

Core Information Model
(CoreModel)

TR-512.8

Control

Version 1.5
September 2021

TR-512.8 Core Information Model – Control Version 1.5

Page 2 of 46 © 2021 Open Networking Foundation

ONF Document Type: Technical Recommendation

ONF Document Name: Core Information Model version 1.5

Disclaimer

THIS SPECIFICATION IS PROVIDED " AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

1000 El Camino Real, Suite 100, Menlo Park, CA 94025

www.opennetworking.org

©2021 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to

identify, products or services of their respective owners.

Important note

This Technical Recommendations has been approved by the Project TST, but has not been

approved by the ONF board. This Technical Recommendation is an update to a previously

released TR specification, but it has been approved under the ONF publishing guidelines for

'Informational' publications that allow Project technical steering teams (TSTs) to authorize

publication of Informational documents. The designation of '-info' at the end of the document ID

also reflects that the project team (not the ONF board) approved this TR.

http://www.opennetworking.org/

TR-512.8 Core Information Model – Control Version 1.5

Page 3 of 46 © 2021 Open Networking Foundation

Table of Contents

Disclaimer .. 2

Important note ... 2

Document History ... 5

1 Introduction to the document suite ... 6

1.1 References.. 6

1.2 Definitions ... 6

1.3 Conventions .. 6

1.4 Viewing UML diagrams ... 6

1.5 Understanding the figures ... 6

2 Introduction to the Control model ... 6

3 Model of control component and views .. 7

3.1 Background ... 7

3.2 The control model in the context of the core classes .. 8

3.3 The control model in the context of the core classes .. 14

3.3.1 ControlConstruct ... 15

3.3.2 ControlPort .. 16

3.3.3 ExposureContext .. 17

3.3.4 ConstraintDomain ... 18

3.3.5 CdPort... 19

3.3.6 ViewMappingFunction... 20

3.3.7 VmfPort ... 20

3.4 Further description .. 21

3.5 Relationship to TR-512 V1.2 model .. 22

3.5.1 Function:NetworkElementControl ... 24

3.5.2 Function:SdnController ... 24

3.5.3 View:NetworkElementViewedFromSdnController ... 24

3.5.4 View:SdnControllerViewedFromManager ... 25

3.6 Relationship to the other key classes .. 25

3.7 Model in context – directly controlled things.. 25

3.8 General discussion ... 26

4 Understanding the control component and view model .. 29

4.1 Rationale ... 30

4.2 Implications ... 31

4.3 The patterns behind the model ... 31

4.4 Identifiers, naming and addressing ... 32

4.5 Resilience in the Control System .. 33

4.6 Controller view considerations .. 33

TR-512.8 Core Information Model – Control Version 1.5

Page 4 of 46 © 2021 Open Networking Foundation

4.7 Dismantling the NE – Some rationale ... 36

4.7.1 The analysis .. 37

4.8 The control model applied to the "Controller" .. 42

4.9 The configurationAndSwitchController (C&SC)... 42

5 Operations ... 42

5.1 The basic model .. 42

5.2 Provider and User role detail... 43

5.3 Long-lived operations and Universal structures .. 44

5.4 The full model ... 45

6 Future considerations ... 46

6.1 Application of streaming .. 46

List of Figures

Figure 3-1 Key entities in the model .. 8

Figure 3-2 – Basic Network Element ... 9

Figure 3-3 Core Control Model Summary ... 10

Figure 3-4 - Basic ControlConstruct layering Use Case .. 11

Figure 3-5 - Control port to "PC etc." port binding ... 11

Figure 3-6 - A mix of Master-Slave and Peering ... 12

Figure 3-7 - Recursive Control Architecture .. 13

Figure 3-8.. 14

Figure 3-9 Core Control Model .. 15

Figure 3-10 Mapping Core Control Model to traditional view .. 22

Figure 3-11 Relationship of Control Model to ProcessingConstruct .. 25

Figure 3-12 Control Model showing Controlled Entities .. 26

Figure 3-13 – SDN Controller controlling two devices ... 27

Figure 4-1 A Controllable Component ... 32

Figure 4-2 Through, To, About… .. 33

Figure 4-3 Simple network view mapping ... 34

Figure 4-4 View mapping for functions on a VM ... 35

Figure 4-5 Client view of network and control ... 35

Figure 4-6 Simplified view showing exposure of controllable capability to a client 36

Figure 4-7 The "NE" .. 37

Figure 4-8 Geographically distributed NE ... 41

TR-512.8 Core Information Model – Control Version 1.5

Page 5 of 46 © 2021 Open Networking Foundation

Figure 4-9 An NE with two control access ports each providing a partial view.. 42

Figure 5-1 Provider and User role ControlPorts .. 43

Figure 5-2 Provider and User role detail ... 44

Figure 5-3 Long lived operations and universal structures .. 45

Figure 5-4 Full Control Model .. 46

Figure 6-1 Sketch of model structure related to streaming.. 46

Document History

Version Date Description of Change

 This document was not published prior to Version 1.3

1.3 September 2017 Version 1.3 [Published via wiki only]

1.3.1 January 2018 Addition of text related to approval status.

1.4 November 2018 Major rework of model.

1.5 September 2021 Enhancements to model structure.

TR-512.8 Core Information Model – Control Version 1.5

Page 6 of 46 © 2021 Open Networking Foundation

1 Introduction to the document suite

This document is an addendum to the TR-512 ONF Core Information Model and forms part of

the description of the ONF-CIM. For general overview material and references to the other parts

refer to TR-512.1.

1.1 References

For a full list of references see TR-512.1.

1.2 Definitions

For a full list of definition see TR-512.1.

1.3 Conventions

See TR-512.1 for an explanation of:

• UML conventions

• Lifecycle Stereotypes

• Diagram symbol set

1.4 Viewing UML diagrams

Some of the UML diagrams are very dense. To view them either zoom (sometimes to 400%),

open the associated image file (and zoom appropriately) or open the corresponding UML

diagram via Papyrus (for each figure with a UML diagram the UML model diagram name is

provided under the figure or within the figure).

1.5 Understanding the figures

Figures showing fragments of the model using standard UML symbols as well as figures

illustrating application of the model are provided throughout this document. Many of the

application-oriented figures also provide UML class diagrams for the corresponding model

fragments (see TR-512.1 for diagram symbol sets). All UML diagrams depict a subset of the

relationships between the classes, such as inheritance (i.e. specialization), association

relationships (such as aggregation and composition), and conditional features or capabilities.

Some UML diagrams also show further details of the individual classes, such as their attributes

and the data types used by the attributes.

2 Introduction to the Control model

As explained in TR-512 V1.2 the classes SdnController, NetworkControlDomain and

NetworkElement1 have been reassessed and deprecated and new classes have been developed in

1 The Network Element scope of the direct interface from a SDN controller to a Network Element in the

infrastructure layer is similar to the EMS-to-NE management interface defined in the information models [ITU-T

G.874.1] (OTN), [ITU-T G.8052] (Ethernet), and draft [ITU-T G.8152] (MPLS-TP).

../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 7 of 46 © 2021 Open Networking Foundation

this release to replace them. It has been recognized that a uniform recursive model of control can

be developed that provides a consistent treatment of what were previously seen as completely

different things.

This document describes a general model of control suitable for representation of the capabilities

that control the network and for representation of the relationship to the model of the network

from the control perspective. The document also discusses the dismantling of the NE and

recasting aspects of it as Control.

A data dictionary that sets out the details of all classes, data types and attributes is also provided

(TR-512.DD).

3 Model of control component and views

3.1 Background

The ONF Architecture [ONF TR-521] talks of a recursion of control aligning well with the more

general concept of the Management-Control Continuum from [TMF IG1118]. Similarly, [ITU-T

G.7702] also describes recursive arrangements of SDN controllers. The control model in [ONF

TR-512 V1.2] showed a traditional hierarchy rather than a generalized recursion.

Over many years it has become apparent that the traditional representation of Network Element

(NE) and of Managed Element (ME) was not correct (see section 4.7 Dismantling the NE –

Some rationale on page 36 for more detail and TR-512.A.7 for examples). It is clear that from

one perspective the Network Element is simply a lower level member of the Management-

Control Continuum. It is also apparent that all other aspects of the NE are covered by other parts

of the model.

It was concluded that the NE should be remodeled. The remodeling was driven a rational

separation of concerns. During the work, the network element concept logical functions (PC, FC,

LTP etc.) and physical structure (Equipment etc.) were split off. What was left was the network

element control function.

The two things needed to represent the control function are:

• The (logical) location of control functions in the network and how they are related

(control network)

• The scope of network functions that each control function controls

The decision was made to create a separate control function class ControlConstruct and reuse the

ConstraintDomain class for the control scope representation. Reusing ConstraintDomain

simplified the resulting model (otherwise a lot of associations would have needed to be

duplicated).

It then became apparent that this general model could also be used to model other functional

groupings e.g. an SDN controller, giving a consistent view of the different elements in the

control network and that that capability should be generalized so that it could handle all aspects

of the Management Control Continuum.

TR-512.DD_OnfCoreIm-DataDictionary.pdf
TR-512.A.7_OnfCoreIm-Appendix-ControlAndInteractionExamples.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 8 of 46 © 2021 Open Networking Foundation

The model chosen for the Control functions is derived from the Component-System pattern (see

TR-512.A.2) and the ProcessingConstruct (see TR-512.11 and TR-512.A.9). It was then clear

that as a controller controls components then the components of the controller that deal with

controlling other things also needed to be controlled (as is explained in the Management Control

Continuum). That is, MCC functions themselves can be managed/controlled.

The following sections set out the model in this context.

3.2 The control model in the context of the core classes

It is useful to categorize the functions in a network in terms of the type of functions that they

provide. Two key function types are processing and transport of information.

The figure below shows the key model entities and the functions that they perform.

Key Class Processing Function Transport Function Constraint Reference

LogicalTerminationPoint
(LTP)

✓ - protocol stack termination
(Transform)

- ✓ - client creation TR-512.2

ForwardingConstruct
(FC)

- ✓ - forwarding (Transfer) ✓ - bounded forwarding TR-512.2

ForwardingDomain (FD) - - ✓ - FC creation, LTP creation TR-512.4

Link - - ✓ - FC creation, LTP creation TR-512.4

ControlConstruct (CC) ✓ - management-control
plane (communications)

- - TR-512.8

ConfigurationAndSwitch
Control (CASC)

✓ - management-control
plane (control)

- - TR-512.5

ConstraintDomain (CD) - - ✓ - general constraints
(augmenting above)

TR-512.11

ProcessingConstruct (PC) ✓ - any hybrid functions and
any other function not above

- - TR-512.11

- = insignificant (may be non-zero – e.g. all Processing Functions are bound to encapsulate some forwarding and it can be argued
that forwarding is a form of processing)

There is a 3rd function , Storage that isn’t supported by any of these

Figure 3-1 Key entities in the model

Both ProcessingConstruct and ControlConstruct perform processing functions, but while a

ProcessingConstruct just processes its information, a ControlConstruct processes information to

control other functions (such as ProcessingConstructs, Forwarding constructs etc.). It is this

additional controlling responsibility that means that it makes sense to have a separate model

entity for ControlConstruct.

TR-512.A.2_OnfCoreIm-Appendix-ModelStructurePatternsAndArchitecture.pdf
TR-512.11_OnfCoreIm-ProcessingConstruct.pdf
TR-512.A.9_OnfCoreIm-Appendix-ProcessingConstructExamples.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 9 of 46 © 2021 Open Networking Foundation

As discussed (in TR-512.11, TR-512.2 etc.), the concept of NetworkElement has been removed

from the model. The model now focusses on network functions and the boundaries that they

operate within (ConstraintDomain). This section works through some basic examples to

introduce the concepts of the model prior to embarking on the description of the model itself.

Some of the figures used in this section are further discussed in TR-512.A.7).

The figure below shows a simple representation of a NetworkElement on the left. On the right, a

Control Construct has been added and a ConstraintDomain to represent the scope of control.

Note that:

• The ControlConstruct itself exists within a ConstraintDomain boundary and uses another

ConstraintDomain boundary to show the scope of its control.

• To keep the diagram uncluttered, "PC etc" stands in for LTP, FC, FD, Equipment,

RunningSoftwareApplication, etc.

CD = NE CD = NE

PC etc.

PC etc.

CC

Port

CD = control
domain

CC controls
CD

PC etc.

PC etc.

Before
After addition of ControlConstruct (CC) and
ConstraintDomain (CD) for control domain

CD = Physical (Chassis) CD = Physical (Chassis)

Figure 3-2 – Basic Network Element

The model also needs to be able to represent a control network, and this is achieved in two ways:

1. By representing the binding between ControlConstruct ports

2. By the nesting of ControlConstructs in a ConstraintDomain that is controlled by another

ControlConstruct

The figure below shows as summary of the Control model.

TR-512.11_OnfCoreIm-ProcessingConstruct.pdf
TR-512.2_OnfCoreIm-ForwardingAndTermination.pdf
TR-512.A.7_OnfCoreIm-Appendix-ControlAndInteractionExamples.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 10 of 46 © 2021 Open Networking Foundation

CoreModel diagram: Control-ControlConstructSummary

Figure 3-3 Core Control Model Summary

The basic layering concept is shown in the diagram below.

Also note that because of the ControlPortBoundToLtp association, the logical control port

bindings can also be linked to any transport representation if appropriate.

TR-512.8 Core Information Model – Control Version 1.5

Page 11 of 46 © 2021 Open Networking Foundation

CD = Network

CD = NE

PC etc.

PC etc.

CC

Port

CD = control
domain

CC
Port

CD = control domain

CC controls CD

PortBoundToPortMaster

Slave
CC controls CD

Via LTP, Link, FC etc.

Figure 3-4 - Basic ControlConstruct layering Use Case

Note that while the architecture and model allow for the control network to extend down to show

the control port bindings to all the network functions (as discussed for the Component-Port

pattern in TR-512.A.2), the bindings can be implied from the control domain. Within a device

there is no associated transport requirements and hence these bindings can be omitted in an

implementation, reducing the complexity of the information stored.

PC

CC

Port

CC

Port
PortBoundToPort

PortBoundToPort

CD = NE

CD = Physical (Chassis)

Master Slave Master

Slave

CD = control domain

CC controls CD

Figure 3-5 - Control port to "PC etc." port binding

It would be possible to add ports to every construct for control purposes and then bind these to

the CC ports. This makes sense architecturally and provides good consistency bu:

• Locally within an NE, the binding is usually implied rather than explicitly

defined/managed/controlled (e.g., a BGP process is defined via the CC so its binding is

implicit)

TR-512.A.2_OnfCoreIm-Appendix-ModelStructurePatternsAndArchitecture.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 12 of 46 © 2021 Open Networking Foundation

• It adds a lot of complexity to the instance graph, to create and manage all these ports and

bindings

• Since it is expected that a local management/control agent to be present, the bindings are

local, so there are no transport (via FC) implications

The model can be used to represent an SDN controller consistent with the ONF architecture

[ONF TR-502] and [ONF TR-521] using the same classes used to represent a Network Element.

The controller boundary is represented using a ConstraintDomain and the functions inside are

represented using ProcessingConstructs etc. This is discussed in detail in TR-512.A.7.

The model can represent the controller groupings and layering. The two diagrams below show

some possible ways that this could be achieved. Note that the model doesn't enforce any

particular controller architecture, it just supports the general concepts.

Peer Peer

Peer

Controller Groups/Pools

……

CD=control domain CD=control domain

CC Controls CD

CC
Port

CC
Port

CC
Port

CC
Port

CC
Port

CC
Port

Devices Devices

Master

Slave

Master

Slave

North

EastWest

Figure 3-6 - A mix of Master-Slave and Peering

TR-512.A.7_OnfCoreIm-Appendix-ControlAndInteractionExamples.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 13 of 46 © 2021 Open Networking Foundation

…… ……

Peer Peer

Peer

Controller Groups/Pools

CD=control domain CD=control domain

CC
Port

CC
Port

CC
Port

CC
Port

CC
Port

CC
Port

Master

Slave

Master

Slave

North

EastWest

WN

WW WE

EN

EW EE
Peer

Peer

Peer

CC Controls CD

Figure 3-7 - Recursive Control Architecture

An ExposureContext instance defines what can be accessed through a particular ControlPort and

who can have access (for more information refer to later sections in this document). The

ExposureContext allows a ControlConstruct to give another ControlConstruct access to some

view of the network functions that it is controlling. For example, as shown in the figure below,

ControlConstruct X wants to give ControlConstruct Y access to ProcessingConstructs 3 and 4.

The relevant view is defined by a ConstraintDomain.

In the example, if there hadn't been an existing ConstraintDomain with just PC-3 and PC-4, then

a new ConstraintDomain would have been created and the ProcessingConstructs added to it. The

ExposureContext then links the exposing ControlConstruct, the exposed scope and the receiving

ControlConstruct together.

Note that ExposureSession can be considered to be a form of security access, so it may:

• Require authentication of the ControlConstruct that the functions are exposed to

• Be for a limited time span

• Limit the authorized actions that can be performed on the exposed network functions

(read, modify, delete) by the ControlConstruct they are exposed to

TR-512.8 Core Information Model – Control Version 1.5

Page 14 of 46 © 2021 Open Networking Foundation

Figure 3-8

Note that further work needs to be done on the remaining part of the model to provide network

function and name mappings and this could replace the ViewMappingFunction and its port in a

future release.

3.3 The control model in the context of the core classes

The figure below shows the core of the Control model.

TR-512.8 Core Information Model – Control Version 1.5

Page 15 of 46 © 2021 Open Networking Foundation

CoreModel diagram: Control-ControlConstructAndExposureContextCore

Figure 3-9 Core Control Model

The classes are described in the section below. Some aspects of the model described below are

shown in figures in sections 3.5, 3.6 and 3.7. The figures above intentionally do not include all

associations etc. mentioned in the detailed class information below. The figures focus on the

control model, the classes listed show all aspects of the class.

3.3.1 ControlConstruct

Qualified Name: CoreModel::GeneralControllerModel::ControlConstruct::ControlConstruct

Represents control capability/functionality.

ControlConstructs communicate with other ControlConstructs through ControlPorts about things

within the related ConstraintDomains.

The ControlConstruct applies to all Control/Management cases including:

- the controller in the Network/Managed Element e.g. an SNMP agent).

- an SDN Controller.

- an EMS.

- an NMS.

This specific model follows a subset of the Component-System Pattern.

Inherits properties from:

• GlobalClass

This class is Experimental.

TR-512.8 Core Information Model – Control Version 1.5

Page 16 of 46 © 2021 Open Networking Foundation

Table 1: Attributes for ControlConstruct

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_exposureContext Experimental

A view supported by the ControlConstruct that may be exposed at a

ControlPort of the ControlConstruct.

_definingViewMapping Experimental

ControlConstruct behavior is defined in part by view mappings.

_controlPort Experimental

A port on the ControlConstruct that allows access to the functions of the

ControlConstruct.

_subordinateControlConstructConte

xt
 Experimental

A ControlConstruct that is part of an abstract view of the system that

supports the referencing ControlConstruct and hence describes part of the

behavior of the referencing ControlConstruct.

_viewMapping Experimental

ControlConstruct uses the referenced ViewMapping to produce one view

from another.

_controlTasks Experimental

An activity being carried out by the ControlConstruct where that activity is

being exposed such that progress can be observed through a ControlPort.

3.3.2 ControlPort

Qualified Name: CoreModel::GeneralControllerModel::ControlConstruct::ControlPort

The access to the ControlConstruct following the normal Component-Port pattern (i.e., the

functions of a component are accessed via ports).

Is assumed to usually be bidirectional.

This class is Experimental.

Table 2: Attributes for ControlPort

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_protectingControlPort Experimental

A simple representation of resilience where one ControlPorts are identified

as providing equivalent information.

_controlPort Experimental

Control Ports may be used to associate controllers in a hierarchy and as

peers.

Peer controllers are assumed to both the subordinate of each other.

_ltp Experimental

The LTP through which the control messaging/signaling flows.

_providerRole Experimental

Properties relevant when the ControlPort is exposing the ControlConstruct

as a provider of capability.

TR-512.8 Core Information Model – Control Version 1.5

Page 17 of 46 © 2021 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_userRole Experimental

Properties relevant when the ControlPort is exposing the ControlConstruct

as a user of capability.

_exposureContext Experimental

A view presented through the ControlPort.

3.3.3 ExposureContext2

Qualified Name: CoreModel::GeneralControllerModel::ExposureContext::ExposureContext

A view of the things controlled by a control system. For example, a virtual network of ONF TR-

502, or more generally, resources (clause A.10 of ONF TR-521).

A referenced ConstraintDomain bounds a view which is a structured presentation of the

underlying controlled things (the "actual" entities) for some purpose.

The model bounded by the ConstraintDomain is constructed by mapping/abstracting the models

of the underlying controlled things.

The ControlConstruct is itself controlled and presents itself in terms of ControlConstructs

(subordinate) in a view.

At one extreme the referenced ConstraintDomain may expose all underlying details of

everything controlled with no adjustment from the presentation provided by the controlled

things.

A ConstraintDomain may expose a subset of the controlled things that focuses on a particular

aspect (e.g., only the ControlConstructs).

A ControlPort has an association to the ExposureContext that explains, via the related

ConstraintDomain, what can be acquired through the port

The emphasis is on exposing a constrained set of information and operations

Bounds what is presented over an interface from a particular viewpoint. The domain of control is

almost always broader than the entities etc. bounded by the ConstraintDomain.

Represents the domain of control available to the viewer.

This class is Experimental.

Table 3: Attributes for ExposureContext

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_cd Experimental

The ConstraintDomain that defines the view to be exposed.

2 The explicit class, ControlSystemView, that was used in 1.3.1 has been replaces with ExposureContext and

associated general ConstraintDomain class. There may be further refinements in this area.

TR-512.8 Core Information Model – Control Version 1.5

Page 18 of 46 © 2021 Open Networking Foundation

3.3.4 ConstraintDomain

Qualified Name: CoreModel::ProcessingConstructModel::ObjectClasses::ConstraintDomain

ConstraintDomain (CD) models the topological component that represents the opportunity to

enable processing of information between two or more of its CdPorts.

A CdPort may be associated with another CdPort or with an LTP at a particular specific

layerProtocol.

It provides the context for and constrains the formation, adjustment and removal of PCs and

hence offers the potential to enable processing.

The LTPs available are those defined at the boundary of the CD.

A CD may be:

- Asymmetric such that it offers several functions and such that different functions are offered to

different attached entities.

- Symmetric such that it offers (or is considered as offering) only one function and the same

function is offered to any attached entity with no interactions between functions offered to each

attached entity

An asymmetric CD offering a number of distinct functions will have CdPorts through which the

distinct functions are accessed.

A symmetric CD offering only a single function need not have CdPorts, the function can be

accessed directly from the CD.

Inherits properties from:

• GlobalClass

This class is Experimental.

Table 4: Attributes for ConstraintDomain

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_cdPort Experimental

An asymmetric CD instance is related to LTPs via CdPorts (essentially the

ports of the CD).

Symmetric CDs don't have CdPorts and are directly related to LTPs.

_pcInDomain Experimental

A CD constrains one or more PCs.

A constrained PC connects LTPs that are on the CD boundary.

_ltp Experimental

A symmetric CD instance is associated with zero or more LTP objects.

The LTPs on the CD boundary provide capacity for processing.

For asymmetric FDs the association to the LTP is via the FdPort.

_cdInDomain Experimental

The CD class supports a recursive aggregation relationship such that the

internal construction of an CD can be exposed as multiple lower level CDs.

Note that the model actually represents an aggregation of lower level CDs

into higher level CDs as viewpoints rather than partitions, and supports

multiple views

_cascInDomain Experimental

A controller operating in the scope defined.

TR-512.8 Core Information Model – Control Version 1.5

Page 19 of 46 © 2021 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_equipmentInDomain Experimental

A ConstraintDomain can be used to represent physical constraints in the

logical view.

In this case the CD can be associated to the physical equipment.

_fcInDomain Experimental

A CD constrains one or more FCs.

A constrained FC connects LTPs that are on the CD boundary.

_fdInDomain Experimental

A CD constrains one or more FDs.

A constrained FD connects LTPs that are on the CD boundary.

_controlConstructInDomain Experimental

A CD constrains one or more ControlConstructs.

_ltpInDomain Experimental

A CD constrains one or more LTPs.

_linkInDomain Experimental

A CD constrains one or more Links.

A constrained Link connects LTPs that are on the CD boundary.

_runningOsInDomain Experimental

A RunningOs constrained by the ConstraintDomain.

_runningSoftwareApplicationInDo

main
 Experimental

A RunningSoftwareApplication constrained by the ConstraintDomain.

_runningNativeVmmInDomain Experimental

A RunningVmm constrained by the ConstraintDomain.

_fileSystemInDomain Experimental

A FileSystem constrained by the ConstraintDomain.

_vmfInDomain Experimental

A ViewMappingFunction constrained by the ConstraintDomain.

_partyRole Experimental

 See referenced class

_partyRoleInDomain Experimental

 See referenced class

3.3.5 CdPort

Qualified Name: CoreModel::ProcessingConstructModel::ObjectClasses::CdPort

The association of the CD to LTPs is direct for symmetric CDs and via CdPort for asymmetric

CDs.

The CdPort class models role based access to a CD.

The capability to set up PCs between the associated CdPorts of a CD depends upon the type of

CD.

It is asymmetry in this capability that brings the need for CdPort.

The CD can be considered as a component and the CdPort as a Port on that component.

Inherits properties from:

• LocalClass

TR-512.8 Core Information Model – Control Version 1.5

Page 20 of 46 © 2021 Open Networking Foundation

This class is Experimental.

Table 5: Attributes for CdPort

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_cdPort Experimental

Constraint Domains can be meshed together view their ports directly as well

as via LTPs indirectly.

_ltp Experimental

A CdPort is associated with zero or more LTP objects.

The LTPs on the CD boundary provide capacity for processing.

For symmetric CDs the association is directly from the CD to the LTP.

_pcPort Experimental

Where a CD is asymmetric and hence has CdPorts and where that CD

supports PCs, appropriate CdPorts of that CD support the corresponding

PcPorts.

3.3.6 ViewMappingFunction

Qualified Name:

CoreModel::GeneralControllerModel::ViewMappingFunction::ViewMappingFunction

The rules that relate one view to another.

A ControlConstruct aggregates ViewMappingFunctions.

Each ViewMappingFunction in the context of a ControlConstruct define the relationship

between the views presented in an ExposureContext of that ControlConstruct and other views

within the Controller.

The ViewMappingFunction is applied to the entities aggregated by one or more

ConstraintDomains (via VmfPort - CdPort VmfMapsFromCdConstraintSet to construct the view

in another ConstraintDomain (via VmfPort - CdPort VmfGovernsCdConstraintSet association).

For example, a pair of LTPs with matching adjacency tags in a nodal view may be mapped to a

Link in a network view where the rules would describe the matching criteria etc.

This class is Experimental.

Table 6: Attributes for ViewMappingFunction

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_exposureContext Experimental

An ExposureContext available to the ViewMappingFunction.

_vmfPort Experimental

A port of the ViewMappingFunction.

3.3.7 VmfPort

Qualified Name: CoreModel::GeneralControllerModel::ViewMappingFunction::VmfPort

TR-512.8 Core Information Model – Control Version 1.5

Page 21 of 46 © 2021 Open Networking Foundation

A port of the MappingFunction through which the effects of the mapping is exposed.

This can be an input to the mapping of as an output of the mapping where the inputs and outputs

may have more detailed roles.

This class is Experimental.

Table 7: Attributes for VmfPort

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_vmfPort Experimental

Feeding to/from another Vmf.

_sourceCdPort Experimental

Drawing from a ConstraintDomain that aggregates classes to feed the

mapping.

_governedCdPort Experimental

Causing instances of classes to be created/deleted/modified in the context of

a ConstraintDomain that aggregates a view.

This governs what the ConstraintDomain may aggregate and also governs

the lifecycle of the aggregated entities.

3.4 Further description

A ControlConstruct instance may expose, through each associated ControlPort instance, one or

more views of controlled instances (i.e., instances of FC, LTP etc.). A view provided via a

ControlPort instance is defined by an ExposureContext instance. The controlled instances to be

exposed in a view are aggregated by a ConstraintDomain instance referenced by the

ExposureContext instance defining the view.

A ControlConstruct instance may provide different views, each specified via a separate

ExposureContext instance, via different ControlPorts instances. Several ControlPorts instances

of a ControlConstruct instance may relate to the same ExposureContext instance and will hence

expose the same view.

Several ExposureContext instances may reference the same ConstraintDomain instance and

hence may provide the same view and several ControlConstruct instances may reference the

same ExposureContext instance and will therefore expose the same view through at least one of

their port instances.

The structure of the instances of the classes aggregated by a ConstraintDomain (the output view)

may be derived from the structure of the instances of the classes aggregated by one or more other

ConstraintDomains (input views). The inter-view mapping/abstraction/refactoring rules are

maintained by one or more ViewMappingFunction instances that reference the ExposureContext

instance. A ViewMappingFunction determines the specific instances in the view and hence

determines the instances of FC, LTP etc. to be aggregated by the ConstraintDomain.

The derivation method will be such that an instance from an input view may be split into many

instances in the output view, several instances from one or more input views may be pruned and

combined to form an instance in the output view etc. The view construction is governed by

TR-512.8 Core Information Model – Control Version 1.5

Page 22 of 46 © 2021 Open Networking Foundation

constraints and corresponding behavior (rules, policy, functions). The

mapping/abstractions/refactoring may lead to new insight.

For example, a "Network Element" may have a property recorded against a port where that

property was extracted from an incoming signal and where that property is defined as some form

of discovery tag which, unknown to the NE has been sent by another NE. As the overarching

controller can see both NEs (amongst many others) it can determine the interconnectivity from

these two tags. The model of "port and discovery tag" can be refactored to an off-network link

and then an off-network link pair can be refactored (combined) to be a Link where the instance

combination is driven by matching discovery tags. As a consequence, new insight of

interconnectivity is achieved.

A combination of ViewMappingFunctions would provide the class model refactoring rules from

ExposureContext to ExposureContext and, therefore, the instance refactoring rules.

3.5 Relationship to TR-512 V1.2 model

The relationship between the V1.2 classes (that have been deprecated) and the V1.4 classes is

depicted in the figure below.

CoreModel diagram: Control-MappingToControlConstructAndExposureContext

Figure 3-10 Mapping Core Control Model to traditional view

The V1.2 classes are shown with (red text and a red border). These are related to the V1.4 classes

(shown with black text and a black border) via some explanatory classes (shown with a green

fill). The relationships are purely pictorial.

The explanatory classes show (via the black dashed associations) that:

• The SdnController class (of V1.2) represents both the SDN Controller function and a

view of that function as seen through an interface provided by a manager of the SDN

Controller

• The NetworkControlDomain (of V1.2) represents the view of the network controlled by

the SDN Controller as presented by the SDN Controller

• The NetworkElement (of V1.2) represents the embedded Network Element Control

function presented to the SDN Controller as well as a view of that function as seen

through an interface provided by the SDN Controller controlling the NE

TR-512.8 Core Information Model – Control Version 1.5

Page 23 of 46 © 2021 Open Networking Foundation

The dashed associations, red for Functions and blue for views, highlight (roughly) that in the

V1.4 model:

• The NetworkElementControl function is represented by a ControlConstruct and

corresponding ExposureContext and ConstraintDomain which will have:

o LTPs, FCs and other abstract representations of NE functions

o Any relevant ControlConstructs that make up the control functions of the NE,

such as log managers and alarm queue functions, of the NE3

• The SdnController function is represented by a ControlConstruct and corresponding

ExposureContext and ConstraintDomain. The ConstraintDomain will have:

o ControlConstructs representing the Network Elements controlled by the SDN

Controller (see NetworkElementViewedFromSdnController below)

o LTPs, FCs and other abstract representations of network functions abstracted

from the assembly of NE level functions

o Any relevant ControlConstructs that make up the control functions of the SDN

Controller, such as log managers etc.

• The NetworkElementViewedFromSdnController view will include:

o A ControlConstruct, ExposureContext and ConstraintDomain representing the NE

as relevant to the specific view provided by the SDN Controller

▪ The ConstraintDomain will have:

• LTPs, FCs and other representations of NE functions

• Any relevant ControlConstructs that make up the control functions

of the NE, such as log managers and alarm queue functions, of the

NE to be exposed

Where the instances in the view are all abstractions (pruned and refactored

forms) of those provided by the actual NE

• The SdnControllerViewedFromManager view will include:

o A ControlConstruct, ExposureContext and ConstraintDomain representing the

SDN Controller as relevant to the specific view provided by the Manager (seen

through an interface provided by the manager managing the SDN Controller)

▪ The ConstraintDomain which will have:

• LTPs, FCs and other abstract representations of network functions

(see SdnController above)

• Any relevant ControlConstructs that make up the control functions

of the SDN Controller (see SdnController) above

• ControlConstructs representing the Network Elements controlled

by the SDN Controller (see

NetworkElementViewedFromSdnController below)

Where the instances in an ExposureContext are all abstractions (pruned and refactored

forms) of those provided by the actual SDN Controller

Clearly the above is recursive and hence a Manager could present the following via the same

mechanism:

3 The model does not provide explicit representations for such ControlConstructs. Instances of the generalized

ControlConstruct class (or of the Casc class) should be used decorated appropriately.

TR-512.8 Core Information Model – Control Version 1.5

Page 24 of 46 © 2021 Open Networking Foundation

• A ControlConstruct representing the manager itself

• A ControlConstruct representing each subordinate manager

• A ControlConstruct representing each SDN Controller subordinate to each subordinate

manager

• A ControlConstruct representing each NE controlled by each SDN Controller…

A complex NE could represent subordinate parts again through the same mechanism leading to a

deep Component-View hierarchy.

The classes listed here are provided in the model to assist in the understanding of the mapping

from ManagedElement, SdnController and NetworkControlDomain.

3.5.1 Function:NetworkElementControl

Qualified Name:

CoreModel::GeneralControllerModel::ControlDiagrams::mappingToTraditionalModel::explanat

oryModel::Function:NetworkElementControl

Traditional model of the NE equivalent to an aspect of the NetworkElement class from v1.2.

This class should not be implemented.

This class is abstract.

This class is Example.

3.5.2 Function:SdnController

Qualified Name:

CoreModel::GeneralControllerModel::ControlDiagrams::mappingToTraditionalModel::explanat

oryModel::Function:SdnController

Traditional model of the SDN controller equivalent to the SdnController class from v1.2.

This class should not be implemented.

This class is abstract.

This class is Example.

3.5.3 View:NetworkElementViewedFromSdnController

Qualified Name:

CoreModel::GeneralControllerModel::ControlDiagrams::mappingToTraditionalModel::explanat

oryModel::View:NetworkElementViewedFromSdnController

Traditional model of the view of the NE controller as seen from a SDN Controller equivalent to

an aspect of the NetworkElement class from v1.2.

This class should not be implemented.

This class is abstract.

This class is Example.

TR-512.8 Core Information Model – Control Version 1.5

Page 25 of 46 © 2021 Open Networking Foundation

3.5.4 View:SdnControllerViewedFromManager

Qualified Name:

CoreModel::GeneralControllerModel::ControlDiagrams::mappingToTraditionalModel::explanat

oryModel::View:SdnControllerViewedFromManager

Traditional model of the view of the SDN controller as seen from a manager .

No equivalent in v1.2.

This class should not be implemented.

This class is abstract.

This class is Example.

3.6 Relationship to the other key classes

The following figure shows the relationship between the key Control classes and the other key

classes of the model. The structural similarity is illustrated by positioning as there is no formal

mechanism for enforcing patterns (e.g., inheritance does not express the pattern or enforce the

constraints). The relationship is essentially the adoption of the pattern.

CoreModel diagram: Control-ControlConstructPattern

Figure 3-11 Relationship of Control Model to ProcessingConstruct

3.7 Model in context – directly controlled things

The figure below shows each of the key classes as potential members of one or more

ConstraintDomains via the "CdConstrains…" associations (highlighted in blue).

TR-512.8 Core Information Model – Control Version 1.5

Page 26 of 46 © 2021 Open Networking Foundation

CoreModel diagram: Control-ControlConstructFullModel

Figure 3-12 Control Model showing Controlled Entities

In the figure above several classes are shown at the bottom of the diagram aggregated in the

ConstraintDomain. These are described in detail in other documents. Most notable, is the

ConfigurationAndSwitchController (C&SC) which is a low-level controller, this class is

described in detail in TR-512.5.

3.8 General discussion

The key consideration here is that the ControlConstruct exposes one or more ExposureContexts

(the replacement for the NetworkControlDomain etc.) which include, via associated

ConstraintDomain, an aggregation of all relevant controlled entities (where a controlled entity is

allowed to be in many ExposureContexts).

The model is best illustrated by considering the figure below which depicts an SDN Controller

controlling two devices. The white numbers in blue circles are used in the description below the

figure.

TR-512.5_OnfCoreIm-Resilience.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 27 of 46 © 2021 Open Networking Foundation

CD = SDN Controller

ExposureContext

CD= View

ExposureContext

CD= View

CD = Device Y

ExposureContext

CD= View

ExposureContext

CD= View

CC

Port

Master

LTP-1
Tx Tag = A
Rx Tag = B

CC
Slave

CD = Device X

ExposureContext

CD= View

ExposureContext

CD= View

LTP-6
Send Tag = B
Receive Tag = A

CC
Slave

ExposureContext

CD= View

LTP-X.6
Local Tag = B
Remote Tag = A

ExposureContext

CD= View

LTP-Y.1
Local Tag = A
Remote Tag = B

Vmf

ExposureContext

CD= View

Link-1
A = LTP-X.6
Z=LTP-Y.1

CC
Slave

CC

Admin

Network Abstraction

CD= Device X

LTP-X.6
Local Tag = B
Tag Mismatch = False

CD= Device Y

LTP-Y.1
Local Tag = A
Tag Mismatch = False

ExposureContext

CD= View

CC

ExposureContext

CD= View

CC

Vmf

Vmf

Vmf

Vmf

1

2

3

4

5

6

78

9

10

11

12

13

15

14
16

17

18

19

Figure 3-13 – SDN Controller controlling two devices

The SDN Controller function/scope, is represented by a ConstraintDomain, essentially the

SdnController in V1.2. The SDN Controller exposes its behavior via a set of ControlConstructs

(1 and 2). These provide various views, defined by ExposureContexts and corresponding

ConstraintDomains (3 -7). These are exposed through ControlPorts of the ControlConstructs:

• The network view (3) of the behaviour of the devices it controls.

o The ExposureContext has a ConstraintDomain that aggregates the purely network

aspects and subordinate ConstraintDomains (8 and 9), essentially the V1.2

NetworkElement, that aggregate the relevant nodal aspects of the devices that it

Controls.

o The view will include a all FDs, FCs, Links etc. at the network level and also all

LTPs, FCs etc. at the nodal level where the LTPs and FCs are associated as

described in TR-512.2, TR-512.4 etc.

• The control behaviour (5 and 6) of the devices it controls.

o The ExposureContext has a ConstraintDomain that aggregates a mapping from

the ControlConstruct of the Device, i.e., the control aspects of the Network

Element – the NetworkElement in V1.2.

o The view may include properties related to alarm queues etc. on the device.

• Modifiable ViewMappingFunctions (16) of the SDN Controller.

o The ExposureContext (7) has a ConstraintDomain that aggregates one or more

ViewMappingFunctions

TR-512.2_OnfCoreIm-ForwardingAndTermination.pdf
TR-512.4_OnfCoreIm-Topology.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 28 of 46 © 2021 Open Networking Foundation

o The ViewMappingFunction will expose both the fixed and adjustable aspects of

the view mapping and in the case depicted would provide details of the

transformation from device to network view.

• The control behaviour (4) of the SDN Controller itself.

o The ExposureContext has a ConstraintDomain that aggregates the adjustable

ControlConstructs of the SDN Controller.

o The view may include properties related to queues etc. in the SDN Controller.

In general, the SDN controller presents mappings of some, but not all, of the capabilities of the

devices (10 and 11) it controls and mappings of some, but not all, of its own capabilities via

various ControlPorts. These are presented using the classes of the ONF CIM or of any other

relevant model (e.g., [TAPI]) at the ports of the relevant ControlConstructs (1 and 2). The

capabilities of the device exposed via relevant ExposureContexts (12 – 15) could be presented

using the ONF CIM, as depicted, but most probably will use some other model such as that of

TL1, [ONF OpenFlow]4 or [OpenConfig].

Consider a control function (a ControlConstruct) in a device tasked with the control of a function

terminating a stream of packets (a termination function). If the device was using the ONF Core

Model, the control function of the device will present an ExposureContext (13 and 15) which

includes, via the associated ConstraintDomain, an LTP that in part represents the termination

function. The control function will also represent its own capabilities (perhaps a capability to

notify) via other view entities, not detailed here, along with a ControlConstructs, aggregated by

the ConstraintDomain associated with the ExposureContext. An example of such a control

function is a Network Element SNMP agent (see section 4.1 Rationale on page 30).

As discussed, a ControlConstruct representing an SDN Controller can present a network level

ExposureContext (3) of the functions of the network of devices that it controls. This may include

the LTPs (8 and 9) that were presented in the ExposureContext (17 and 18) by the

ControlConstruct (19) representing the device functionality within the SDN Controller.

Depending upon the degree of mapping, the LTP in the network view may be identical to that

presented in the subordinate ExposureContext of the device view and hence the same LTP

instance can be aggregated by the ConstraintDomain associated with the ExposureContext of the

ControlConstruct representing the SDN controller (3, 8 and 9) and the ConstraintDomain

associated with the ExposureContext of the ControlConstruct representing the device (17 and

18). In the case depicted the LTPs are not identical (8≠17 and 9≠8) and hence separate LTP

instances are present (8 and 9).

In a more complex example, an LTP presented by one ControlConstruct may have two LPs but it

is known that there are more LPs for the same LTP presented by another ControlConstruct. It is

expected that a superior ControlConstruct will assemble (union) the fragments to form a coherent

single entity using whatever matching criteria are appropriate. If a representation is a fragment,

then appropriate match criteria and combination rules will need to be used to identify which

fragments to combine to form the whole and what process to use to form the whole.

4 The CIM should be used at all levels of view of networking capabilities. Clearly legacy devices will use traditional

representation forms.

TR-512.8 Core Information Model – Control Version 1.5

Page 29 of 46 © 2021 Open Networking Foundation

In a case where there is a simple consolidation of information it is possible to subsume the

aggregated instances in several ConstraintDomains from subordinate ExposureContexts in a

single ConstraintDomain of a superior ExposureContext so that there is a simple aggregation

recursion. If the instances are identical, the ConstraintDomain of the superior ExposureContext

can simple aggregate the same instances that are in the subordinate ExposureContext.

If a device is controlled via two ControlConstruct (along with other devices), each

ControlConstruct will present the device as an ExposureContext, as noted above. Depending

upon the specific realization, it is possible that the ConstraintDomains associated with both

ExposureContext (one from each of the ControlConstructs) will have some entity instances in

common.

As any entity instance can be represented in many views, the model accounts for controller

resilience and control migration. A ControlConstruct can present the same information in several

views. A ControlConstruct can present the same information through several ports.

Several different ControlConstructs can present the same information at the intersection of

overlapping views. The UUID of the instance of an object presented in a view is provided by the

ViewMappingFunction. Two distinct ViewMappingFunctions will provide different UUIDs for

the abstraction from an underlying single entity instance. Specific properties, including IDs can

be used to allow instance reconciliation5.

Any representation of a thing in a view could be known to be a fragment (e.g., an FD could

represent a fragment of the whole domain where forwarding is possible). This may be

determined as a result of explicit or implicit off-network (out of view) relationships within the

entity. It is expected that sufficient information will be provided to a superior controller that has

a broad view to allow reconciliation and assembly of the fragments to form the whole instance.

4 Understanding the control component and view model

The world of networking has changed as computing and networking converge. It is clear that the

implications are significant and there is an opportunity to take advantage of patterns that are

apparent when taking a holistic view.

Traditionally Network Element, or a similar concept, has been used to represent a 'logical

device'. This concept was easy to understand, especially when a 'device' had only one major

function (like an SDH ADM or a PDH channel multiplexer).

As 'devices' have become more complex and multi-functional, the usefulness of the Network

Element concept has decreased. For example, initially packet routers and Ethernet switches

performed complementary functions. Now we have routers with inbuilt switches and layer2/3

switches, blurring the distinction between them.

5 Each ControlConstruct instance has a distinct and different UUID but some of the object instances presented in one

view may have the same UUID as object instances presented in another view as they are representations of the same

thing. For example an LTP instance in one view may have a UUID of 27 and an LTP instance in another view may

also be UUID 27.

TR-512.8 Core Information Model – Control Version 1.5

Page 30 of 46 © 2021 Open Networking Foundation

Another point of confusion is where the management plane scope and the functional scope were

mixed in concepts such as 'Managed Element' or 'Managed Network Element'. This scope

confusion is especially problematic when 'devices' are logically partitioned or grouped to form

'distributed devices'.

The key to understanding the way forward is to understand that in a multi-functional 'device', we

need to focus on the functions that the device performs. In hindsight, NetworkElement was just a

container with equipment, that grew too complex and tried to encapsulate everything and ended

up causing a lot of issues.

Reexamining the way of representing networking functionality leads to the Component-System

pattern, the ProcessingConstruct and the approach to representation of control discussed in this

document. In addition, the model of physical things set out in TR-512.6 cleanly separates

genuinely physical things that can be measured with a ruler, from logical concepts. The general

approach is careful separation of conceptually distinct concerns into functional, physical and

informational and then to further separate functional into control and networking etc.

4.1 Rationale

The ONF Architecture [ONF TR-521] shows a recursion of control. This aligns with the ideas

from [TMF IG1118] which:

• Developed the concept of the Management Control Continuum (MCC)

• Emphasized that automation is essentially about closing the control loop

• Explained the recursion of control loops where a control element may participate in one

or more loops

• Developed the Component-System pattern

• Emphasized that a Component exposes views

• Explained how a ControlConstruct exposed views of itself and what it is controlling to its

client (which were potentially simply control components with broader scope)

• Highlighted recursive functional abstractions, where a selection of functional components

offered by providers are taken by a client, pruned to give useful function, assembled into

a system and the capabilities of that system are offered to clients in various pruned and

refactored functional component forms. Offered functional components are then taken by

a client and the process is repeated.

• Explained that all functional capabilities viewed are abstractions of an underlying system

with greater detail and complexity, and are, as a consequence, also virtualized within the

scope of the provider system.

An SDN Controller will be realized using compute, storage and communications capabilities.

Clearly the traditional SDN Controller just like the traditional Network/Managed Element will

have communication ports. These communication ports have functionality that is no different

from any other function terminating a stream of packets. The functions of communication ports

of the SDN Controller are represented using the LTP class. Hence a control device and a

transport NE are essentially the same. All such devices are balances of compute, storage and

communications capabilities (it is just the specific balance that is different).

TR-512.6_OnfCoreIm-Physical.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 31 of 46 © 2021 Open Networking Foundation

4.2 Implications

Three classes from the V1.2 model are obsoleted and replaced:

• SdnController of V1.2 becomes a ControlConstruct

• NetworkControlDomain of V1.2 becomes an ExposureContext of a ControlConstruct that

represents the SDN Controller

• NetworkElement of V1.2 becomes one or more ExposureContext for the

ControlConstruct of the device where each has been mapped to an appropriate exposure,

representing

o The view of the capability of the ControlConstruct itself in the device.

o The view of the key network etc. functions (i.e., the LTPs etc.) related to the

ControlConstruct in the device

The relationship between the ExposureContext and the things in the view is aggregation within a

related ConstraintDomain and not direct composition as it was in a traditional model of an NE.

Where there is an embedded control plane/controller that is essentially independent of the

NetworkElement, this can also be represented by a ControlConstruct and one or more

ExposureContexts.

If there is an opportunity to see the native model of the NE as well as the mapped model then an

the ControlConstruct that represents the NetworkElement will also have a ExposureContext

exposing device specific classes. In this case, it would be expected that the ControlConstruct that

represents the device would make available the ViewMappingFunctions that "explain" the

relationship between the views provided.

We can use ExposureContext and its associated ConstraintDomain to represent:

• A logical scope that aligns to a physical inventory boundary (especially useful for 'device

partitions' and 'distributed devices')

• A management scope (which may differ from the physical and functional scope)

• A general functional scope that can be used for grouping and scope boundaries

While the move to replace NetworkElement with ControlConstruct and ExposureContext was

prompted by issues in representing 'traditional devices', it can be seen that (along with the

existing decoupling of functional and physical viewpoints) this now gives a neat and consistent

representation of SDN and NFV implementations, where the NetworkElement concept is largely

irrelevant anyway.

4.3 The patterns behind the model

As for all components, the ControlConstruct has ports. The ports provide access to the

ControlViews and allow control of the ControlConstruct.

A helpful view of this is provided by [TMF IG1118] as shown below.

TR-512.8 Core Information Model – Control Version 1.5

Page 32 of 46 © 2021 Open Networking Foundation

O

E

AFS

Execution
Environment

Operations

Application

Security

Mediation
Application

Function

Service
Endpoint

Mediation
for all accesses

Secure
access

W

Services

Owned Data

Workflow

Key

Application

Operations

Execution
Environment

Security

Application
Purpose

Platform

Service
Endpoint

Service
Endpoint

Service
Endpoint

P FC
W

P Policy

FC Functional Capability

• Component advertises
capabilities and needs

• All APIs/Interfaces are
outcome oriented and use an
appropriate grammar

F Functionality

Provide(r) Interface

Consume(r) Interface

Simplified view

Simplified view of a
component

Some internal detail

[TMF IG11118] Figure 1 The FMO component interface and structural overview

Figure 4-1 A Controllable Component

A Component has an Operations port through which it may be controlled/managed6 and an

Application port through which it exposes it purposeful behavior. The purposeful behavior of a

Control Component is related to the controlling of other Components, A Control Component has

an Operations port through which it is controlled.

As discussed in TR-512.A.2, all functional capabilities of the network are represented in the

form of Components (FC, LTP, PC etc.). Likewise, the functional capabilities of the control

system can be represented in the form of Components (e.g. C&SC).

The ports of the control components used for signaling can be represented using LTPs and the

Control Functions that terminate the signaling can be represented by Control Components such

as C&SC. Where appropriate, the signaling itself can be represented via a protocol definition

perhaps using the Generalized operations pattern (see TR-512.10).

4.4 Identifiers, naming and addressing

In general, there is a need for separate spaces of identifiers/addressing for:

• Ports

• Control functions

• Management-Control views (including virtual views)

• Functions (Virtual)

• Physical things

• Mixed assemblies of Functions and Physical things

• Places

6 A component provides a façade through which it can be controlled…. This essentially provides access to an

embedded controller which is at the lowest level of “visible” recursion (degenerates to a transistor gate etc).

TR-512.A.2_OnfCoreIm-Appendix-ModelStructurePatternsAndArchitecture.pdf
TR-512.10_OnfCoreIm-OperationPatterns.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 33 of 46 © 2021 Open Networking Foundation

• Reference points (e.g., UNI, or at a named API)

• Resources (compute, networking, storage)

When a controlled thing does not have a native UUID that can be used consistently across

Control Views, there needs to be some directory service to provide consistent identification. An

example of a directory service is the ITU-T G.7701 directory service component.

4.5 Resilience in the Control System

By separating the identifier spaces for Control from the spaces of the things being controlled and

by loosening the association from composition in a traditional model to aggregation, the Control

model is then set up appropriately to allow for well identified instances of controlled things to

appear in more than one ControlView. As a consequence, various controller resilience schemes

are readily supported. The client contexts of the ONF Architecture [ONF TR-521] would hold

name spaces that could point to shared resources between client contexts.

4.6 Controller view considerations

The figure below highlights the pattern of talking through a port to a controller about a controlled

system where that system:

• Includes the controller itself

• Is represented in terms of components

• Is represented via some pruning & refactoring transform

As usual…
recursive, fractal,
abstractions and
views all apply

Through To About

Transform

Controller Controlled
System

Comms + port

ControlSystemView

Controller realized by
“Controlled Entities”

(Components)

Controlled
System

Controlled System realized by
“ControlledEntities”

(Components)

Key

Actual running component

View of component

Port

Client System
Observer

ControlComponent

Figure 4-2 Through, To, About…

TR-512.8 Core Information Model – Control Version 1.5

Page 34 of 46 © 2021 Open Networking Foundation

The figure below shows the perception of a complex network as viewed by the Client. The

ExposureContext, via the associated ConstraintDomain, will include precisely the functional

components perceived by the Client. The perceived functions are an abstraction of the actual

network and are also virtualized in that the Client does not know, or care, where the functions

actually are. The figure shows a network that has a function "B" that is exposed as "Func B' " to

the Client.

• Subset of capabilities offered
• Address translation necessary and measures need to map via address translation
• Alternative instance of function may be selected after network restoration. Apparent address remains the same and

function appears continuous to the observer
– Performance data must “move” with route and function move

• Problems will project to client layer-protocols (U and Y)
• For retrospective diagnosis and analytics details of positions and moves must be maintained

Provider

A

J

K

L

B

Func B’

Directory

N M

MCC
Path

Comp
Real address M

Virtual address N

S T

T

U V

W

X

V

W

X

Y

Connector

H-47-JReal Connector
(also shows physical

partition of connector

(ignored here))

Including actual

address translation

Channel 3

Building C

Client

Provider advertises various products that include

subsets of Func B capability, one is Func B’

Directory probably

actually needs to

be an integral part

of the controller as

the look-up is deep

in the network

model be part of

MCC (controller)

Config→ B’

Apparent

layering

Problems project to exposed
client layer-protocol

Applies to any network…
The NE is a mini network

Figure 4-3 Simple network view mapping

The figure below shows a network that has a virtual function "B" (virtual) that is exposed as

"Func B' " to the Client. The view provided to the client is the same as in the previous figure

although the realization in the network is quite different

TR-512.8 Core Information Model – Control Version 1.5

Page 35 of 46 © 2021 Open Networking Foundation

View mappings – function running on a VM

As previous… In addition
• Function may move to different platform whilst apparent address remains the same and function appears

continuous to the observer
– Performance data must “move” with function move

• Problem in server is reflected through effect of VM on function in pool

Provider

A

Func B’

Directory

N M

Connector

H-47-JReal Connector
(also shows physical

partition of connector

(ignored here))

Including actual

address translationBuilding C

Client

Provider advertises various products that include

subsets of Func B capability, one is Func B’

Apparent

layering

Pool

vB

vB VMs

Applies to any network… The
traditional “NE” is a mini network

Figure 4-4 View mapping for functions on a VM

The figure below shows a client view of various control interfaces related to a particular simple

network service. The same pattern applies at all levels and as a consequence the same model can

be applied at all levels. Traditionally different models have been applied.

JK L

B

X T

T

U V

W

X

V

W

T

Y

“Controller”

“Controller”

“Controller”

“Controller”

“Controller”

Provider

Technology
“Signalling” RDI etc
(i.e. messaging)

Peer messaging

Formal B2B

Problems project to exposed
client layer-protocol

Client

Figure 4-5 Client view of network and control

The diagram above highlights the following:

• Signalling is messaging

• Network device essentially has embedded controller

TR-512.8 Core Information Model – Control Version 1.5

Page 36 of 46 © 2021 Open Networking Foundation

o The embedded controller generates messaging at the "network technology level"

(traditionally called signalling)

• Messaging at the network technology level is "immediate" but provides minimal

information and hence causes somewhat "knee-jerk" actions

• Higher controller provides richer information but with reduced immediacy

• Higher controller may drive network technology level messaging (signalling)

• In the longer term embedded controller become part of the continuum

• Approach to messaging source depends upon trust and information usage

The figure below shows a simplified picture of the client view of an actual service (capability)

and view of control of that capability. The figure uses the symbol set highlighted earlier in this

section from [TMF IG1118]

To

About

To

About

Client Control System

Controller

Controller

Other resource

View of Provider system control

Actual Service
provided by
other system

Provider system

Controlled capability

Figure 4-6 Simplified view showing exposure of controllable capability to a client

4.7 Dismantling the NE – Some rationale

The Network Element (NE) concept has been around for a long time.

• A Network Element is defined in US law7 as "Network element is defined as a facility or

equipment used to provide a telecommunications service. Such term also includes

features, functions, and capabilities that are provided by means of such facility or

equipment, including subscriber numbers, databases, signalling systems, and information

sufficient for billing and collection, or used in the transmission, routing, or other

provision of a telecommunications"

• [ITU-T Q.1741.9] defines NetworkElement as "A discrete telecommunications entity,

which can be managed over a specific interface, e.g., the RNC."

• [ITU-T G.780] defines "network element (NE)" as "A stand-alone physical entity that

supports at least network element functions (NEFs) …"

7 https://definitions.uslegal.com/n/network-element/

https://definitions.uslegal.com/n/network-element/

TR-512.8 Core Information Model – Control Version 1.5

Page 37 of 46 © 2021 Open Networking Foundation

The NE is a somewhat messy thing. One of the issues we have is that existing representations

make a number of assumptions that aren't true in many cases. To avoid confusion by redefining

the existing concepts, new terms are required to clearly define what it is and isn't.

NE

Physical Inventory

Resource Functionality
(ProcessingConstruct)

Management-Control
Context

(ControlSystemView)

Resource Constraints
(ConstraintDomain,

ForwardinDomain, Link)

Figure 4-7 The "NE"

A much cleaner, recursive and consistent model has been formulated that takes advantage of the

Control-View model discussed above.

The following section discusses the rational for dismantling of the NE.

4.7.1 The analysis

Looking broadly at the drivers from earlier sections:

• The Management-Control Continuum, as identified by TM Forum, extends down through

the SDN Controller into the NE such that an aspect of the NE is a controller

o The SDN Controller looks like any other manager/controller

o The NE looks, in part, like any other manager/controller

• A generalized model of control, access to control and control scope will provide a basis

for a coherent reworking of both the NE and SDN controller representation

• The SDN Controller, like the NE, needs to present a representation of the functionality it

is controlling as well as to present itself as a set of control functions

• There appears to be a need for a generalized representation (pattern) of a coherent unit of

functionality

o To cover both control functions and controlled functions

• Just as for the NE, there needs to be a representation of the relationship between the

function (of control and being controlled) and their physical realization

o The representation of physical realization using the Equipment model will bring

geographical positioning information

▪ The control/communications channels for both the NE and the SDN

Controller look like any other communications

TR-512.8 Core Information Model – Control Version 1.5

Page 38 of 46 © 2021 Open Networking Foundation

• The representation of communication channels using FC/LTP will

link with the remainder of the communications network

o The relationship between a function and its physical realization may be through

many levels of functional realization

The Network Element (NE), as concept, is a somewhat incoherent hybrid of various concerns

where the hybrid is not viable for many cases. One aspect of the NE is control and this should be

represented and considered in the same way as any other controller. The control aspect is the

primary focus of a Managed Element (ME) but this also suffers from the same lack of coherence.

Clarity is brought by considering the separable concerns:

• Physical thing (solid i.e., a thing that can be measured with a ruler and has weight) and

Physical space (i.e., with volume but no relevant weight)

o A coherent physical thing that in context is not relevantly decomposable

(component, atomic)

o A coherent assembly of physical things (system/assembly, composite)

o Similarly physical space

• Positioning of the physical thing in geographical space

o Essentially a point in space (very small geographical area)

o A large geographical area

• Virtual8 function emergent from a physical thing where the virtual function has capability

and is potentially active

o A coherent virtual thing that is in context not relevantly decomposable

(component, atomic)

o A coherent assembly of virtual things (system/assembly, composite)

o Only realisable via supporting physical things (see TR-512.6 for details of the

relationship between the models of physical and functional things).

• Management-Control function, Management-Control scope and access to Manage-

Control where that Management-Control function

o The functions that fulfil and assure the intent and that provide access (can be

talked to) to a view of things (that can be talked about)

o Is itself a virtual function

o Can view and manipulate virtual functions

o Can provide a view of Physical things through virtual functions

• Port through which to access management-control information

o Will necessarily be a partial view of information of each thing that can be viewed

o May overlap with the view provided via another management access (such that

some things are seen partly through one port, partly through another and partly

through both)

o May allow access to information on geographically distributes things

o May allow access to information representing fragments of functionality some of

which may be completely disjoint from others

• A named hybrid assembly of virtual and physical things spread over an arbitrary

geographical area

8 Also called Logical Function.

TR-512.6_OnfCoreIm-Physical.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 39 of 46 © 2021 Open Networking Foundation

• The assembly of information that can be accessed through a management port

The NE is a mix of the above (as is the SDN Controller, the EMS etc.). The challenges with the

above conglomeration approach:

• Inconsistent boundaries

o The boundary of a coherent physical thing is highly unlikely to be coincident with

a coherent virtual thing

o The boundary of the visibility via the management access is likely to cut across

the boundary of physical and virtual things

o Some disjoint things are accessible via the same management access

• Geographical spread

o The management access may be to things that are spread across geography and

hence:

▪ Themselves do not have shared fate

▪ Have shared fate with things accessible via other management accesses

• Identity and name challenge

o Each instance of the concept has identity and some form of identifier in a context

that allows identification and potentially allows location via some form of address

o The identifier for the management access may differ from the identifier for the

various virtual things and for the various physical things accessible

o The same thing may be accessed via management accesses of several different

controllers

o Accidental use of the same identifier for multiple purposes (e.g., a function, and a

point on a piece of equipment) with no clear name space separation

• Lifecycle fragmentation

o A virtual thing visible via the management access may persist beyond the life of

the management access etc.

• The assembly of information that can be accessed through a management port

o For a geographically distributed "ME/NE" it is potentially necessary to open up

the "ME/NE" to understand its cabling etc. and fate share with other systems

o An "ME/NE" may group multiple "subnetworks" and have internal

interconnecting "links"

• A composite "ME/NE" may provide access to disjoint functions that have independent

network purpose

o For example, an FRU that only draws power and perhaps receives basic control

and that has no functions relevant to the rest the FRUs in a shelf that forms part of

an NE

• Some things may be accessible as if in two different "MEs"/NEs"

Considering the current model clearly physical and functional things can be represented. Hence

the focus of the model to replace the NE is the control view and the control entities themselves

(the control entities are controllable).

• The control entities can be considered as Components.

• In a controller view, there is potentially a view of the view provided by the subordinate

controller (and so on)

TR-512.8 Core Information Model – Control Version 1.5

Page 40 of 46 © 2021 Open Networking Foundation

o The critical consideration is what needs to be exposed. The "NE" exposes a view.

The controller of the NE "may choose" to expose a view which may include the

NE view or an abstraction of it (which the controller may claim is the NE view

• A view is accessible through a port and a port is an LTP (which is a component-system)

o There is an address of the port at which the information the controller expose is

available

All systems involved in Control (e.g., NE, EMS, NMS, SDN Controller, Orchestrators) can be

treated in the same way.

• The views are aggregation. The provider of the view can be removed without the system

ceasing to function

o The lifecycle of the presentation is independent of the lifecycle of the presenter

o A view may be provided through several accesses. An LTP could be visible

through multiple views

o There could be fragments of entities provided in a view where the whole entity is

made by assembling information from several views

o It is the ControlEntity that is requested to perform actions on the things presented

through the view

• NE cases illustrating points on the broad spectrum

o A simple regenerator which is a single piece of hardware with one function and

two… this is clearly representable as a traditional NE (single geographical place

etc.)

o The DSL case with a direct access to the remote and a head end that consolidates

the remote. If monolithic NEs are considered then there is a problem, if views are

considered then there is no problem.

• Control of a "white box" NE will benefit from this approach

o The views are decoupled from the physical platform and from the ControlEntity.

They can move. The location of the producer of the view is determined via the

relationships to the equipment model.

▪ Equipment gives rise to function gives rise to complex function gives rise

to LTP

• There is no need to create a virtual NE or virtual hardware.

o Simple view based or domain based groupings of functionality covers all cases

The following figure shows an NE that happens to be significantly geographically distributed.

TR-512.8 Core Information Model – Control Version 1.5

Page 41 of 46 © 2021 Open Networking Foundation

NE

Sub-RackA Sub-RackB

NE

X X

PIU1 PIU2 PIU1 PIU2 PIU3

Looking inside the NE

Perhaps Standard
Protocol

Over Geography
Shared fate with

things visible at NE
level

X X

Note that the
connections in Sub-
Rack A and Sub-Rack B
may be protected.

The apparent NE
Opaque but spread
across a geographical
area.

Figure 4-8 Geographically distributed NE

In the figure above:

• A subset of functions form a coherent unit of stand-alone network function

• There is significant geographical distance between two functions accessible through

the control interface

TR-512.8 Core Information Model – Control Version 1.5

Page 42 of 46 © 2021 Open Networking Foundation

A controller (may be resilient)

A shelf of equipment

A Scope of access via A

A Scope of access via B

A relevant function

Overlap

Visible control port protocol A

Visible control port protocol B

Controller
resilience

Figure 4-9 An NE with two control access ports each providing a partial view

In the figure above, an assembly of equipment forms a traditional NE that happens to have two

control access ports, each providing a partial view. Part of a relevant function (e.g., an LTP) is

accessible through one control interface and part through another.

4.8 The control model applied to the "Controller"

The control model discussed here can be applied to any manager/orchestrator/controller. The

ControlConstruct can be used to represent any control functions. If a more detailed functional

model of the Controller is required, the model described in this document can be supplemented

with the ProcessingConstruct/ConstraintDomain (see TR-512.11). The Controller model is not

fully developed in this release.

4.9 The configurationAndSwitchController (C&SC)

The C&SC is described in TR-512.5. It is a specialized ControlConstruct used for control of

forwarding resilience. It is expected that the C&SC, the Control model described here and the

PC/CD model will be further refined in subsequent releases.

5 Operations

This section considers the details of exposing capability on a ControlPort. This section describes

a generalized model of interfacing. In a real implementation, if the ControlConstruct was

representing client facing capability of an SDN Controller, then the ControlPort may be exposing

a TAPI interface.

5.1 The basic model

The following figure shows that a ControlPort can take either a ProviderRole or a UserRole.

TR-512.11_OnfCoreIm-ProcessingConstruct.pdf
TR-512.5_OnfCoreIm-Resilience.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 43 of 46 © 2021 Open Networking Foundation

The ProviderRole offers:

• A synchronous interaction opportunity for traditional message/response interaction

covering both:

o Request for information

o Request for change to be made9

• A notification opportunity to enable reporting of changes in state of underlying structure

detail covering:

o Changes in the controlled resources, e.g., the network

o Changes in the control system (also therefore controlled resources)

• Two signal receipt opportunities for use in an event driven context where the signals,

potentially broadcast by the client, are related to request for information and request for

change

The UserRole offers the other half of each of the ProviderRole opportunities.

The two information flows (dashed lines) represent Provider to User and User to Provider flows.

The detail of the model is covered in later figures.

CoreModel diagram: Control-ControlPortWithProviderAndUserRole

Figure 5-1 Provider and User role ControlPorts

5.2 Provider and User role detail

This section expands on the model introduced in the previous section and introduces some more

detail on the structures in the previous section.

In the figure below the three signals are expanded and the notion of universal structures is

highlighted. These structures are further explored in later sections.

In addition the interface that is formed by binding a Provider role ControlPort and User role

ControlPort is depicted (in violet). This also uses the two universal structures.

9 Change may change a value, cause linear behaviour, cause some rate of change etc.

TR-512.8 Core Information Model – Control Version 1.5

Page 44 of 46 © 2021 Open Networking Foundation

CoreModel diagram: Control-ControlConstructShowingProviderAndUserDetail

Figure 5-2 Provider and User role detail

5.3 Long-lived operations and Universal structures

A request for change, conveyed either via the synchronous or asynchronous mechanisms

highlighted above, is expressed in terms of the UniversalRequestConstraintStructure which is a

statement of desired outcome and is in the form of the OperationEnvelope described in TR-

512.10.

A synchronous interaction is reasonable when the provider task is simple such that the provider

can easily provide a response in a timeframe considered suitable by the user. In this case the

response may be COMPLETE or FAILED along with full relevant details in the

structureConstraint attribute along with pertinent notifications from the network resources etc

represented in the ExposureContext.

In cases where the task duration is long or is widely variable, initiation via a synchronous

interaction is still possible but it is then necessary to provide a rapid response followed by

updates on progress up to completion. The following figure introduces the ControlTask which

will provide visibility of the progression of the task. This is highlighted to the client via the

UniversalOutputConstraint Structure supplied in the response to the request which also supplies

the ExposureContext reference.

This model fragment allows a Controller to respond with either the complete answer, in a

structureConstraint or with a partial answer (potentially simply IN_PROGRESS) along with a

reference to a ControlTask entity that can be queried for progress of the task and that will notify

of changes in the task. The ControlTask provides the full request detail via the requestContext

property.

Where the task has not been completed the relevant ControlPort will emit notifications related to

progress of the task in terms of

• Entities created etc, such as FCs, LTPs etc (which may be collected together into sugraph

assemblies)

• ControlTask state and property changes where the ControlTask can progress through the

any relevant TaskLifecycleStates.

TR-512.10_OnfCoreIm-OperationPatterns.pdf
TR-512.10_OnfCoreIm-OperationPatterns.pdf

TR-512.8 Core Information Model – Control Version 1.5

Page 45 of 46 © 2021 Open Networking Foundation

CoreModel diagram: Control-ControlConstructWithUniversalStructures

Figure 5-3 Long lived operations and universal structures

5.4 The full model

The ControlPort is supported by an LTP which will encode and propagate the relevant messages.

The LTP will have associated to it FCs that provide the necessary connectivity to enable

communication.

Depending upon the protocol there may be a session running between communicating

ControlPorts. This session can be represented by an FC between LTPs with the appropriate

LayerProtocol.

Where there is no session the momentary relationship made as a message leaves on ControlPort

and arrives at another ControlConstruct port can be considered as a fleeting FC. Clearly, it is

unlikely that instances of this FC will need to be modelled in any way.

TR-512.8 Core Information Model – Control Version 1.5

Page 46 of 46 © 2021 Open Networking Foundation

CoreModel diagram: Control-ControlConstructWithFullOperationsModel

Figure 5-4 Full Control Model

6 Future considerations

6.1 Application of streaming

Early experimental work has been carried out to integrate streaming. The model fragment below

shows additional streaming skeleton classes (only structural) in green. These classes are not full

integrated into the model. Further work will be carried out in subsequent releases.

CoreModel diagram: Control-WithLogAndStream

Figure 6-1 Sketch of model structure related to streaming

End of document

	Disclaimer
	Important note
	Document History
	1 Introduction to the document suite
	1.1 References
	1.2 Definitions
	1.3 Conventions
	1.4 Viewing UML diagrams
	1.5 Understanding the figures

	2 Introduction to the Control model
	3 Model of control component and views
	3.1 Background
	3.2 The control model in the context of the core classes
	3.3 The control model in the context of the core classes
	3.3.1 ControlConstruct
	3.3.2 ControlPort
	3.3.3 ExposureContext
	3.3.4 ConstraintDomain
	3.3.5 CdPort
	3.3.6 ViewMappingFunction
	3.3.7 VmfPort

	3.4 Further description
	3.5 Relationship to TR-512 V1.2 model
	3.5.1 Function:NetworkElementControl
	3.5.2 Function:SdnController
	3.5.3 View:NetworkElementViewedFromSdnController
	3.5.4 View:SdnControllerViewedFromManager

	3.6 Relationship to the other key classes
	3.7 Model in context – directly controlled things
	3.8 General discussion

	4 Understanding the control component and view model
	4.1 Rationale
	4.2 Implications
	4.3 The patterns behind the model
	4.4 Identifiers, naming and addressing
	4.5 Resilience in the Control System
	4.6 Controller view considerations
	4.7 Dismantling the NE – Some rationale
	4.7.1 The analysis

	4.8 The control model applied to the "Controller"
	4.9 The configurationAndSwitchController (C&SC)

	5 Operations
	5.1 The basic model
	5.2 Provider and User role detail
	5.3 Long-lived operations and Universal structures
	5.4 The full model

	6 Future considerations
	6.1 Application of streaming

