

Core Information Model
(CoreModel)

TR-512.A.9
Appendix – Processing
Construct Examples

Version 1.5
September 2021

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 2 of 15 © 2021 Open Networking Foundation

ONF Document Type: Technical Recommendation

ONF Document Name: Core Information Model version 1.5

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF AN Y PROPOSAL,

SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

1000 El Camino Real, Suite 100, Menlo Park, CA 94025

www.opennetworking.org

©2021 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to identify,

products or services of their respective owners.

Important note

This Technical Recommendations has been approved by the Project TST, but has not been

approved by the ONF board. This Technical Recommendation is an update to a previously

released TR specification, but it has been approved under the ONF publishing guidelines for

'Informational' publications that allow Project technical steering teams (TSTs) to authorize

publication of Informational documents. The designation of '-info' at the end of the document ID

also reflects that the project team (not the ONF board) approved this TR.

http://www.opennetworking.org/

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 3 of 15 © 2021 Open Networking Foundation

Table of Contents

Disclaimer .. 2

Important note ... 2

Document History ... 4

1 Introduction to the document suite ... 5

1.1 References.. 5

1.2 Definitions ... 5

1.3 Conventions .. 5

1.4 Viewing UML diagrams ... 5

1.5 Understanding the figures ... 5

1.6 Appendix Overview ... 5

2 Introduction to this Appendix document .. 6

3 General examples.. 6

3.1 Types of Processing Construct ... 6

3.1.1 Traditional 'Device' .. 6

3.1.2 Partitioned 'Device' ... 7

3.1.3 Distributed 'Device' ... 7

3.1.4 'Virtual Device' .. 9

3.1.5 'Virtual Distributed Device' .. 10

3.1.6 SDN Controller .. 11

3.1.7 Other 'Devices' .. 12

3.2 PTP Clock Example .. 13

3.3 ERPS G.8032 Example... 14

List of Figures

Figure 3-1 Traditional 'Device' representation deconstructed ... 6

Figure 3-2 Partitioned 'Device' .. 7

Figure 3-3 Distributed 'Device' with separate Management Agents .. 8

Figure 3-4 Logically Split Chassis ... 9

Figure 3-5 "Virtual" Device .. 10

Figure 3-6 "Virtual" Distributed Device .. 11

Figure 3-7 SDN Controller... 12

Figure 3-8 PTP Clock Concepts .. 13

Figure 3-9 PTP Model sketch .. 14

Figure 3-10 ERP G.8032 Concept Example ... 14

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 4 of 15 © 2021 Open Networking Foundation

Figure 3-11 ERP Model Sketch ... 15

Document History

Version Date Description of Change

 Appendix material was not published prior to Version 1.3

1.3 September 2017 Version 1.3 [Published via wiki only]

1.3.1 January 2018 Addition of text related to approval status.

1.4 November 2018 No change.

1.5 September 2021 Enhancements to model structure

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 5 of 15 © 2021 Open Networking Foundation

1 Introduction to the document suite

This document is an appendix of the addendum to the TR-512 ONF Core Information Model and

forms part of the description of the ONF-CIM. For general overview material and references to

the other parts refer to TR-512.1.

1.1 References

For a full list of references see TR-512.1.

1.2 Definitions

For a full list of definition see TR-512.1.

1.3 Conventions

See TR-512.1 for an explanation of:

• UML conventions

• Lifecycle Stereotypes

• Diagram symbol set

1.4 Viewing UML diagrams

Some of the UML diagrams are very dense. To view them either zoom (sometimes to 400%) or

open the associated image file (and zoom appropriately) or open the corresponding UML

diagram via Papyrus (for each figure with a UML diagram the UML model diagram name is

provided under the figure or within the figure).

1.5 Understanding the figures

Figures showing fragments of the model using standard UML symbols and also figures

illustrating application of the model are provided throughout this document. Many of the

application-oriented figures also provide UML class diagrams for the corresponding model

fragments (see TR-512.1 for diagram symbol sets). All UML diagrams depict a subset of the

relationships between the classes, such as inheritance (i.e. specialization), association

relationships (such as aggregation and composition), and conditional features or capabilities.

Some UML diagrams also show further details of the individual classes, such as their attributes

and the data types used by the attributes.

1.6 Appendix Overview

This document is part of the Appendix to TR-512. An overview of the Appendix is provided in

TR-512.A.1.

../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
TR-512.A.1_OnfCoreIm-AppendixOverview.pdf

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 6 of 15 © 2021 Open Networking Foundation

2 Introduction to this Appendix document

This document provides various examples of the use of the ProcessingConstruct model to

represent complex functions.

The examples in this document extend the simple examples given in TR-512.11.

3 General examples

3.1 Types of Processing Construct

In this section, we will go through a number of different types of 'device' and show how the

ProcessingConstruct concept allows us to represent them all in a consistent way.

3.1.1 Traditional 'Device'1

The simplest common case that we have is where we have a physical unit that is logically a

single unit and is managed as a single unit. That is, the physical, logical and management scopes

are congruent.

Physical View

Logical View

Control / Data

Planes

Management

Plane MC MC

Traditionally we had management, logical/functional and physical scopes

that matched, so this assumption was built into many models and

contributed to naïve definitions.

NE1 NE2

Physical

Inventory

Processing Construct

(Functionality)

Device Management Plane

(Management Agent)

Figure 3-1 Traditional 'Device' representation deconstructed

Because a number of simple devices fit this special case, unfortunately it was used as the general

case, which is problematic for the other cases that we will now look at.

1 Here we will use the term ‘device’ in a loose and undefined manner to aid in the discussion. The term is not

defined because it is not important for our discussion, the generally understood concept is sufficient

TR-512.11_OnfCoreIm-ProcessingConstruct.pdf

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 7 of 15 © 2021 Open Networking Foundation

3.1.2 Partitioned 'Device'

For this example, we will assume that we have a single physical unit that can be logically

partitioned and that the management is also partitioned. There may be a number of variations on

this theme but we will just cover this basic case.

The traditional NetworkElement concept can't effectively represent this case because it assumes

congruence between the physical, logical and management scopes.

Physical View

Logical View Control/Data

Planes

Management

Plane

The management plane may be global or partitioned, or both (as shown).

Root MC, Root CD and Physical Inventory have same scope.

MC

MC

MC

Management context per

partition

Root Mgt Context scoped

by Management Agent

CD per partition

Root CD based on ‘chassis’

physical scope (really

backplane / scope of address

and data busses)

Processing Constructs

scoped within the partition

CD’s

Constraint Domain (CD)

enforces scope

constraints

Management Context

Figure 3-2 Partitioned 'Device'

We will now look at how to use the ProcessingConstruct and ConstraintDomain classes to model

this case.

The first thing to understand is that there will be some constraints related to the physical scope,

and a ConstraintDomain instance should be created to support that.

Secondly, we also have constraints that are related to the partitions, and a ConstraintDomain

should be created per partition.

Note that in our example, one of the domains has a larger scope than the others – this will depend

on how the partitioning works and there may be many options – the important thing is to create

the CD to match the scopes.

3.1.3 Distributed 'Device'

For this example, we will assume that we have many physical units that can be logically

aggregated to behave as a single logical unit and that the management is also aggregated. There

may be a number of variations on this theme but we will just cover the basic case where we have

one central unit and one or more 'satellite' units.

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 8 of 15 © 2021 Open Networking Foundation

Again, the traditional NetworkElement concept can't effectively represent this case because it

assumes congruence between the physical, logical and management scopes.

Physical View

Logical View
Control/Data

Planes

Management

Plane

The management plane may be global or partitioned, or both (as shown).

Root MC, Root CD and Physical Inventory have same scope.

Management Context

MC MC MC Root MC per

MA

Aggregated

MC

Distributed

PC

Aggregated

CDRoot CD per

physical scope

Separate PC

Equipment with

PhysicalConnecto

rs and

PhysicalLinks

Figure 3-3 Distributed 'Device' with separate Management Agents

We will now look at how to use the ProcessingConstruct and ConstraintDomain classes to model

this case.

The first thing to understand is that there will be some constraints related to the physical scopes,

and ConstraintDomain instances should be created to support that.

Secondly, we also have constraints that are related to the aggregated functionality, and a

ConstraintDomain should be created for the 'distributed device'.

ProcessingConstructs should be created to map to how the functionality works; some PC may be

constrained by the physical scopes and some may span the entire logical device. Partial control

plane synchronization technologies2 like ICCP (Inter-Chassis Communication Protocol RFC

7275), vPC (Virtual Port Channel, multi-chassis link aggregation) would be associated with the

'distributed device' Constraint Domain. In these cases, there are multiple control planes (where

only part of the configuration is synchronized).

In the management plane, there may be some independent device management, or the

management may be only at the distributed device level. Lightweight Wireless Access Points

that are remotely managed may be an example of the aggregated management case. Aggregating

technologies like stacked switches and VSS that merge complete control planes are another

example of this case (two peer devices share the one control plane and the one MA).

2 http://www.cse.wustl.edu/~jain/cse570-13/ Multi-Tenant Isolation and Network Virtualization in Cloud Data Centers, slide 4

http://www.cse.wustl.edu/~jain/cse570-13/

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 9 of 15 © 2021 Open Networking Foundation

Shown below is a more complex example where we combine partitioning and aggregation. If

you try and draw a 'NE boundary' similar to those in the figure above, you will quickly find that

there isn't a sensible answer.

Physical View

Logical View
Control/Data

Planes

Management

Plane

A B

C

The management plane may be global or partitioned, or both (as shown).

Root MC, Root CD and Physical Inventory have same scope.

MC-A+B+C MC-D MC-E Root MC per MA

Distributed PC

A

A + B + C Aggregated CD

Root CD per

physical scope

D

E

DB EC CD per MA scope

A+B+C

D E

Separate PC

Figure 3-4 Logically Split Chassis

The steps to model this are the same as before:

• Create ConstraintDomains to represent the actual constraint scopes

• Create ProcessingConstructs and assign them to the relevant ConstraintDomains

3.1.4 'Virtual Device'

Here we will assume that we have a physical host (of some form factor) that is running a

virtualization technology (Virtual Machine or Container) that is running software that provides

some managed functionality.

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 10 of 15 © 2021 Open Networking Foundation

Physical View

Logical View Control/Data

Planes

Management

Plane

Host

MC

MC

MC

Management context

per partition

Root Mgt Context

scoped by Management

Agent

CD per VM or container

Root CD based on ‘chassis’

physical scope (really

backplane / scope of

address and data busses)

Processing Constructs

scoped within the

VM/Container CD’s

Constraint Domain (CD)

enforces scope

constraints

Management Context

Combine Partition Pattern.pptx

Figure 3-5 "Virtual" Device

We will now look at how to use the ProcessingConstruct and ConstraintDomain classes to model

this case.

The first thing to understand is that there will be some constraints related to the physical scope,

and a ConstraintDomain instance should be created to support that.

Secondly, we also have constraints that are related to each VM / Container, and a

ConstraintDomain should be created for each of these. Note that in this release of the ONF CIM,

we don't have a software model that would allow us to represent the guest and host operating

systems or the hypervisor / VMM (Virtual Machine Manager).

3.1.5 'Virtual Distributed Device'

For this example, we will assume that we have many 'virtual' units that can be logically

aggregated to behave as a single logical unit and that the management is also aggregated. There

may be a number of variations on this theme but we will just cover the basic case where we have

one central unit and one or more 'satellite' units.

As shown in the diagram below, we have a distributed virtual switch (DVS), where a VM runs a

central switch module and remote modules run on other VMs. Note that other complete or partial

control plane synchronization technologies3 like stacked switches and VSS, ICCP (Interchassis

Communication Protocol RFC 7275), vPC (Virtual Port Channel, multi-chassis link aggregation)

would be associated with a 'distributed device' Constraint Domain.

3 http://www.cse.wustl.edu/~jain/cse570-13/ Multi-Tenant Isolation and Network Virtualization in Cloud Data Centers, slide 4

http://www.cse.wustl.edu/~jain/cse570-13/

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 11 of 15 © 2021 Open Networking Foundation

Physical View

Logical View
Control/Data

Planes

Management

Plane

Host

Host

Host

Management Context

MC MC
M

C
Root MC per MA

Aggregated MC

Distributed PC

Aggregated CD

Root CD per

physical scope

Separate PC

Equipment with

PhysicalConnectors

and PhysicalLinks

CD per VM

Figure 3-6 "Virtual" Distributed Device

We will now look at how to use the ProcessingConstruct and ConstraintDomain classes to model

this case.

The first thing to understand is that there will be some constraints related to the physical host

scopes, and ConstraintDomain instances should be created to support that.

Secondly, we also have constraints that are related to each VM / Container, and a

ConstraintDomain should be created for each of these. Note that in this release of the ONF CIM,

we don't have a software model that would allow us to represent the guest and host operating

systems or the hypervisor / VMM.

Thirdly we also have constraints that are related to the aggregated functionality, and a

ConstraintDomain should be created for the 'distributed device'.

ProcessingConstructs should be created to map to how the functionality works; some PC may be

constrained by the physical scopes and some may span the entire logical device.

In the management plane there may be some independent device management, or the

management may be only at the distributed device level.

3.1.6 SDN Controller4

Shown below is a simplified block diagram of a SDN controller.

The SDN controller itself is similar to (the control plane of) a network element, so we will

represent it using a ConstraintDomain. PeerContext is a generalization of client and server

4 Deeper examples that show the relationship to the general control model will be added in a later release.

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 12 of 15 © 2021 Open Networking Foundation

context and because it is a scoping concept, representing it as a ConstraintDomain would be

appropriate.

If other scoping concepts such as resource groups are required, then they would also be

ConstraintDomains.

Inside the SDN controller will be a number of processing constructs. Similar to our other

examples this could include things like a BGP routing control process, a PTP clock control

process or an ERP G.8032 control process. The SDN controller itself isn't one massive

ProcessingConstruct.

Peer context
89

SDN Controller

Peer context

89

Peer context

23

Peer context

45

Peer context

67

Peer context
23

Peer context
45

Peer context
67

SDN

controller

A-CPI A-CPI

Application RedSDN controller Green

A-CPI

Application
Grey

Administrator
Blue

Peer context
Green

Peer context
Red

Peer context
Grey

ADMIN

Figure 3-7 SDN Controller

The SDN controller host (physical or VM container) would be represented as shown in the other

examples.

Also, the PC/CD model can cope with the SDN controller being centralized or distributed, as

shown in the other examples.

3.1.7 Other 'Devices'

The previous examples show a number of basic ways that functionality can be related to the

underlying hardware and to the management plane.

There may be other real world cases (that are probably hybrids of these fundamental cases), but

the important thing is that the decoupled model design allows for many other options.

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 13 of 15 © 2021 Open Networking Foundation

3.2 PTP Clock Example

The figure below is covered at a high level in TR-512.11 and now we will look at it in more

detail.

Ethx

Ethx

Ethx

Ethx

Ethx

Ethx

Ethx

Slave
Master

Foreig

n

Master

Clock

Foreig

n

Master

Clock

Slave Master

PTP Clock

not enabled
PTP Clock

not enabled

PTP

Boundary

Clock

= PC

Peer

In

OutIn

Out

CD=“NE”

Out

Figure 3-8 PTP Clock Concepts

Given the functional block diagram above, the question is what the resultant model should be.

The UML class diagram below shows a possible solution.

The PTP clock PC function (in the figure above) is in PtpClockFunction class (in the figure

below) and the attributes of the PcPort (shown as "In" and "Out" in the figure above) are in

PtpClockPort (in the figure below).

The PTP protocol also has a domain concept, where clock domains form separate topologies

(clocks only peer when the domain matches). A ConstraintDomain can be used to show this

network level constraint (PtpClockDomain below).

TR-512.11_OnfCoreIm-ProcessingConstruct.pdf

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 14 of 15 © 2021 Open Networking Foundation

Figure 3-9 PTP Model sketch

3.3 ERPS G.8032 Example

The figure below is covered at a high level in TR-512.11, and now we will look at it in more

detail.

Eth0

Eth4

Eth2

Eth5

Eth1

Peer

ERP

Node

Peer

ERP

Node

CD=“NE”

Ports to local Network

CD=ERP Node X

CD=ERP Node X Ring Y

ERP Node X Ring Y Instance Z

FC

Eth3

ERP Node could be

only one of many

functions in the

“NE”

Perhaps has PTP

BC too !!

P1P0

Port0 = East

Port1 = West

Figure 3-10 ERP G.8032 Concept Example

Given the functional block diagram above, the question is what the resultant model should be.

The UML class diagram below shows a possible solution.

ErpNodeCd is a ConstraintDomain that can be used to group all of the ERP rings in the device

(shown as ERP Node X in the figure above). It can also be used to hold any 'device level ERP

global attributes'.

TR-512.11_OnfCoreIm-ProcessingConstruct.pdf

TR-512.A.9 Core Information Model – Appendix – Processing Construct Examples Version 1.5

Page 15 of 15 © 2021 Open Networking Foundation

ErpRingNode is a ConstraintDomain representing the part of the ring in the 'device' (shown as

ERP Node X Ring Y in the figure above) and has the related Po and P1 port configuration

attached.

ErpInstanceNode is the ProcessingConstruct representing the instance of the ring on the 'device'

(shown as ERP Node X Ring Y Instance Z in the figure above)5 and has its related port

configurations.

An ErpRingNode can contain many ErpInstanceNodes.

As discussed in the main document, the network level scopes of ErpRing and ErpRingInstance

can be represented using ConstraintDomain and the relevant PC related to these CD.

Figure 3-11 ERP Model Sketch

End of Document

5 ErpInstance is a G.8032 term and shouldn't be confused with model class instances

	Disclaimer
	Important note
	Document History
	1 Introduction to the document suite
	1.1 References
	1.2 Definitions
	1.3 Conventions
	1.4 Viewing UML diagrams
	1.5 Understanding the figures
	1.6 Appendix Overview

	2 Introduction to this Appendix document
	3 General examples
	3.1 Types of Processing Construct
	3.1.1 Traditional 'Device'
	3.1.2 Partitioned 'Device'
	3.1.3 Distributed 'Device'
	3.1.4 'Virtual Device'
	3.1.5 'Virtual Distributed Device'
	3.1.6 SDN Controller
	3.1.7 Other 'Devices'

	3.2 PTP Clock Example
	3.3 ERPS G.8032 Example

