solutions like Dell-EMC VxRail [57]
and Intel RSD [52] have emerged as a new building block
for modern enterprise, cloud, and edge infrastructure. These
rack-scale networks, that extend between NICs of rack-units
and the top-of-rack (ToR) switch, need to satisfy the key re-
quirements of uniform low latency and high utilization,
irrespective of where applications reside, and which acceler-
ators they access (e.g., FPGA vs. CPU vs. GPU). However, a
key obstacle stands in the way of achieving these goals: Eth-
ernet is not a lossless fabric, and our experiments on a 100G
testbed confirm that drops, not queueing, are the largest
contributor to tail latency pathologies.
In this paper, we present Predictable Low Latency or PL2,

a rack-scale lossless network architecture that uses pro-
grammable network hardware to achieve low latency and
high throughput in a transport-agnostic andworkload-oblivious
manner. PL2 reduces NIC-to-NIC latencies by proactively
avoiding losses. PL2 supports a variety of message transport
protocols and gracefully accommodates increasing numbers
of flows, even at 100G line rates. It neither requires a-priori
knowledge of workload characteristics nor depends on rate-
limits or traffic priorities to be set based on workload char-
acteristics (e.g., by configuring PFC classes).

To achieve these goals, senders in PL2 explicitly request a
switch buffer reservation, for a given number of packets, a
packet burst, and receive notification as to when that burst
can be transmitted without facing any cross traffic from other
senders. PL2 achieves this form of centralized scheduling
even at 100G line rates by overcoming the key challenge
of carefully partitioning the scheduling responsibility be-
tween hosts in the rack and the Top-of-Rack (ToR) switch. In
particular, the end-host protocol is kept simple enough to ac-
commodate accelerator devices and implementations within
NICs, whereas the timeslot allocation itself is performed in
the ToR switch at line rate (as opposed to doing so on a host,
which is prone to software overheads).

In this short paper, we present a brief overview of PL2
design and the main result from our work. A longer version
of our work with motivating experiments, complete design,
implementation and evaluation is presented in the Appendix
sections B,D,E and F.

H1

H2

H1
Input
Port

Timeslots

3
2
1

4
5

3
2
1

4
5

H2
Output
Port

H2
Output
Port

Timeslots

3
2
1

4
5

3
2
1

4
5

H1
Input
Port

Switch

1) RSV (H1 H2, K) 3) GRT (T=4, T=5)

2) Switch reserves earliest
available timeslots for
H1’s input (T=4) and H2’s
output ports (T=5)

Reserved timeslot Available timeslot

4) Send packet
burst at T=5

1

2

3 4

Figure 1: Scheduling example in PL2, with host H1 sending
a packet burst to H2. 1 H1 sends an RSV to the switch to

make a reservation. 2 The switchmaintains timeslot reser-
vations for the input and output ports connected to every
hosts. It reserves the earliest available timeslots on H1’s in-
put port (𝑇 = 4) and H2’s output port (𝑇 = 5). 3 The switch

notifies H1 of these timeslots through a GRT message. 4
To avoid queuing, H1 then transmits at themaximum of the
two timeslots indicated in the GRT, which is 𝑇 = 5.

2 PL2 Design
The heart of PL2 is an algorithm for scheduling packet bursts
at line rate using the switch dataplane, where a packet burst
is simply a bounded number of Ethernet frames. Each packet
burst is transmitted at a timeslot reserved by the scheduling
algorithm, reducing cross-traffic.
Timeslot reservation. Conceptually, our switch maintains
a list of timeslots per input and output buffer for each port.
In our current implementation, we define a timeslot to be the
time it takes to transmit an MTU sized packet out of a buffer.
To transmit a packet burst from host ℎ to ℎ′, we seek to
reserve a timeslot 𝑡 on the switch input port corresponding
to ℎ, and a timeslot 𝑡 ′ on the output port corresponding
to ℎ′. Host ℎ then transmits at a ‘chosen timeslot’ which
is the greater of timeslots 𝑡 and 𝑡 ′ to avoid a collision. The
astute reader will observe that we could instead let the switch
choose the transmission time in a centralized manner rather
than pairwise, but hardware constraints prevent us from
doing so (§D.2).
Note, with the hosts choosing the transmission times,

there is a risk of collision. With perfect scheduling, we would
have no collisions, and need near zero buffering at the switch.
However, PL2 uses a small amount of buffer space (less than
200KB in our 100Gbps testbed) to accommodate occasional
collisions.

1

To run the above-mentioned scheme at line rate andwithin
the constraints of switching hardware (outlined in §D.1.1), we
designed an algorithm illustrated in Figure 1, which divides
scheduling logic between switch and hosts.

Algorithm 1 Switch Scheduling Algorithm.
1: INIT:
2: 𝑖𝑛𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑝𝑜𝑟𝑡 1..𝑝𝑜𝑟𝑡 𝑛] ← {0}
3: 𝑜𝑢𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑝𝑜𝑟𝑡 1..𝑝𝑜𝑟𝑡 𝑛] ← {0}

4: INPUT: packet
5: 𝑠𝑟𝑐 ←source port of RSV
6: 𝑑𝑠𝑡 ←destination port requested
7: if packet is a RSV then
8: packet.sendTimeslot← inReservation[src]
9: inReservation[src] += packet.demand

10: packet.recvTimeslot← outReservation[dst]
11: outReservation[dst] += packet.demand

12: send GRT
13: else
14: 𝑜𝑢𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑑𝑠𝑡] -= 1
15: 𝑖𝑛𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑠𝑟𝑐] -= 1
16: end if

Switch Logic. Algorithm 1 shows the scheduling logic at
the switch. The switch creates a schedule of input and output
reservations for every port, in terms of timeslots. Each high-
lighted gray box represents logic that can be implemented
with a single P4 operation.

At switch start up, the input and output reservations are
initialized to zero (lines 2-3). In response to RSV packets, the
switch sends back the next available input and output times-
lots for the requested transmissions (lines 8,10,12). It also
reserves enough timeslots for each RSV request (lines 9,11).
In Figure 1, the switch has reserved timeslot 4 at the source
port (connected to Host 1) and timeslot 5 at the destination
port (connected to Host 2) for transmission. Note that the
reservation timeslots have not lined up exactly at the two
ports. We describe how the sending host uses these timeslots
next. Lines 13-15 describe switch logic for regular packets, in
which the timeslot reservations for the packet are removed.
Host Logic. The host side conservatively chooses a timeslot
to transmit that is available on both the relevant switch in-
put and output ports using the equation 𝑐ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 ←
𝑚𝑎𝑥 (𝑠𝑒𝑛𝑑𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡, 𝑟𝑒𝑐𝑣𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡). The sender then trans-
mits packets at the chosenTimeslot by waiting for a period
waitingTime calculated using the equation

𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑊𝑎𝑖𝑡 − 𝑟𝑠𝑣𝐺𝑟𝑡𝐷𝑒𝑙𝑎𝑦
− 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝐷𝑒𝑙𝑎𝑦, (1)

where 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑊𝑎𝑖𝑡 = 𝑐ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 ∗𝑀𝑇𝑈 /𝑙𝑖𝑛𝑒𝑟𝑎𝑡𝑒 and
pendingDataDelay = bytes/linerate.

The timeslot chosen for transmission is timeslotWait
seconds into the future from when the reservation is made at
the switch. This reservation is conveyed back to the sender
after rsvGrtDelay/2 seconds. The first packet of the trans-
mission would again take approximately rsvGrtDelay/2
seconds to reach the switch, after transmitting all the previ-
ously scheduled packets at the sender NIC (which would take
pendingDataDelay seconds)1. The sender therefore waits
only for the remaining fraction of time to ensure that the
first packet of the burst arrives in time at the switch.

3 Main result

0 1 2 3 4
Number of hosts sending background traffic

0

20000

40000

60000

80000

100000

T
ra

ns
ac

tio
n

pe
r

se
co

nd TCP VMA Cubic
TCP VMA PL2

(a) Throughput.

0 1 2 3 4
Number of hosts sending background traffic

0

20

40

60

80

100

120

140

R
P

C
 la

te
nc

y
(u

s)

TCP VMA Cubic 99%
TCP VMA Cubic Median
TCP VMA PL2 99%
TCP VMA PL2 Median

(b) Latencies.

Figure 2: Memcached competes with TCP traffic.

When memcached competeswith heavy (incast) background
traffic with congestion control support, PL2 can ensure up
to 2.3x lower rpc-latencies, and 1.8x corresponding improve-
ment in application throughput compared to VMA TCP Cu-
bic. Figures 2a and 2b show memcached transaction through-
put and response latencies with TCP background traffic. The
graphs shown are with 64B keys and 4 KiB values. The red
bar in Figure 2a shows throughputs with memcached over
TCP over PL2 (TCP VMA PL2), and the green bar shows
throughputs with memcached over TCP with Cubic conges-
tion control (TCP VMA Cubic).

When there is no background traffic (bars for 0 hosts send-
ing background traffic), PL2 slows down memcached by a
small amount(8%), even though the RPC latencies are similar
to TCP VMACubic (Figure 2b). PL2 RSV-GRT exchange over-
heads contribute to reduced throughput seen with TCP VMA
PL2. The same effect is seen in the case where the memcached
host also sends background traffic that utilizes around 50%
of the downlink to the memcached client (50Gbps). Once we
add background traffic load from additional servers, the load
on the receiving link increases to 80-90% and the memcached
latencies go up much faster for TCP VMA Cubic than TCP
VMA PL2 as seen in Figure 2b; consequently memcached has
0.5x lower throughput with TCP VMA Cubic. This is despite
the fact that the competing background traffic that runs using
TCP VMA PL2 has 1-5Gbps more load than the background
traffic that runs on VMA TCP Cubic. The 99th-percentile
RPC latency with VMA TCP Cubic is 127 µs as opposed to
56 µs with PL2 with 4-way TCP incast background traffic.

1We ensure that RSV-GRT packets do not wait behind data packets (if any)
by prioritizing them using 801.1q

2

References
[1] Precision Time Protocol (PTP). http://linuxptp.sourceforge.net/.
[2] Workloads Traces Source. https://github.com/PlatformLab/

HomaSimulation/tree/omnet_simulations/RpcTransportDesign/
OMNeT%2B%2BSimulation/homatransport/sizeDistributions.

[3] Barefoot Tofino. https://www.barefootnetworks.com/technology/
#tofino.

[4] Dell emc vxrail. https://www.dellemc.com/resources/en-us/asset/
data-sheets/products/converged-infrastructure/vxrail-datasheet.
pdf.

[5] Gen-z. https://genzconsortium.org/.
[6] An introduction to ccix white paper. https://www.ccixconsortium.com/

wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf.
[7] Mellanox Messaging Accelerator (VMA). http://www.mellanox.com/

page/software_vma.
[8] Memcached. https://memcached.org/.
[9] Omni-path. https://www.intel.com/content/

www/us/en/high-performance-computing-fabrics/
omni-path-driving-exascale-computing.html.

[10] Open Network Linux. https://opennetlinux.org/.
[11] Very deep convolutional networks for large-scale image recognition.

http://www.image-net.org/challenges/LSVRC/2014/results.
[12] Enabling programmable transport protocols in high-speed nics. In 17th

USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), Santa Clara, CA, February 2020. USENIX Association.

[13] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM
2010 Conference, SIGCOMM ’10, 2010.

[14] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center tcp (dctcp). In Proceedings of the ACM SIGCOMM
2010 Conference, SIGCOMM ’10, page 63–74, New York, NY, USA, 2010.
Association for Computing Machinery.

[15] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar,
Amin Vahdat, and Masato Yasuda. Less is more: Trading a little band-
width for ultra-low latency in the data center. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, 2012.

[16] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. pfabric: Minimal near-
optimal datacenter transport. In Proceedings of the ACM SIGCOMM
2013 Conference, SIGCOMM ’13, 2013.

[17] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference onMeasurement andModeling of Computer Systems,
SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012. Association
for Computing Machinery.

[18] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
Towards predictable datacenter networks. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, 2011.

[19] Theophilus Benson, Aditya Akella, and David A. Maltz. Network
traffic characteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement, IMC ’10,
page 267–280, New York, NY, USA, 2010. Association for Computing
Machinery.

[20] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp
vegas: New techniques for congestion detection and avoidance. In
Proceedings of the ACM SIGCOMM 1994 Conference, SIGCOMM ’94,
1994.

[21] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. Catch the
whole lot in an action: Rapid precise packet loss notification in data
centers. In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, NSDI’14, 2014.

[22] Inho Cho, Keon Jang, and Dongsu Han. Credit-scheduled delay-
bounded congestion control for datacenters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, 2017.

[23] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. R2c2: A
network stack for rack-scale computers. SIGCOMM Comput. Commun.
Rev., 45(4):551–564, August 2015.

[24] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications
of the ACM, 56:74–80, 2013.

[25] Field programmable gate array over fabric. https://cdrdv2.intel.com/
v1/dl/getContent/608298.

[26] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia
Ratnasamy, and Scott Shenker. phost: Distributed near-optimal dat-
acenter transport over commodity network fabric. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’15, 2015.

[27] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.
Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues
don’t matter when you can JUMP them! In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), 2015.

[28] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, andMarina Lipshteyn. Rdma over commodity ethernet at scale.
In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16,
page 202–215, New York, NY, USA, 2016. Association for Computing
Machinery.

[29] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly
high-speed tcp variant. SIGOPS Oper. Syst. Rev., 42(5), July 2008.

[30] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
AndrewW.Moore, Gianni Antichi, andMarcinWójcik. Re-architecting
datacenter networks and stacks for low latency and high performance.
In Proceedings of the ACM SIGCOMM 2017 Conference, SIGCOMM ’17,
2017.

[31] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter,
JohnCarter, andAdityaAkella. AC/DCTCP: Virtual congestion control
enforcement for datacenter networks. In SIGCOMM, 2016.

[32] InfiniBand Trade Association. Supplement to InfiniBand Architecture
Specification Volume 1 Release 1.2.1 Annex A17: RoCEv2. https://cw.
infinibandta.org/document/dl/7781, 2014.

[33] Intel rack scale design v2.5: Architecture specification. https:
//www.intel.com/content/www/us/en/architecture-and-technology/
rack-scale-design/architecture-spec-v2-5.html.

[34] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. Silo:
Predictable message latency in the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, 2015.

[35] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. mTCP: a highly
scalable user-level tcp stack for multicore systems. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). USENIX Association, 2014.

[36] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji
Prabhakar, Albert Greenberg, and Changhoon Kim. Eyeq: Practical net-
work performance isolation at the edge. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), 2013.

[37] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter rpcs
can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), Boston, MA, 2019.

3

[38] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Ander-
son, and Arvind Krishnamurthy. High performance packet processing
with FlexNIC. In ASPLOS, 2016.

[39] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, Em-
mett Witchel, and Mark Silberstein. Gpunet: Networking abstractions
for GPU programs. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 201–216, Broomfield, CO,
October 2014. USENIX Association.

[40] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai,
Björn Carlin, Mihai Amarandei-Stavila, and et al. Bwe: Flexible, hi-
erarchical bandwidth allocation for wan distributed computing. In
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, page 1–14, New York, NY, USA,
2015. Association for Computing Machinery.

[41] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, Yaogong
Wang, Chonggang Li, Valas Valancius, Jake Adriaens, Steve Gribble,
Nate Foster, and Amin Vahdat. Picnic: Predictable virtualized nic. In
Proceedings of the ACM SIGCOMM 2019 Conference, SIGCOMM ’19,
2019.

[42] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,
Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, and Minlan Yu. Hpcc: High precision congestion control. In
PProceedings of the ACM SIGCOMM 2019 Conference, SIGCOMM ’19,
2019.

[43] Radhika Mittal, Terry Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. TIMELY: RTT-based congestion control for the
datacenter. In SIGCOMM, 2015.

[44] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A receiver-driven low-latency transport protocol using
network priorities. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’18, 2018.

[45] Max Noormohammadpour and Cauligi Raghavendra. Datacenter traf-
fic control: Understanding techniques and trade-offs. IEEE Communi-
cations Surveys & Tutorials, 20:1492 – 1525, 05 2018.

[46] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high CPU efficiency for
latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), Boston,
MA, 2019.

[47] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. Flowtune:
Flowlet control for datacenter networks. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), Boston,
MA, 2017.

[48] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. Fastpass: A Centralized “Zero-Queue” Datacenter
Network. In SIGCOMM, 2014.

[49] 802.1qbb. http://1.ieee802.org/dcb/802-1qbb/.
[50] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, and

Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC ’12, 2012.

[51] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. Inside the social network’s (datacenter) network. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, page 123–137, New York, NY, USA,
2015. Association for Computing Machinery.

[52] Intel Rack Scale Design Architecture. https://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
rack-scale-design-architecture-white-paper.pdf.

[53] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh
Lee, Han Wang, Rachit Agarwal, and Hakim Weatherspoon. Shoal: A
network architecture for disaggregated racks. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19),
pages 255–270, Boston, MA, February 2019. USENIX Association.

[54] David Sidler, Zsolt István, and Gustavo Alonso. Low-latency tcp/ip
stack for data center applications. In 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), 2016.

[55] R. Sivaram. Some measured google flow sizes (2008). google internal
memo, available on request.

[56] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-
aware datacenter tcp (d2tcp). In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’12, 2012.

[57] Dell-EMC VxRail. https://www.dellemc.com/en-us/
converged-infrastructure/vxrail/index.htm.

[58] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
Better never than late: Meeting deadlines in datacenter networks. In
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
2011.

[59] Jackson Woodruff, Andrew W Moore, and Noa Zilberman. Measuring
burstiness in data center applications. In Proceedings of the 2019 Work-
shop on Buffer Sizing, BS ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[60] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. Congestion control for large-scale
RDMA deployments. In Proceedings of the ACM SIGCOMM 2015 Con-
ference. ACM, August 2015.

A Introduction
Rack-scale data center solutions like Dell-EMC VxRail [57]
and Intel RSD [52] have emerged as a new building block
for modern enterprise, cloud, and edge infrastructure. These
rack-units have three key characteristics; First is the increas-
ing use of resource disaggregation and hardware accelerators
within these rack-units like GPUs and FPGAs [52], in ad-
dition to high-density compute and storage units. Second,
Ethernet is by far the dominant interconnect of choice within
such racks, even for communication between compute units,
storage units and accelerators (e.g., Ethernet-pooled FPGA
and NVMe in Intel RDS [33]). Third, these racks are deployed
in a wide range of enterprise and cloud customer environ-
ments, running a heterogeneous mix of modern (e.g., ma-
chine learning, graph processing) and legacy applications
(e.g., monolithic web applications), making it impractical to
anticipate traffic and workload patterns.

Rack-scale networks2 need to satisfy the key requirements
of uniform low latency and high utilization, irrespec-
tive of where applications reside, and which accelerators
they access (e.g., FPGA vs. CPU vs. GPU). However, three
key obstacles stand in the way of achieving these goals
because of the above-mentioned characteristics. First, the

2The network extending between NICs of such rack-units across the top-of-
rack (ToR) switch.

4

rack-scale network must be transport-agnostic, a neces-
sity in environments with (a) heterogeneous accelerator de-
vices that have different characteristics3 than CPU network
stacks [25, 38, 39], and (b) increasing use of CPU-bypass net-
working [32, 35, 37]. Second, Ethernet is not a lossless fabric,
and yet, our experiments (§B) on a 100G testbed confirm
that drops, not queueing, are the largest contributor to tail
latency pathologies. Third, the design must be workload-
oblivious – given that we cannot anticipate traffic and work-
load patterns across a broad range of customer environments,
it is impractical to rely on state-of-the-art proposals (§C) that
hinge on configuring rate limits or priorities using a-priori
knowledge of the workload.
In this paper, we present Predictable Low Latency or PL2,

a rack-scale lossless network architecture that achieves low
latency and high throughput in a transport-agnostic and
workload-oblivious manner. PL2 reduces NIC-to-NIC laten-
cies by proactively avoiding losses. PL2 supports a variety of
message transport protocols and gracefully accommodates
increasing numbers of flows, even at 100G line rates. It nei-
ther requires a-priori knowledge of workload characteristics
nor depends on rate-limits or traffic priorities to be set based
on workload characteristics.

To achieve these goals, senders in PL2 explicitly request a
switch buffer reservation for a given number of packets, a
packet burst, and receive notification as to when that burst
can be transmitted without facing any cross traffic from other
senders. PL2 achieves this form of centralized scheduling
even at 100G line rates by overcoming the key challenge
of carefully partitioning the scheduling responsibility be-
tween hosts in the rack and the Top-of-Rack (ToR) switch.
In particular, the end-host protocol is kept simple enough
to accommodate accelerator devices and implementations
within NICs (§D.4), whereas the timeslot allocation itself is
performed in the ToR switch at line rate (as opposed to doing
so on a host, which is prone to software overheads).

In summary, our contributions are:
• The PL2 design that embodies novel yet simple algo-
rithms for lossless transmissions and near-zero queu-
ing within a rack
• APL2 implementation using a P4 programmable switch
and an end-host stack that leverages Mellanox’s state-
of-the-art VMA message acceleration library [7]
• A comprehensive PL2 evaluation on a 100Gbps pro-
totype, supporting three different transports (TCP,
UDP and Raw Ethernet), all benefiting from near-zero
queueing in the network. Compared to VMA,we demon-
strate up to 2.2x improvement in the 99th percentile

3For example, FPGA stacks will not be connection-oriented due to scaling
issues [54] and GPUs will not have a single receiver stack [39]).

latency for the Memcached application; a 20% improve-
ment to run a VGG16 machine learning workload; and
near-optimal latency and throughput in experiments
using trace-based workload generators.

B Motivation
The primary goal of PL2 is to provide uniformly low-latency
across Ethernet rack-fabrics, while achieving high-utilization.
We take inspiration from prior work around low and pre-
dictable latency within data center networks [13, 15, 16, 18,
20, 22, 26, 27, 29–31, 34, 36, 41–44, 47, 48, 56, 58, 60], but find
that rack-scale networks provide a rich set of new challenges.
Rack-scale characteristics and implications
1. Even as line-rates increase, intra-rack RTTs are

not getting smaller. [44] measured 5 µs end-to-end RTT
on a 10Gbps testbed with a single ToR switch, inclusive
of software delays on the servers. A 64B packet still has
an RTT of 5 µs in our 100Gbps rack-scale PL2 prototype.
Even though the network transmission times reduce propor-
tionally with increasing line-rates, switching-delays, NIC
hardware delays, and DMA transfer delays at end-hosts have
remained about the same, and these delays together domi-
nate transmission delays in a rack. Forward-error-correction
delays increase as line-rates increase, and can add variability
of up to 1-2 µs in a 100Gbps network. This implies that rack-
scale networks are able to transfer more data in the same RTT
as interconnect speeds increase. Flows up to 61 kB can com-
plete within 1 RTT with a 100Gbps backplane as opposed to
6 kB for a 10Gbps backplane. For congestion control proto-
cols and predictable latency schemes to be effective for flows
below these sizes, they will need to converge in sub-RTT
timeframes.

2. Even as rack-densities go up, network buffering in
ToR switches is not getting bigger. Shallow buffers are
even more critical to a disaggregated rack, because buffering
adds latencies to network transfers. However, the implication
of this trend is that microbursts can over-run shared output
switch-buffers and cause drops. For instance, a 2MB buffer
in a ToR switch with 100Gbps ports provides buffering for
just 160 µs which means only 8 simultaneous transfers of
2Mbits can be sustained before the switch starts dropping
packets. Today’s rack-scale networks support up to 64 rack-
units [4], where each end-system can have tens of thousands
of ongoing transfers. At that scale a 2 MB can be overrun
with only 6 simultaneous 5 µs (1 RTT) network transfers per
rack-scale unit. In short, as rack-densities go up, drops due to
microbursts can be frequent. Therefore, assumptions made
by congestion protocols like [30, 44] that the network-core
(ToR switch in the case of racks) is lossless, no longer holds.

5

3. Rack-scale traffic is ON/OFF traffic [19] We believe
this trend will continue with network traffic generated by ac-
celerators. Measuring traffic-demands in such environments
is hard, let alone learning about workload-characteristics;
traffic demands at ns-timescales will be different compared
to 𝜇s timescales and ms-timescales [59]. Workload churn and
different application mixes adds to the unpredictability.
Coming up with effective rate-limits [18, 27, 34, 36, 41],

and readjusting these rate-limits with changing traffic-conditions
in time (i.e., less than an RTT) is impossible; so is setting
relative packet priorities [44] effectively [40] so that impor-
tant traffic is never lost or delayed. In our experience nei-
ther rate-limits nor priority prescription is an answer to
congestion-control within a rack.
Drops cause the most noticeable tails
Based on the above three observations, we believe that new
techniques are required to ensure low-latency and high-
utilization within a rack-scale network. We hinge the PL2
design on the observation that drops, not queuing cause the
most noticeable tails.

We illustrate this point with an experiment that introduces
microbursts in our 100Gbps testbed even when the network
is partially loaded, by using 5-way incast of roughly 18Gbps
traffic per sender. All messages transmitted in our exper-
iment can be transmitted within a single RTT. As shown
in Figure 3a, the 99%ile latencies experienced by a receiver-
driven scheme (RDS-baseline) based on Homa (described
in detail in Section F) correspond to the maximum output-
buffering available in the ToR switch (around 120 µs in Fig-
ure 3b), while the 99.9%ile latencies correspond to delays due
to drops, and are two orders of magnitude higher. Reduc-
ing the drop-timeout in our implementation only increases
drops, while only slightly reducing the 99.9%ile latencies.

In contrast, PL2’s 99%ile and 99.9%ile latencies are similar
to its median latencies, and it does not experience drops. PL2
is not impacted bymicrobursts; it keeps buffer occupancy low
(maximum of 200 KiB). Figure 3c shows the drops (around
0.1%) experienced by RDS-baseline over time.

C Related Work
Priority Flow Control (PFC) [49] PFC is a closely re-

lated L2 mechanism that can also counter loss in a rack-scale
network. Configuring PFC for correct operation is notori-
ously hard, even at rack-scale (see PXE booting issues in [28]),
and turning on PFC in a rack that is part of a larger data
center can be disruptive. Even within a single rack, PFC’s
coarse-grained mechanisms of providing losslessness across
less than 8 traffic classes requires operators to choose be-
tween high utilization and lossless behavior because conges-
tion in one downstream class can result in multiple unrelated
senders receiving PAUSE frames due to HOL blocking [45].

Rack-scale interconnects Several custom designs for
rack scale interconnects have been proposed; [23] propose
direct-connect topologies, and [53] proposes circuit switched
connectivity within a rack. [5, 6, 9] propose cache-coherent
interconnects at rack scale to enable new computation mod-
els at rack-scale. PL2 differs fundamentally from all of these
in vision. Even though other designs might perform better,
PL2’s goal is to allow traditional and commercially available
rack-scale architectures to continue to avail the cost and
operational ease benefits of Ethernet interconnects, but also
to get predictable latency benefits;

Predictable latency [18, 27, 34, 36, 41] provide predictable
latency by resource isolation among tenants or applications
of a data center. All of these use rate-limit based network
admission control to ensure isolation, and require a-priori
knowledge of traffic characteristics (application mixes, de-
mands). They typically dynamically readjust rate-limits based
on new demand, but require considerable time to do so. For
example, [41] requires a few RTTs for convergence. Often
these systems can rely on inputs from applications, tenant
requirements or systems like Bwe [40] to determine rate-
limits. As described in Section B, PL2 cannot leverage these
ideas in the rack-scale context.

Congestion-control Our work follows the long history
of low-latency, high-throughput congestion-control mecha-
nisms. [22, 26, 30, 44] propose software-based receiver-side
scheduling targeted towards 10Gbps data center networks.
Some of these schemes [30, 44] rely on the assumption that
the network core does not experience loss; an assumption
that is invalid in the rack-scale context (Section B).
Recent proposals suggest that starting new flows at line-

rates [30, 44], or over-committing downlinks [44] could speed
up network transfers; the experiment described in Figure 3
verifies that this idea trades off tail-latency for improved
minimum and median latencies, which may not be benefi-
cial [24].
Homa, pFabric, and others [15, 16, 27, 44, 56, 58] depend

on prior knowledge of application traffic characteristics for
providing benefits over other schemes; something that may
be difficult due to shifting or short-lived workloads [50].

Most congestion control schemes proposed [13, 20, 29, 31,
42, 43, 60] rely on layer 3 and above to remedy congestion
after it is observed either by way of delay, ECN marks, buffer
occupancy or packet loss [21]. They require at least an RTT
to respond to congestion and are too slow to prevent drops
in a rack-scale network.
Fastpass [48] and Flowtune [47] proactively request per-

mission to send packets and are the closest prior schemes to
PL2. Fastpass decides when to send a burst of packets while
Flowtune decides the rate to send a burst of packets. Their
centralized arbiters, however, are host-based and cannot keep

6

0 10000 20000 30000 40000 50000 60000 70000
Message Size (B)

100

101

102

103

104

105

M
es

sa
ge

 la
te

nc
y

(u
s)

PL2 99%
PL2 99.9%

PL2 Median
RDS-baseline 99%

RDS-baseline 99.9%
RDS-baseline Median

(a) Message latency

100 150 200 250 300 350 400 450 500 550
time(10ms)

0

20

40

60

80

100

120

Q
ue

ue
 L

en
gt

h
(u

s)

PL2
RDS-baseline

(b) Switch queuing delay

100 150 200 250 300 350 400 450 500 550
time(10ms)

0

50

100

150

200

250

N
um

be
r

of
 P

ac
ke

t D
ro

ps

PL2
RDS-baseline

(c) Packets drop per 10ms

Figure 3: Messages latency, switch queuing delay and packets drop during microburst.

up with 100Gbps line rates because they are bottlenecked
both by scheduling software latencies and the downlink to
the arbiter. Control packets to the centralized arbiter can
also be dropped arbitrarily depending on NIC polling rates;
these issues make centralized scheduling at an end host too
fallible to be efficient and effective at 100Gbps.

Most of these schemes (except for Fastpass and Flowtune)
do not tackle the problem of being transport-agnostic; they
rely on all traffic using the same end-host-based congestion
control4. These schemes do not interact well with traffic
that does not have congestion control. In PL2, the rack-scale
interconnect intercepts traffic from all higher layers, and is
therefore well suited to offer the properties we seek.

D PL2 Design
PL2 transforms the rack-scale network into a high-performance
lossless low-latency interconnect. At the heart of PL2 is an
algorithm for scheduling packet bursts at line rate using the
switch dataplane, where a packet burst is simply a bounded
number of Ethernet frames.
PL2 is designed to be losslessness via proactive conges-

tion control, while at the same time, being both transport-
agnostic and, workload-oblivious.
We achieve losslessness via the scheduling algorithm,

which implements a timeslot reservation scheme where each
sender transmits only at its assigned timeslot, reducing cross-
traffic. Since the scheduling function is placed in the switch
dataplane in the network layer, it can schedule for packet
bursts corresponding to all transports. The switch is one hop
away from all hosts; therefore hosts can access the scheduling
function at less than end-to-end RTT; we further eliminate
scheduling overheads where possible. PL2 does not assume
a-priori knowledge of traffic patterns or workloads.

In the following sections, we explain our scheduling algo-
rithm first, followed by practical hardware constraints that
inform its design. It is worth mentioning, for readers familiar
with Fastpass, that we are unable to borrow the timeslot
allocation scheme in Fastpass due to these hardware con-
straints; PL2 switch scheduling algorithm trades off optimal

4This is true of Homa also, which reorders traffic based on message size
and would not interact well with TCP.

H1

H2

H1
Input
Port

Timeslots

3
2
1

4
5

3
2
1

4
5

H2
Output
Port

H2
Output
Port

Timeslots

3
2
1

4
5

3
2
1

4
5

H1
Input
Port

Switch

1) RSV (H1 H2, K) 3) GRT (T=4, T=5)

2) Switch reserves earliest
available timeslots for
H1’s input (T=4) and H2’s
output ports (T=5)

Reserved timeslot Available timeslot

4) Send packet
burst at T=5

1

2

3 4

Figure 4: Scheduling example in PL2, with host H1 sending
a packet burst to H2. 1 H1 sends an RSV to the switch to

make a reservation. 2 The switchmaintains timeslot reser-
vations for the input and output ports connected to every
hosts. It reserves the earliest available timeslots on H1’s in-
put port (𝑇 = 4) and H2’s output port (𝑇 = 5). 3 The switch

notifies H1 of these timeslots through a GRT message. 4
To avoid queuing, H1 then transmits at themaximum of the
two timeslots indicated in the GRT, which is 𝑇 = 5.

scheduling for speed. We elaborate on this towards the end
of the next subsection.
D.1 PL2 scheduling algorithm
Timeslot reservation overview Conceptually, our scheme

maintains a list of timeslots per input and output buffer for
each port. In our current implementation, we define a times-
lot to be the time it takes to transmit an MTU sized packet
out of a buffer5. To transmit a packet burst from host ℎ to
ℎ′, we seek to reserve a timeslot 𝑡 on the switch input port
corresponding to ℎ, and a timeslot 𝑡 ′ on the output port cor-
responding to ℎ′. Host ℎ then transmits at a ‘chosen timeslot’
which is the greater of timeslots 𝑡 and 𝑡 ′ to avoid a collision6.
The astute reader will observe that we could instead let the
switch choose the transmission time in a centralized manner
5The ideal duration for a timeslot is system and workload dependent. It
should be chosen as a function of common (or minimum) message sizes
and link speeds to ensure high utilization; transmitting small messages in
large timeslots is wasteful. It’s choice is also determined by the transmission
granularity in a system; for e.g, a timeslot that is in picoseconds is useless
because current hardware cannot transmit at such a fine granularity.
6Our design choice to always choose the greater of timeslots 𝑡 and 𝑡 ′ can
create gaps in time when no packet is scheduled.

7

rather than pairwise, but hardware constraints prevent us
from doing so (§D.2).
Note, with the hosts choosing the transmission times,

there is a risk of collision. With perfect scheduling, we would
have no collisions, and need near zero buffering at the switch.
However, PL2 uses a small amount of buffer space (less than
200KB in our 100Gbps testbed) to accommodate occasional
collisions.

To run the above-mentioned scheme at line rate andwithin
the constraints of switching hardware (outlined in §D.1.1),
we designed an algorithm with the following division of
logic between the switch and the hosts: (i) to transmit a
packet burst of size K7, hosts send reserve or RSV packets
to the switch to reserve timeslots, (ii) the switch grants a
reservation of size K and responds to the host with a grant
or GRT packet, which specifies the earliest available timeslot
for the corresponding input port and output port, (iii) the
host then picks the maximum of the two timeslots to avoid
a collision, (iv) finally, the host converts the timeslot into
a waiting time after which it transmits the packet burst. In
doing so, the timeslot reservation logic is divided between
the switch and the host. Importantly, both the switch and
host logic stays simple and in line with switching hardware
constraints, which we describe below.

Algorithm 2 Switch Scheduling Algorithm. Each high-
lighted block is a single P4 operation.
1: INIT:
2: 𝑖𝑛𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑝𝑜𝑟𝑡 1..𝑝𝑜𝑟𝑡 𝑛] ← {0}
3: 𝑜𝑢𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑝𝑜𝑟𝑡 1..𝑝𝑜𝑟𝑡 𝑛] ← {0}

4: INPUT: packet
5: 𝑠𝑟𝑐 ←source port of RSV
6: 𝑑𝑠𝑡 ←destination port requested
7: if packet is a RSV then
8: packet.sendTimeslot← inReservation[src]
9: inReservation[src] += packet.demand

10: packet.recvTimeslot← outReservation[dst]
11: outReservation[dst] += packet.demand

12: send GRT
13: else
14: 𝑜𝑢𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑑𝑠𝑡] -= 1
15: 𝑖𝑛𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛[𝑠𝑟𝑐] -= 1
16: end if

D.1.1 Switch logicAlgorithm 2 shows the scheduling logic
at the switch. To stay ahead of packet transmissions, despite
the delay of each RSV-GRT exchange, the switch creates a
7𝐾 is technically the number of timeslots a sender is allowed to reserve at a
time.

schedule of input and output reservations for every port,
in terms of timeslots. Each highlighted gray box represents
logic that can be implemented with a single P4 operation.
At switch start up, the input and output reservations are

initialized to zero (lines 2-3). In response to RSV packets, the
switch sends back the next available input and output times-
lots for the requested transmissions (lines 8,10,12). It also
reserves enough timeslots for each RSV request (lines 9,11).
In Figure 4, the switch has reserved timeslot 4 at the source
port (connected to Host 1) and timeslot 5 at the destination
port (connected to Host 2) for transmission. Note that the
reservation timeslots have not lined up exactly at the two
ports. We describe how the sending host uses these timeslots
next. Lines 13-15 describe switch logic for regular packets, in
which the timeslot reservations for the packet are removed.
D.2 Hardware constraints
There are two key hardware constraints that Algorithm 2
satisfies. First, currently available programmable switching
hardware cannot access more than one stateful memory ob-
ject (SMO) at a time in an operation, per packet, at line-rates.
This is why inReservation and outReservation timeslot
counters in Algorithm 2 are accessed and updated in two
separate operations. Second, all pipelined network hardware
can only read/modify/write SMOs once during the process-
ing of packets. If a SMO is updated or accessed twice during
the same pipeline, it results in race-conditions across packets.
This is why inReservation and outReservation have to
be read and modified in a single atomic operation in Algo-
rithm 2.

In the absence of the first limitation, the switch could up-
date both inReservation and outReservation to max(in-
Reservation, outReservation). If it could also cache the
computed timeslot in packet metadata, it could send this
timeslot information in response to a RSV message. Since
the chosen timeslot increases monotonically, this scheme re-
moves any possibility of collisions. In the current implemen-
tation, the switch relays inReservation and outReservation
to the host, which computes the chosen timeslot to send at.

Why not implement Fastpass in a switch instead?
Fastpass [48] is able to perform timeslot allocation with max-
imal matching because the scheduler processes a list of all de-
mands in the network at once; implementing such a scheme
is impossible in the switch dataplane at line-rate, because
switch pipelines cannot compare multiple RSV packets in
flight.
In addition, Fastpass performs timeslot allocation using

a bitmap table, that has a sender and receiver bitmap to
track multiple timeslots. Allocation requires a bitwise AND
of the sender and receiver bitmap, followed by a ‘set’ on the
first available timeslot. Supporting such an algorithm would
require hardware to be able to access and set at least two

8

stateful memory objects in a single operation. Maintaining
a sliding window of timeslots is similarly hard to achieve
with dataplanes today because they expose minimal timing
API that are restricted to timestamping — converting these
timestamps to sliding windows requires accessing multiple
stateful memory objects, one that maintains timestamp in-
formation, and another that maintains timeslot information,
and updating them at line-rates for every RSV packet.
D.2.1 Host logicOn the host side, for lossless transmis-
sion, senders must ensure that their packet bursts do not
collide with other transmissions at both the corresponding
input and output ports on the switch. In fact, input and out-
put ports at a switch might be shared by multiple hosts (like
when a 100G link is divided into four 25G links and connected
to four different hosts). End hosts in PL2 therefore conserva-
tively choose a timeslot to transmit that is available on both
the relevant switch input and output ports using the equation
𝑐ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 ←𝑚𝑎𝑥 (𝑠𝑒𝑛𝑑𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡, 𝑟𝑒𝑐𝑣𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡).

The sender then transmits packets at the chosenTimeslot
by waiting for a period waitingTime calculated using the
equation

𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑊𝑎𝑖𝑡 − 𝑟𝑠𝑣𝐺𝑟𝑡𝐷𝑒𝑙𝑎𝑦
− 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝐷𝑒𝑙𝑎𝑦, (2)

where 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑊𝑎𝑖𝑡 = 𝑐ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 ∗𝑀𝑇𝑈 /𝑙𝑖𝑛𝑒𝑟𝑎𝑡𝑒 and
pendingDataDelay = bytes/linerate.
The explanation for this calculation is as follows: The

timeslot chosen for transmission is timeslotWait seconds
into the future from when the reservation is made at the
switch. This reservation is conveyed back to the sender af-
ter rsvGrtDelay/2 seconds. The first packet of the trans-
mission would again take approximately rsvGrtDelay/2
seconds to reach the switch, after transmitting all the previ-
ously scheduled packets at the sender NIC (which would take
pendingDataDelay seconds)8. The sender therefore waits
only for the remaining fraction of time to ensure that the
first packet of the burst arrives in time at the switch.
The aforementioned logic has some leeway with regards

to where on the host it runs. In our current userspace stack
implementation, one instance of the PL2 host logic runs per
application thread and each thread maintains at most one
outstanding RSV-GRT exchange. We believe a better imple-
mentation would be one where the host logic runs inside a
NIC. In that case, the NIC can allow sending threads to have
one outstanding RSV-GRT exchange per destination mac ad-
dress, so that a thread sending messages simultaneously to
multiple destinations can do so without encountering head-
of-line blocking for messages to unrelated destinations.

8We ensure that RSV-GRT packets do not wait behind data packets (if any)
by prioritizing them using 801.1q

D.3 Setting the packet-burst size, 𝐾
A key parameter in PL2 is the packet-burst size, 𝐾 . PL2 en-
sures stable queuing by proactively scheduling transmis-
sions such that when these packet bursts are transmitted,
they encounter almost no queuing. However, the timeslot
reservations for the relevant input and output ports for a
transmission determine when packet bursts are transmitted.
The switch reserves as many timeslots as needed for a trans-
mission based on the demand from the host, which is capped
by 𝐾 .

A small value of𝐾 limits the amount of head-of-line block-
ing a burst introduces at its input and output ports and en-
sures that PL2 supports a large number of concurrent trans-
missions at any point in time. However, when 𝐾 is too small,
the overhead of the RSV-GRT exchange dominates, lowering
throughput and effective utilization. Similarly, large values
of 𝐾 help amortize the cost of the RSV-GRT exchange de-
lay, but increase head-of-line blocking because that causes
the switch to reserve a burst of timeslots for the same host,
potentially starving other hosts.

We find that 𝐾 = 4 works best for our 100G testbed proto-
type and in our simulation for all the workloads we tested,
based on a parameter sweep. §E details the configurations
in our testbed and simulations.
D.4 Reducing scheduling overheads
Each RSV-GRT exchange enables senders to determine the
waiting time before transmitting on a given input/output
port pair. Under light loads, the waiting times for a sender
will mostly be 0ns (or nominal at best), providing an oppor-
tunity to reduce the number of exchanges required to send
messages. Such a reduction has the potential to reduce the
minimum end-to-end message latencies in PL2, which are
otherwise impacted by RSV-GRT exchange overheads.

We therefore design an optimization that enables senders
to send unsolicited packet bursts immediately after sending
a RSV packet to the switch, without waiting for the GRT.
Unsolicited bursts are allowed only when the following two
conditions are satisfied: (i) the timeslots at the input and
output port known from a previous GRT are both below a
threshold 𝑡 and (ii), the information about the reservation is
deemed to be recent, i.e., obtained within a certain interval of
time (e.g., comparable to the time for a RSV-GRT exchange).
Condition (ii) is met when senders send consecutive bursts
to the same destination. Packets that are sent unsolicited are
marked by using a spare packet header field.
Algorithm 3 shows the sender side scheduling logic. As

usual before sending a burst, RSV packets are sent (line 7).
However, if the lastChosenTimeslot was within t and the
previous GRT was recent, an unsolicited packet burst is sent
even before the next GRT arrives (line 8-9). The switch sched-
ule is modified to pass through unsolicited bursts, unless the

9

Algorithm 3 Scheduling at sender
1: PARAMETERS: 𝑡 , 𝐾
2: INIT:
3: 𝑙𝑎𝑠𝑡𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 ← {−1}
4: 𝑙𝑎𝑠𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 ← {0}

5: Function scheduleBurst
6: INPUT: packet burst with 𝐾 or fewer packets
7: Send RSV for burst
8: if 𝑙𝑎𝑠𝑡𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 < 𝑡 and 𝑙𝑎𝑠𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 is current

then
9: Send unsolicited packet burst
10: else
11: Call receiveGRT
12: Send packet burst after𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒
13: end if

14: Function receiveGRT
15: INPUT: GRT
16: if 𝑐ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 > 𝑡 then
17: if 𝑙𝑎𝑠𝑡𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 < 𝑡 then
18: Resend packet burst corresponding to GRT
19: end if
20: end if
21: 𝑙𝑎𝑠𝑡𝐶ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡 ← 𝑐ℎ𝑜𝑠𝑒𝑛𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡

22: 𝑙𝑎𝑠𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 ← 𝑛𝑜𝑤 ()

reservation queues are larger than a threshold 𝑇 >> 𝑡 , in
which case unsolicited bursts are dropped (not shown in
algorithm 2). When the sender receives a GRT back, it de-
termines whether the new chosenTimeslot > t (where
chosenTimeslot is calculated using the equation from Sec-
tion D.2.1) and if so, resends the packet burst corresponding
to the GRT (lines 16-20) at the right timeslot. This ensures
that the packet burst arrives at the time it is expected at the
switch, even if the unsolicited burst was dropped. However
since T >> t, it is also possible that both the unsolicited and
scheduled packets arrive at the receiver, and the receiver has
to deal with a small number of duplicate packets.

In general, the threshold t is set to a sufficiently low value,
so that the optimization only applies at very low loads. In
our testbed implementation, we found t to be robust across a
broad range of values and workloads. All our testbed experi-
ments are run on a setting of t=15. Sweeping through t=10
up to t=25 does not show statistically significant changes to
loss rates or latency (of course, setting t to large values like
35 does lead to loss).
This optimization results in some transmissions arriving

at the switch at the same time under low load. We find that
when there are only a few senders to a port, and there are
continuous transmissions at a low rate, the optimization
helps reduce the minimum message latencies; this is because
the queuing caused by such simultaneous transmissions is

smaller than the RSV-GRT message exchange delay under
low loads.
Tonic [12] and Sidler et. al. [54] have demonstrated that

it is possible to place complex congestion control logic into
NIC hardware. Since algorithm 3 requires only a minimal
subset of the supported logic (timed transmit), we believe it
will be easier to implement in NIC hardware. Such an imple-
mentation will allow GPU and FPGAs (apart from CPUs) to
access PL2 logic directly.
D.5 Other design considerations
Implications for intra-rack transports. We find that

PL2 is able to provide congestion control to all traffic within
the rack. One key advantage with TCP over PL2 is that trans-
missions with PL2 rely on current knowledge of network
demand (using RSV-GRT), rather than TCP’s window esti-
mate, which might become stale depending on the time of
the last transmission within a flow.We are able to completely
turn off TCP congestion control when using PL2 underneath
in our 100G rack prototype(§E).

Handling failures. When a PL2 ToR fails, the entire rack
fails, as is the case with non-PL2 rack. When a PL2 sender
fails, its reservations on the ToR switch (up to 𝐾 outstanding
for each connection) will need to be removed using external
detection and recovery logic.

Oneway to detect a failed sender is to have GRT packets be
additionally sent to receivers, and have receivers track pend-
ing transmissions. This adds a small overhead comparable to
an ACK packet for every 𝐾 packets, and therefore trades-off
a small amount of receiver bandwidth for better failure tol-
erance. When a sender crashes, or misbehaves, the receiver
can detect the failure and reset the pending reservations
at the switch. This scheme has an additional advantage of
informing the receiver of upcoming transmissions; receivers
can use this information to schedule the receiving process in
time to receive the transmission to further drive down the
end-to-end message delay with systems like [46]. We aim to
look at this issue in the future and study its overheads.

E Implementation
We have built a 100Gbps solution that uses PL2 in a rack.
The switch scheduling algorithm (Alg 2) is implemented us-
ing a P4 program and runs on a ToR switch’ programmable
dataplane ASIC [3]. The switching delay with PL2 enabled
is measured to be between 346 ns (min) to 508 ns (99.99%ile),
with a median delay of 347 ns and standard deviation 3 ns.
inReservation and outReservation are 32-bit register ar-
rays updated in one switch pipeline stage; Since the switch
has 64 ports, each array consists of 64 registers.
We use the Mellanox Messaging Accelerator (VMA) [7]

to prototype the sender side scheduling support; we choose

10

VMA instead of DPDK [2] and the Linux network stack be-
cause VMA provides lower latencies on Mellanox NICs. The
TCP/IP library integrated in VMA allows us to compare TCP
and UDP performance with and without PL2. We are able
to turn off congestion control support in TCP when using
PL2 underneath. We also augment RDMA raw Ethernet with
PL2 scheduling to mimic PL2 support for traffic generated
by accelerators that might lack congestion control.

PL2 prototype topology and configuration PL2 hard-
ware prototype is a rack with 6 servers, each equipped with
a Mellanox ConnectX-5 100Gbps NIC. Each server has two
28-core Intel Xeon Gold 5120 2.20GHz CPUs, 196GiB of
memory, and runs Ubuntu 18.04 with Linux Kernel version
4.15 and Mellanox OFED version 4.4. The servers connect to
a 6.5 Tbps programmable dataplane switch [3], with 64 physi-
cal 100Gbps ports. The switch runs OpenNetworkLinux [10]
with Kernel version 3.16. The network MTU is 1500 bytes.

Our servers also connect to a Mellanox SN2700 switch
using a second port on the Mellanox ConnectX-5 NIC. The
servers synchronize over this out-of-band network using
IEEE 1588 Precision Time Protocol (PTP) [1] using hardware
NIC timestamps and boundary clock function at the Mel-
lanox switch. Using more precise time synchronization will
improve PL2 scheduling accuracy.

RSV-GRT exchange delay We implement RSV and GRT
packets as 64-byte Ethernet control packets. PL2 continu-
ously measures RSV-GRT delays using hardware and soft-
ware timestamping and uses these measures to correctly
estimate packet transmission times (equation 2). We find
that RSV-GRT exchanges can have variable delay even in an
unloaded network; the exchanges take between 1 µs (min),
1.06 µs (median) to 14us (max) NIC-to-NIC, using hardware
timestamping and 1.98 µs (min), 2.05 (median) and 22.25 µs
(max) using software timestamping in a network in an idle
network. Interestingly we see similar variance and tails when
we transmit data close to line rate using PL2. We anticipate
that the performance that PL2 offers will get better if this
variability is remedied.

Interfacing with application send PL2 is prototyped
on a user-space stack, where application send and receive
is implemented in the same thread (as opposed to send and
receive being handled in separate threads). We intercept
function calls within the VMA library [7] that executes the ac-
tual send (send_lwip_buffer and send_ring_buffer) and
send RSV packets for every 𝐾 or fewer packets. Because the
receive executes in the same thread, we also wait for the GRT
before sending each packet burst; i.e., the application send
call blocks until transmission completes. When employing
the low-load optimization discussed in §D.4, even though we
send packet bursts together with the RSV, we wait to receive

the GRT before transmitting the next burst. As such, we have
not been able to eliminate the overheads due to RSV-GRT
exchange to the degree that the optimization design permits
in our current implementation. A more favorable implemen-
tation of PL2 would execute RSV-GRT receives in a separate
thread or offload RSV-GRT exchanges into the NIC.

F Evaluation
We evaluate PL2 100Gbps prototype for the desired proper-
ties of losslessness, low latency and high utilization across
various transports.
F.1 Experiment setup and methodology
We use burst size 𝐾 = 4 and threshold 𝑡 = 15 in all ex-
periments, configured as described in §D.3 and §D.4. We
next describe the applications, transports, loads and traffic
patterns we have evaluated.

memcached [8] We evaluate the impact of worst-case back-
ground loads on latencies and throughput of single memcached
client-server instances that reside on separate hosts. The key
are 64B with 1 KiB and 4 KiB values. memcached uses TCP
communication. The client executes reads (GET) continu-
ously and the responses compete with background traffic.
We use reads rather than a mix of reads and writes because
reads stress both the forward and reverse paths. Without
background traffic,memcached introduces 2-3Gbps network
load.

Machine learning with vgg16 [11] VGG16 is a popu-
lar convolutional neural network model used for large-scale
image recognition. We emulate the network communication
for VGG16 training, where gradients from each neural net-
work layer are transferred over the network. Each parameter
server in our set up receives messages from 4 workers at a
total load of 70-89Gbps.

Workload traces We evaluate PL2 with traces generated
from message-size distributions collected from various real-
world modern application environments (W1-W5) [14, 17, 51,
55] also used in Homa [44]. W1 is generated from a collection
of memcached servers at Facebook, W2 from a search appli-
cation at Google, W3 from aggregated RPC-workloads from
a Google datacenter, W4 is from a Hadoop cluster at Face-
book and W5 is a web search workload used for DCTCP. The
traces are generated in an open-loop with Poisson arrivals.
These workloads represent modern database and analytics
workloads that we expect rack-scale networks to run. The
workload generator that replays these traces does not priori-
tize messages from one thread over the other. We believe this
accurately mimics several user-space applications competing
for the network independently across several cores.

Transport protocols We evaluate the performance of
raw Ethernet, UDP and VMA TCP over PL2. raw Ethernet

11

and UDP represent accelerator transports that do not have
end-host-based congestion control support. When we use
PL2 underneath VMA TCP we turn off VMA’s congestion
control support9. We compare PL2 congestion control with
VMA TCP Cubic and a receiver-driven congestion control
scheme (RDS) based on Homa.

Our RDS implementation achieves close to 100Gbps line-
rates by separating receiver-driven scheduling from data-
processing; we schedule up to 4 packets when possible and
use a lock-free mechanism for communication between the
scheduling and data-processing threads. When packets are
lost, the receiver can detect these losses bymonitoring out-of-
order packet arrivals. In these cases, the receiver notifies the
sender of the lost packets immediately (rather than waiting
for a timeout [44]). This helps reduce delays due to a majority
of lost packets. Sometimes an entire burst of packets is lost,
and in these cases, the receiver cannot effectively determine
if the packets are lost or delayed. Instead they timeout after
1ms and send a lost-packet notification to the sender. Senders
send up to 61 KiB, the bandwidth-delay product in our system
blindly as fast as they can (similar to RTTbytes in [44]). If
these initial packets are lost, the sender times out after 1ms,
and resends the packets again.
Server-server raw Ethernet provides an optimal baseline

for comparison with PL2. raw Ethernet is unhindered by
congestion control, and transmits messages as fast as they
arrive. No congestion control scheme can achieve smaller
delays than raw Ethernet. Recently [30, 44] showed that RDS-
like mechanisms can provide significantly smaller latencies
than available congestion control schemes. Therefore we
choose to implement and compare PL2 with RDS on the
testbed. We also compare PL2 with VMA TCP Cubic, because
VMA touts impressive latency improvements.

We are unable tomake a fair-comparisonwith DCTCP [13]
and other available congestion control schemes in the linux
kernel because PL2 is only implemented at user-space (using
VMA), and does not experience the overheads of the linux
kernel.

Traffic patterns, link loads and latency evaluation
We evaluate PL2 under incast, outcast, and shuffle traffic
patterns. Incast helps demonstrate the lossless behavior of
PL2. Outcast is PL2’s worst-case traffic pattern, because it
stresses senders that not only transfer data but also have to
do RSV-GRT signalling.
We control the network load at each server by injecting

traffic using multiple threads pinned to different cores. We
experiment with both persistent congestion caused by mul-
tiple long running background flows, and with microbursts
caused by replaying W1-W5 traces from multiple threads.

9VMA only provides Cubic and Reno congestion control options, of which
we have chosen Cubic

We present results of 99%ile and median latencies mea-
sured in user-space; for memcached, we measure two-way
request-response delays; for other workloads, we measure
one-way latencies, i.e., the time from message arrival at the
sending thread to the time when the message is delivered at
the receiving thread.

The rest of the evaluation section summarizes our findings.

0 1 2 3 4
Number of hosts sending background traffic

0

20000

40000

60000

80000

100000

T
ra

ns
ac

tio
n

pe
r

se
co

nd TCP VMA Cubic
TCP VMA PL2

Figure 5:Memcached throughputwith competing
TCP traffic.

0 1 2 3 4
Number of hosts sending background traffic

0

20

40

60

80

100

120

140

R
P

C
 la

te
nc

y
(u

s)

TCP VMA Cubic 99%
TCP VMA Cubic Median
TCP VMA PL2 99%
TCP VMA PL2 Median

Figure 6: Memcached latencies with competing
TCP traffic.

1 2 3 4
Number of hosts sending background traffic

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

T
ra

ns
ac

tio
n

pe
r

se
co

nd TCP VMA Cubic
TCP VMA PL2

Figure 7:Memcached throughputwith competing
UDP traffic.

1 2 3 4
Number of hosts sending background traffic

101
102
103
104
105
106
107

R
P

C
 la

te
nc

y
(u

s)

TCP VMA Cubic 99%
TCP VMA Cubic Median
TCP VMA PL2 99%
TCP VMA PL2 Median

Figure 8: Memcached latencies with competing
UDP traffic.

12

50 100 150 200 250 300 350
Finishing time(ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

PL2
RDS-baseline

Figure 9: CDF of latency for all iterations in VGG16
model training using PL2 and RDS.

F.2 End-to-end application performance
We experiment with two real-world applications, memcached
and vgg16 training. When memcached competes with heavy
(incast) background traffic with congestion control support,
PL2 can ensure up to 2.3x lower rpc-latencies, and 1.8x corre-
sponding improvement in application throughput compared
to VMA TCP Cubic. When it competes with traffic with-
out congestion control(the kind of traffic we expect from
accelerators), memcached over PL2 still sees similar latencies
and throughput; whereas without PL2, memcached rpcs fail
to complete due to severe losses. This demonstrates that
PL2 is able to provide fabric-level congestion control for all
transports that use it.
Experiments with VGG-16 training show that PL2 can

reduce network transfer times per iteration by 30% compared
to RDS (222ms vs 321ms 99%ile latency per iteration); we
achieve a 20% speed up for 100 iterations (9.5s versus 12s).
F.2.1 PL2 keeps memcached 99%ile latencies below
60 µs evenwith 400%offered load Figures 5-6 show memcached
transaction throughput and response latencies with TCP
background traffic. The graphs shown are with 4 KiB values;
the results for the same experiment with 1 KiB values show
the same trend. Figure 5 shows how memcached throughput
(in transactions per second) reduces with increasing TCP
background traffic. The red bar shows throughputs with
memcached over TCP over PL2 (TCP VMA PL2), and the
green bar shows throughputs with memcached over TCP
with Cubic congestion control (TCP VMA Cubic).

When there is no background traffic (bars for 0 hosts send-
ing background traffic), PL2 slows down memcached by a
small amount(8%), even though the RPC latencies are similar
to TCP VMA Cubic (Figure 6). PL2 RSV-GRT exchange over-
heads contribute to reduced throughput seen with TCP VMA
PL2. The same effect is seen in the case where the memcached
host also sends background traffic that utilizes around 50%
of the downlink to the memcached client (50Gbps). Once we
add background traffic load from additional servers, the load
on the receiving link increases to 80-90% and the memcached

latencies go up much faster for TCP VMA Cubic than TCP
VMA PL2 as seen in Figure 6; consequently memcached has
0.5x lower throughput with TCP VMA Cubic. This is despite
the fact that the competing background traffic that runs using
TCP VMA PL2 has 1-5Gbps more load than the background
traffic that runs on VMA TCP Cubic. The 99th-percentile
RPC latency with VMA TCP Cubic is 127 µs as opposed to
56 µs with PL2 with 4-way TCP incast background traffic.
F.2.2 PL2keepsmemcached latencies low (25 µs) even
when competing with traffic with no end-host-based
congestion control Figures 7-8 show memcached transac-
tion throughput and response latencieswith UDP background
traffic (memcached traffic still uses TCP). Since UDP has no
congestion control, it presents particularly severe competi-
tion to memcached traffic. Our goal with this experiment is
to show how PL2 enables multiple transports with or without
congestion control to co-exist within a rack.
Figure 7 shows the throughput of memcached as we in-

crease UDP background load. Without PL2, the memcached
benchmark does not complete due to severe losses. Figure 8
shows the 99%ile and median memcached RPC latencies with
VMATCPCubic and PL2. Memcached sees 5s 99th-percentile
latency without PL2 (due to drops) as opposed to 25 µs with
PL2 with 4-way UDP incast background traffic.
Once we introduce background traffic from 2 or more

hosts, we find that memcached incurs severe losses without
PL2, and its throughput drops to 3-7 transactions per second,
while the tail latency shoots up to several seconds (Figure 8).
However, with PL2, the memcached RPC latencies do not
degrade with such severity (even the tail latencies remain
steady, with some increase in the median), and memcached
continues to have throughputs similar to our experiment
with TCP background traffic. This is because PL2 keeps the
UDP background traffic from 2-4 hosts within 75-90Gbps.
F.2.3 PL2 improves training latencies for vgg16 by
30%The communication pattern for exchanging gradient
updates in VGG16 is inherently a shuffle process. We have
4 hosts sending data as workers and 2 hosts as parameter
servers, which receives gradients from all the workers. The
gradient data (500MiB) is partitioned according to VGG16
architecture. The aggregate incoming rate to each parameter
server is less than the line rate to ensure the network is not
a bottleneck. We repeat this process 100𝑥 and measure the
finishing time of transferring the entire gradient set at each
iteration.

Figure 9 shows the CDF of iteration times using the receiver-
driven scheme and PL2. We did not prioritize small messages
with the receiver-driven scheme like Homa [44] because it
interferes with the ordering of messages that the training
set expects. As such, we find that the 99th percentile fin-
ishing time of each iteration in the receiver-driven scheme

13

102 103 104 105 106 107 108

Message Size (B)

100

101

102

103

104

105

M
es

sa
ge

 la
te

nc
y

(u
s)

RAW-ETHERNET-Optimal-33 flows 99%
RAW-ETHERNET-Optimal-33 flows Median
RAW-ETHERNET-PL2-3 hosts 99%
RAW-ETHERNET-PL2-3 hosts Median

(a) W3 All RPC (raw Ethernet)

102 103 104 105 106 107

Message Size (B)

100

101

102

103

104

105

M
es

sa
ge

 la
te

nc
y

(u
s)

RAW-ETHERNET-Optimal-33 flows 99%
RAW-ETHERNET-Optimal-33 flows Median
RAW-ETHERNET-PL2-3 hosts 99%
RAW-ETHERNET-PL2-3 hosts Median

(b) W4 Hadoop (raw Ethernet)

103 104 105 106 107 108

Message Size (B)

100

101

102

103

104

105

M
es

sa
ge

 la
te

nc
y

(u
s)

RAW-ETHERNET-Optimal-33 flows 99%
RAW-ETHERNET-Optimal-33 flows Median
RAW-ETHERNET-PL2-3 hosts 99%
RAW-ETHERNET-PL2-3 hosts Median

(c) W5 Search (raw Ethernet)

102 103 104 105 106 107 108

Message Size (B)

101

102

103

104

105

106

107

M
es

sa
ge

 la
te

nc
y

(u
s)

TCP-Cubic-3 hosts 99%
TCP-Cubic-3 hosts Median
TCP-PL2-3 hosts 99%
TCP-PL2-3 hosts Median

(d) W3 All RPC (TCP)

102 103 104 105 106 107

Message Size (B)

101

102

103

104

105
M

es
sa

ge
 la

te
nc

y
(u

s)

TCP-Cubic-3 hosts 99%
TCP-Cubic-3 hosts Median
TCP-PL2-3 hosts 99%
TCP-PL2-3 hosts Median

(e) W4 Hadoop (TCP)

103 104 105 106 107 108

Message Size (B)

101

102

103

104

105

106

107

M
es

sa
ge

 la
te

nc
y

(u
s)

TCP-Cubic-3 hosts 99%
TCP-Cubic-3 hosts Median
TCP-PL2-3 hosts 99%
TCP-PL2-3 hosts Median

(f) W5 Search (TCP)

Figure 10: Message latencies of workloads W3-W5 for raw Ethernet and TCP

1 2 3 4
of Incast Servers

50

60

70

80

90

100

G
oo

dp
ut

 (
G

bp
s)

RAW Ethernet Baseline
RAW Ethernet PL2

(a) Throughput over Ethernet

1 2 3 4
of Incast Servers

102

103

104

105

106

S
w

itc
h

Q
ue

ui
ng

 D
el

ay
 (

ns
) Baseline 99%

Baseline 99.99%
Baseline Median
PL2 99%

PL2 99.99%
PL2 Median

(b) Switch queuing delays for raw Ethernet
and PL2

1 2 3 4
of Incast Servers

50

60

70

80

90

100

G
oo

dp
ut

 (
G

bp
s)

TCP VMA Cubic
TCP VMA PL2

(c) Throughput over TCP

Figure 11: Incast evaluation comparing against raw Ethernet and TCP.

is 1.45𝑥 than that of PL2. To finish 100 gradients sets from
each worker, PL2 takes 9.5s in total while the receiver-driven
scheme takes 12s. The receiver-driven approach is slower
because the receiver is unaware of traffic from the sender
to other hosts: it frequently allocates time slots when the
sender is already sending to another receiver. This leads to
lower link utilization. PL2 does not have this issue because
PL2 counts the queuing both at the sender and receiver.
F.3 W1-W5: Near-optimal p99 latencies
We compare how close message latencies for W1-W5 are
to optimal with 3-way incast using raw Ethernet over PL2.
We do this by using a baseline where W1-W5 are run using
just raw Ethernet between two servers. Since the baseline

encounters no contention, and raw Ethernet transmits mes-
sages as soon as they arrive (with no congestion control), the
message latencies it encounters are close to optimal. We call
this scheme raw Ethernet (optimal). When comparing 3-way
incast results with raw Ethernet over PL2 to raw Ethernet
(optimal), we try to keep the network load equivalent. We
do so by using the same number of threads in total to run
the workload across the two schemes (11 threads per server,
33 threads in total).
Figs. 10a-10c present the message latencies for workload

tracesW3-W5 over raw Ethernet. For these workloads, 3-way
incast achieves 40-90Gbps throughput. PL2 over Ethernet
has 99%ile latencies close to raw Ethernet (optimal), and
the throughputs obtained with and without PL2 are similar
(except in the case of Figure 10b where PL2 over Ethernet

14

gets slightly lower throughput compared to raw Ethernet
(optimal) for W4 (86Gbps vs. 89Gbps) due to RSV-GRT ex-
change overhead). The impact of RSV-GRT exchanges are
more prominent in the median latencies in Figs. 10b and 10c.
We see latency spikes in Figures 10a and 10c; these are

outliers, when the message arrivals exceeded the capacity of
our workload generator when it ran out of available worker
threads to transmit the next message.
F.3.1 W1-W5overTCP: 10x lower 99%ile latenciesWe
also compare 3-way incast of W1-W5 with TCP-over-PL2
to 3-way incast with TCP Cubic. Figures 10d, 10e, 10f show
that TCP-Cubic has worse median and 99%ile latencies than
TCP over PL2, except in the case of Figure 10d. VMA TCP
Cubic has better latencies with W3, because it undergoes a
congestion collapse and achieves only 43Gbps, as compared
to 81Gbpswith TCP over PL2. In all other cases, we find that
VMA TCP Cubic achieves throughputs close to TCP with
PL2 while having retransmissions due to message loss (TCP
with PL2 has no losses). We believe these graphs show the
stable-queuing effect of proactive congestion control.

Our workload generator is unable to generate greater than
5Gbps traffic for W1 and W2 even in an incast scenario
because the master thread cannot keep up with assigning
messages to connections within the inter-arrival times. We
find that when workloads impose such light loads, PL2 does
not give significant benefits over VMA TCP Cubic, nor does
it cause significant degradation; we omit these results for
space and refer the reader to our results with memcached
with no background traffic in Figure 5.
F.4 Throughput implications
Figure 11a shows the aggregate throughput achieved by PL2
over Ethernet in comparison to raw Ethernet, with incast,
while not having loss. The x-axis shows the number of hosts
that are sending out persistent traffic to the same receiver
and the y-axis shows the throughput in Gbps. Each host
starts 12 flows (pinned to separate cores on the sender), and
sends 24 million 6 KiB messages (4 MTU sized packets). raw
Ethernet achieves line rate for the case of one host sending
traffic to another host without any packets drop. However,
as the number of sending hosts 𝑛 increases, we find that only
only 1/𝑛 packets are delivered to the receiver (all senders are

1 2 3 4
of Outcast Servers

50

60

70

80

90

100

G
oo

dp
ut

 (
G

bp
s)

RAW Ethernet Baseline
RAW Ethernet PL2

Figure 12: Outcast throughput comparison raw Ether-
net vs. PL2 over Ethernet

able to send at line-rate). PL2 over Ethernet has no losses but
caps server-to-server throughput to 80Gbps. The throughput
depends on the number of flows in PL2 (12), because each
flow has at most one outstanding RSV when the network is
loaded.

Figure 11b shows the switch queuing delays for the same
experiment. As can be seen raw Ethernet has uncontrolled
queue lengths, whereas PL2 over Ethernet achieves stable
queueing with low variance.

Figure 11c shows PL2’s aggregate throughput in compari-
son to TCP cubic, with incast traffic. The experiment settings
mimic the raw Ethernet experiment. TCP cubic experiences
233, 313, 404 retransmissions for 2, 3, and 4 host incasts. In
the case of congestion controlled TCP traffic, traffic over PL2
sees the same (or higher) throughput as the baseline, i.e.,
PL2’s proactive scheduling is comparable to TCP’s reactive
scheduling, while preventing losses.
Outcast traffic pattern stresses PL2 senders to the maxi-

mum extent. With raw Ethernet outcast, as shown in Fig-
ure 12 (with the same settings as above), the maximum
throughput PL2 can achieve is capped at 90Gbps (as op-
posed to 97Gbps in the case of incast). This drop (10%) is
due to the overhead of RSV-GRT exchanges at the sender; it
is the price PL2 pays for it’s proactive scheduling design.

G Limitations
Utilization PL2 cannot fully utilize the Ethernet capac-

ity available, although gets close (up to 96Gbps utilization
with incast, and up to 90Gbps with outcast). RSV and GRT
signalling overheads take up some spare capacity; in our
implementation PL2 adds a minimum of 2% bandwidth over-
head (128B of overhead for 𝐾 = 4 MTU (1500B) packets).
In the worst case when all network packets are at 64B, the
overheads are comparable to the demand in the network.
However, this is not the common-case for which PL2 is de-
signed. Variation in hardware delays due to DMA transfer
latencies can introduce scheduling inefficiencies. PL2 also
leans towards preventing losses in selecting the time dura-
tion to wait before sending packets, and thus can leave some
capacity unused.

Fairness Like Homa [44], PL2 is unfair but not to large
messages. PL2 is unfair because the switch scheduler sched-
ules bursts in FIFO order of receiving RSV packets. The sched-
uling size 𝐾 limits this unfairness; under loaded conditions,
until the scheduled 𝐾 packets are sent, the next RSV packet
is not sent. We believe that PL2 scheduler design should
change to eliminate this unfairness once switch-hardware is
able to handle richer reservation logic.

In-networkpriorities PL2 does not implement in-network
priorities; this design also stems from the limitations of

15

switch-hardware processing RSV packets in FIFO order. How-
ever, given that PL2 does not drop packets, and ensures that
at any point only a few (𝐾) packets from different senders are
in flight to a receiver, we anticipate that in-network priorities
will not have a big role to play in further reducing latencies
with PL2. Rather the order in which RSV packets are ad-
mitted into the network would play a bigger role, which in
turn is determined by (i) external policies that govern rate
at which RSV packets can be sent by an application; (ii) pro-
cess scheduling prioritization within the rack; for e.g., how
many cores the communicating processes are given, how
often applications are scheduled in comparison to others;
and (iii) application’s internal logic. We aim to study these
implications in our future work.

Handling inter-rack traffic To the PL2 scheduler, traf-
fic leaving the rack using a port on the ToR is no different
from intra-rack traffic; the traffic exiting will also be sched-
uled using the timeslot reservation scheme. However this
traffic will not be co-ordinated with other inter-rack traf-
fic destined to an external rack. With PL2’s current design,
static bandwidth reservations will be required to ensure that

traffic entering a PL2 rack will not disrupt PL2 guarantees
for intra-rack traffic, or be dropped altogether; e.g., 10% of
rack bandwidth is reserved for ingress traffic. PL2 can re-
flect such reservations either in the length of timeslot or the
reservation increments.

H Conclusion
In this paper, we present the PL2 rack-scale network architec-
ture designed to convert Ethernet into a reliable, predictable
latency, high-speed interconnect for high density racks with
accelerators by leveraging new capabilities in programmable
switches. Our hardware prototype demonstrates that PL2
does so by providing practical and tightly coordinated con-
gestion control. Further, we achieve our goals without any
knowledge of workload characteristics or any assumptions
about future hardware stacks. We believe that the design
presented in this paper will spur new ideas around switch
and NIC hardware, how they interface with and simplify the
network and applications stack.

This work does not raise any ethical issues.

16

