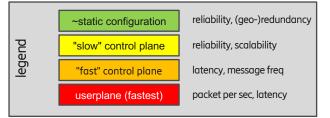
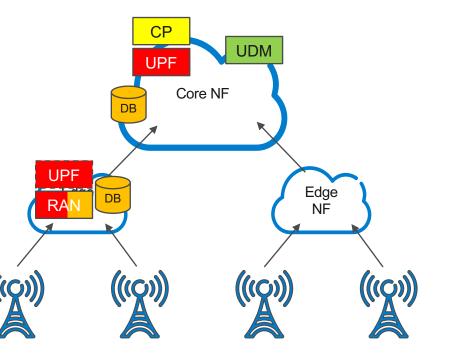


What's next for P₄? A journey around missing features

Gergely Pongracz – Ericsson Research

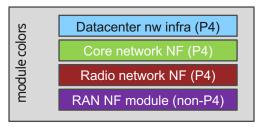

Team members:

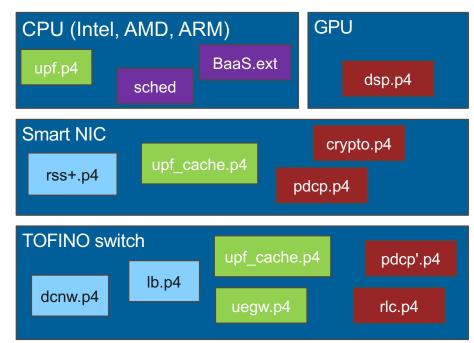
Laszlo Molnar – Ericsson Research Sandor Laki, Peter Voros – Eotvos University (ELTE)



Background: (5G) mobile network

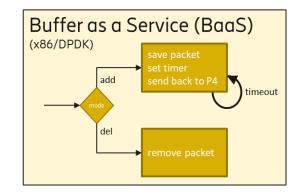
functional view (simplified)


- RAN userplane
 - RLC framing, buffering and retransmission in acknowledged mode (RLC-AM)
 - PDCP framing, air crypto
 - optional hdr compression
 - GTPU encapsulation towards GW
- Core userplane
 - GTPU handling
 - service identification
 - counters, charging
 - optional rate limiting



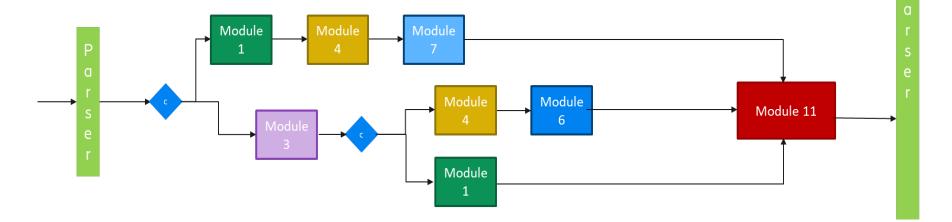
Which component where?

Implementing 5G with P4


- Select the suitable hardware elements for the Network Functions (NFs)
- We envision a "rich-DC" scenario with
 - O programmable switch as Top-of-Rack (ToR)
 - x86 or ARM blades
 - with SmartNIC support
 - and (at least some) additional GPUs
- Optimal allocation
 - O CPUs could run anything with limited performance
 - O offload towards
 - GPUs: better suited for signal processing
 - SmartNICs: cache and crypto functions
 - SmartSwitch: cache and stateless nw functions

Missing feature #1: buffering and timers

- Our use case: the RLC loop between gNB and UE
 - O RLC AM goal: make sure that the given packet is forwarded to the UE
 - a hybrid solution was needed
 - part of the pipeline (buffer-as-a-service, BaaS) runs external to the P4 domain
 - very simple task:
 - receive a new packet and set a timer
 - if receive a del signal, delete the packet and the timer
 - O if timer reaches zero resend the packet and reset the timer
 - O huge diff in performance
 - O BaaS performance = 5.5 Mpps per core
 - SmartSwitch (RLC main) ~ 5000 Mpps
- O But it's not just RLC: TCP, QUIC also use buffering and retransmission timers



Missing feature #2: clock-based events

- Our use case: scheduler
 - the scheduler collects user packets into a buffer (see gap #1)
 - it waits for the right slot where the user's device listens to the channel
 - then it sends the packets with high accuracy timing
 - so what would it require?
 - Buffering as in gap #1
 - Time sync (e.g. IEEE 1588 PTP)
 - Internal clock based events
- Other possible use cases for this function: traffic shaping, keepalive messages

(Partly) missing feature #3: modularization

- O Use case: parallel development on different functionalities
 - everybody can develop his/her own modules –with own parser, deparser and main pipeline
 - this way standalone testing is possible
 - the main functionality should be handled in control blocks -> the control blocks are re-usable
 - but the parser and deparser need to be common could be automatically generated

Some further (low prio) missing items

- Multiple access to the same table, counter or register (e.g. routing & encapsulation)
- Conditional header field write in deparser
- Better use of header stacks (to support multi-level encapsulation)

Thank You

gergely.pongracz@ericsson.com