.

N
oM~

Open Networking Foundation

Core Information Model
(CoreModel)

TR-512.A.13
Appendix — Software
Examples

Version 1.5

September 2021

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

ONF Document Type: Technical Recommendation
ONF Document Name: Core Information Model version 1.5

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation
1000 El Camino Real, Suite 100, Menlo Park, CA 94025
WWW.opennetworking.org

©2021 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the
Open Networking Foundation, in the United States and/or in other countries. All other brands,
products, or service names are or may be trademarks or service marks of, and are used to
identify, products or services of their respective owners.

Important note

This Technical Recommendations has been approved by the Project TST, but has not been
approved by the ONF board. This Technical Recommendation is an update to a previously
released TR specification, but it has been approved under the ONF publishing guidelines for
‘Informational’ publications that allow Project technical steering teams (TSTs) to authorize
publication of Informational documents. The designation of ‘-info’ at the end of the document
ID also reflects that the project team (not the ONF board) approved this TR.

Page 2 of 17 © 2021 Open Networking Foundation

http://www.opennetworking.org/

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

Table of Contents

[T o = 1L 0 TP SRTRPRRI 2
Open NetWorking FOUNGAtIONccoiiiiiiiiiiiee eaeaaeaeaaeaaeesaesanaaanns 2
[T Yod U g T=T o)t 1= (0] SRt 4
1 Introduction tO the dOCUMENT SUITEueiiiiiiiieie e 5
O O = =TT o =SSP 5
2 = {1 011 (o] o SRR STPRPIN 5
I B 0o) Y7= 1 1SS 5
1.4 VieWiNG UML QIAQIAMSuteiiiiiiiiiitiet e e e e e e e ettt ettt e et e e e eaaaaaaaaaaaaaeaaaaaaannnnanneeneeeneeees 5
1.5 Understanding the fIgUIES ...t e e eb e e e 5
1.6 APPENAIX OVEIVIEW ...ttt ettt e e e e e e e e e e e e e et e e et bbbttt e et ettt e e e aaaaaeaaaaaaaaasaaaaaaannnbnnbenbensseees 5
2 Introduction to this AppPendiX dOCUMENTciiiiiiii i e e e e e e e e e e e e e 6
3 GENEIAl EXAMIPIES ettt ettt e et e e e e et e e e e e e e e e e e e e e e aaaaana 6
3.1 ROULING 'ProCeSS' 0N & ROULET........uiiiiiiiiiiiiee ittt e e e e 6
3.2 Simple HOSt With HOSE OS VMMeiiiiiiiiiii et 8
3.3 Simple Host with Container Engine and CONAINETSc.uuviiieiiiiiiiiiie e 10
3.4 CPU, Memory & StOrage EXAMIPIE.......coi ittt 11
3.5 FPGA EXAIMPIE ...ttt 12
3.6 SOft SWILCH EXAMPIE ...ttt e et e e e e e e e e e e e e e e e e e e e neanes 15
3.7 Constraint DOM@AIN EXAMPIEuuuuiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e ennnnnes 17

List of Figures

Figure 3-1 The ROULING "PrOCESS" 0N FOULETuuiiiieiiiiiii it e e ettt s et e e e st e e e e e et e e e e e e e neees 6
Figure 3-2 The instance model for the routing "ProCess” 0N TOULETceieiiiiiiiieeeiiiiiee e 7
Figure 3-3 Simple host With NOSt OS VIMM ..ot 8
Figure 3-4 Instance model for simple host with host OS VMM.........uuuiiiiiiiiiiiiiiiiiieceeeeeeee e 9
Figure 3-5 Instance model for simple host with container engine and containers.............cccccccvvvvvveeeeennnn. 10
Figure 3-6 Compute blade iN @ ChASSIS.......ciiiiiiiiii e 11
Figure 3-7 Instance model for compute blade in @ ChasSISuuuiiiiiiii e 12
Figure 3-8 Field Programable Gate Array (FPGA)uuuuuiiiieii et e e e e e e e 13
Figure 3-9 instance model fOr an FPGAoooi oot e e e e e e e e e e e eeereees 14
Figure 3-10 Soft SWItCh E@XAMPIE ... e e e 15
Figure 3-11 EtNerNet DIIAGEoeeiie it e e e e e e e 16
Figure 3-12 Instance example for Ethernet bridge ... 16

Page 3 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples

Figure 3-13 Considering control

Document History

Version 1.5

Version | Date Description of Change
1.4 November 2018 Version 1.4 (Initial Version)
15 September 2021 Enhancements to model structure

Page 4 of 17

© 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

1 Introduction to the document suite

This document is an addendum to the TR-512_v1.4 ONF Core Information Model and forms
part of the description of the ONF-CIM. For general overview material and references to the
other parts refer to TR-512.1.

1.1 References
For a full list of references see TR-512.1.

1.2 Definitions
For a full list of definition see TR-512.1.

1.3 Conventions
See TR-512.1 for an explanation of:

e UML conventions
e Lifecycle Stereotypes
e Diagram symbol set

1.4 Viewing UML diagrams

Some of the UML diagrams are very dense. To view them either zoom (sometimes to 400%) or
open the associated image file (and zoom appropriately) or open the corresponding UML
diagram via Papyrus (for each figure with a UML diagram the UML model diagram name is
provided under the figure or within the figure).

1.5 Understanding the figures

Figures showing fragments of the model using standard UML symbols and also figures
illustrating application of the model are provided throughout this document. Many of the
application-oriented figures also provide UML class diagrams for the corresponding model
fragments (see TR-512.1 for diagram symbol sets). All UML diagrams depict a subset of the
relationships between the classes, such as inheritance (i.e. specialization), association
relationships (such as aggregation and composition), and conditional features or capabilities.
Some UML diagrams also show further details of the individual classes, such as their attributes
and the data types used by the attributes.

1.6 Appendix Overview

This document is part of the Appendix to TR-512. An overview of the Appendix is provided in
TR-512.A.1.

Page 5 of 17 © 2021 Open Networking Foundation

../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
TR-512.A.1_OnfCoreIm-AppendixOverview.pdf

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

2 Introduction to this Appendix document
This document provides examples of the use of the CIM software model.

The examples in this document extend the simple examples given in TR-512.12.

3 General Examples

3.1 Routing 'Process' on a Router
Assume a scenario where an OSPF software process can support multiple OSPF instances.

The software is installed as a single binary (unit of installation).

The device lists the running processes, so we can track the routing software process.

CD = Phy(Chassis) Note, to keep the
diagrams simple, we are

using PC to represent all
of the functions PC, LTP,

RunningOSs FC, FD.
PC = ProcessingConstruct

CD = ConstraintDomain
OS invokes Process

PC from
RunningSoftware
Process

Note that : Other
ConstraintDomains, such as
those defining NE constraint
boundaries and
ControlDomain constraint
boundaries, can be added if
required

Running
Software
Process

Figure 3-1 The Routing "process" on router

Page 6 of 17 © 2021 Open Networking Foundation

TR-512.12_OnfCoreIm-Software.pdf

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

Figure 2 shows the instance diagram equivalent of figure 1.

3 ic1:InstaledSoftwareComponent

name=Router 05
version=15.2

SoftwareComponentInstaledrromInstallable

3 f1:File

localMame=router-os-15-2-6543. bin
isReadonly =false

isHidden=falsa
pathMame=\router-os-15-2-6543. bin
size=5876242

SoftwareProcessInvoledrromExetutable SoftwareProcessinvoledrFromExecutable

& 0s1:RUNNingOperatingSystem OsInvokesProcesses & prla:RunningSoftwareApplication

name=Router 05 15,7 name=05PF Process

CdConstrainsRUnningOs]
PcFromRunningSoftwareProcess

. - PcFromRunningSoftwareProcess
9 cd1:ConstraintDomain

name=_Chassis1 CD
3 pcl:ProcessingConstruct

CdRepresentsEqBoundary name=0SPF Instance 123

J pc2:ProcessingConstruct
name=05PF Instance 432
) eql:Equipment

rame=chassis 1

Figure 3-2 The instance model for the routing "process" on router

Note that here we are using a ConstraintDomain that is related to a physical boundary for the
operating system. Another alternative could be to use an existing 'NetworkElement' boundary or
to use an existing ControlConstruct control domain boundary.

Page 7 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

3.2 Simple Host with Host OS VMM

This is a more complex example because there is also the VMM/VM virtualization layer to
represent.

Assume that a host runs a VMM as a process under its operating system (rather than a bare metal
VMM). The host operating system is also running other normal software processes. The VMM is
running many VMs.

One thing to note is that there are two separate 'namespaces’ in this example (which can be
conveniently represented using a ConstraintDomain). Both the guest and the host operating
systems can have separate files such as c:\word\myDoc.doc with different content, because
these are in different FileSystems. Also the guest and the host operating systems can both have
separate software processes with the same process id.

CD = Phy(Chassis)

0OS invokes
Process

RunningOS
(Host OS)

OS invokes Proce

Running
Software
Process 1

CD =VM?2 Ch=VM1
RunningOS
(Guest 0S)
. Other
OS invokes Process ConstraintDomains

y such as NE and
Running ControlDomain
Software constraint

Process 1 boundaries can be
added if required

Figure 3-3 Simple host with host OS VMM

Note also that because the ONF CIM doesn't currently have a storage model, the FileSystem
instance has been directly related to the ConstraintDomain (FileSystemWithinCD). If a storage
model is added in the future, then this association needs to be removed and replaced with an
association to the storage function.

The control point of view will be explored in a later example, so it has deliberately been omitted
from these earlier examples to simplify the diagrams and help focus on the software aspects.

Page 8 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

The figure below shows the instance diagram equivalent of the figure above.

FileSystemEntriesFromSoftwareComponentInstallation
I3 fsLFieSystem FilesysternContainsRootEntries @9 d1:Directory

FileSystemi\ithinCd

G cd1:ConstraintDomair

name=chassis C0
CdConstrainsRunningOs

i3 os1:RunningOperatingSystem
name=Linux 05

OsInvokesymmSoftwareProcess

£ vrnm L:RunningHostOsvmm

MAMME =VITIm. eXe
description=Hypervisor
processld=593
pricrity=8
invokingUser=chrish
invokingCormmand=\binvmm.sh
runState=RLUNNING

9 cd2:ConstraintDomain
name=Linux VM CD
CdConstrainsRunningOs
i) os2:RuNNiNgCperatingSystem

name=Linux OS5

FileSystemContainsf.ootEntries

Guest0s
i d2:Directory

localName=kvm-isa
isReadonly=false
isHidden="false
pathMame=/lkvm-isa

DirectoryContainsFileSystemEntries

isReadonly =false
isHidden="false

CdRepresentsEgBoundary £ eql:Equipment

name=chassis1
Host OS5

OsInvokesProcesses

Vrnrnlnvokesym

CdRepresentsRunningVmBoundary &3 vm1:RunningVvirtuaMachine

name=Linux VM

OsInvokesProcesses

SoftwareProcessInvolkedrromExecutable

£ f1:File

localName=Fedora2s.iso
isR.eadonly=false
isHidden=false

£ i1:InstalledSoftwareComponent
name=Linux 0S

3 pri:RunningSoftwareApplication

name=Minesweeper

description=Exciting GUI game
processld=5723

priority=2

invakingUser =chrish
invokingCommand="\usr\games\minesweeper,sh
runState=RUNNING

note these
are in
different
directories -
one is on the
host, one is
on the WM

£ pr2:RunningSoftwareApplication

name=Solitaire

description=Exciting card game for one
processld=8856

priority=3

invakingUser=chrish
invakingCornrmand="\usr\games\sclitaire.sh
runState=RLNNING

WM image

pathMame=/lvm-iso/Fedoras.iso
SoftwareComponentInstalledFromInstalable

i i2:InstalledSoftwareCormponent
name=KYM Fedora2s VM

Figure 3-4 Instance model for simple host with host OS VMM

Note that there are two operating system instances in the example (host and guest).

Note that here we are using a ConstraintDomain that is related to a physical boundary for the
host operating system. The guest operating system's ConstraintDomain is the Linux VM.

Another alternative could be to use an existing 'NetworkElement' boundary or to use an existing
ControlConstruct control domain boundary.

Page 9 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

3.3 Simple Host with Container Engine and Containers
This is very similar to the VMM / VM case

FileSystemEntriesFromSoftwareComponentInstallation
@ fsL:FileSystem FleSystemContainsRootEntries & dL:Directory

isReadonly =false :
isHidden="false name=Linux 05

3 i1:InstalledSoftwareComponent

FileSysternWithinCd

9 cd1:ConstraintDomair CaRepresentsEgBoundary &9 eql:Equipment

name=chassis CD name=chassis1

3 pr1:RunningSoftwareApplication

CdConstrainsRunningOs ggSt name=Minesweeper
) description=Exciting GUI game
3 051:RUNNingOperatingSystem OslnvokesProcesses Dl'_OC_?SSIg=5733
i priority=2
name=Linux 0S involingUser =chrish
invokingCormmand =\usr\games\minesweeper,sh
OsInvolkesContainerSoftwareProcess runstate=RUNMING
@ cel:RunningContainerEngine
. note these
name=ce. sl are in
description=Container Engine different
processld=593 directories -
priority=8 ore is on the
invokingUser=chrish host, one is in
invokingCommand="bin\ce.sh the Container

runState=RUNNING

ContainerEnginelnvokesContainer @ pr2:RunningSoftwareApplication

name=Saolitaire
description=Exciting card game for one

@ cL:RunningContainer SoftwareProcessInvokesChidProcesses E:%ﬁfﬂ? ESSE
name=Containerl Process invakinglser=chrish

invokingCommand =\usr\games\sclitaire.sh
runState=RUNNING

Figure 3-5 Instance model for simple host with container engine and containers

Note that there is only one operating system instance in the example.

Note that here we are using a ConstraintDomain that is related to a physical boundary for the
operating system. Another alternative could be to use an existing '‘NetworkElement' boundary or
to use an existing ControlConstruct control domain boundary.

Page 10 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

3.4 CPU, Memory & Storage Example

We now have all of the model concepts that we need to show how we can link software
processes to hardware.

Assume that we have a chassis holding compute blades. Each blade is essentially separate, so we
can create a constraint domain relating to each physical blade boundary.

CD = Phy(Chassis)

CD = Phy(Bladel) CD = Phy(Blade2)
RunningOS CPU RunningOsS CPU
Cores Cores

OS invokes Process OS invokes Process

. Memor -
Running Blocks y l Running Memory
Blocks

Software Software

Process Process

Figure 3-6 Compute blade in a chassis

Note that at this stage, we don't have classes to represent CPU or Memory (or Storage) in the
ONF CIM, so what we are showing below are just placeholder instances showing how future
classes could link in.

Page 11 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples

£ eg6:Equipment
name=CPU 1

i@ eq7:Equipment
name=DIMM O

Version 1.5

] corel:CpuCore (=] coreZ:CpuCore

£ egd:Equipment
name=DIMM 1

nonFru

EquipmentEncapsulateshonru

3 h1:EquipmentHolder
name=slotl
EquipmentHasHolders
=] eql:Equipment
name=_Chassis 1

EquipmentHasHolders
3 h2:EquipmentHolder

name=slot2

HolderOcrupiedByEquipment

name=Blade 2

HolderOccupiedByEquipment &3 eq2:Equipment

name=Blade 1

3 eq3:Equipment!

Cpucoremggu&:relncd

MernoryBlockInCd
@ cd1:ConstraintDomain] mem1:MemaryBlock
CdRepresentsEqBoundary | Name=Bladel CD

CdConstrainsRunningOs

(@] os1:RunningOperatingSystem

MernoryBlockInCd
&9 cdz:ConstraintDomain

CdRepresentsEqBoundary | name=Blade 2 CD

£ mem?2:MemoryBlock

EquipmentHasHolders

@ h4:EquipmentHolder

name=CPL Slot

HolderOccupiedByEquipment
& eq4:Equipment
name=CPU 1

CpuCorelnCd
CpuCoreIncd

[©] core3:CpuCore @] cored:CpuCore:

@) h3:EquipmentHolder

name=Memary Slot

HolderOccupiedByEquipment
@ eqs:Equipment
name=pIMM 1

Figure 3-7 Instance model for compute blade in a chassis

3.5 FPGA Example

In this example we will focus on a single physical blade and then focus on a FPGA within that
blade.

There could be many variations in an actual implementation, so this example should be seen as
‘illustrative' rather than 'definitive'.

Assuming that our physical unit is a blade server in a chassis, it will be represented as in our
previous example.

We then create a new ConstraintDomain for our FPGA and represent the software and functions
within the FPGA. Note that the information available from the FPGA may be limited or
comprehensive, depending on the implementation.

Page 12 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

CD = Phy(Chassis)

CD = Phy(Blade1l) CD = Phy(Blade2)

CD = Phy(FPGA1)

RunningOS RunningOS

OS invokes| Process

A 4

OS invokes Process
A 4

Running
Software
Process

Running
Software
Process

Figure 3-8 Field Programable Gate Array (FPGA)

Page 13 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples

Version 1.5

Figure 9 shows the instance diagram equivalent of figure 8.

& eq0:Equipment
name=FPGAQ i3 is1:InstaledSoftwareComponent

name=Bridge FPGA Config
version=1.24a
i3 eh1:EquipmentHolder

name=FPGA Slot0

HolderOccupiedByEquipment

SoftwareComponentInstalledfromInstalable
£ f1:File
EquipmentHasHolders

£ eq2:Equipment

localMarme="fpga-config.dat
HolderOccupiedByEquipment | name=Elade 1

9 cd1:ConstraintDomain isReadlonly=false

isHidden="false
_ CdRepresentsEqBoundary | Name=Blade1 CD
& hL:EquipmentHolder SoftwareProcessinvokedFromExecutable
name=slotl
£ [tp1l:LogicaTerminationPaint E3 pri:RunningSoftwarespplication
) EquipmentEncapsulateshonFiu
EquipmentHasHolders
&) eqL:Equipment nonFru SymmetricCdlsBoundedByL tp CdConstrainsSoftwareApplication
narme=Chassis 1 (& eg3:Equipment i3 cd2:ConstraintDomain CdConstrainsFd
name=FPGA1

3 fd1:ForwardingDomair
CdRepresentsEqBoundary | name=FPGAL

CdCanstrainsPc

FdCanstrainsFc
(] pcl:ProcessingConstruct

i fr1:ForwardingConstruct

Figure 3-9 instance model for an FPGA

Page 14 of 17

© 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

3.6 Soft Switch Example
There are a number of soft switches available, both vendor proprietary and open source.

We will use Open vSwitch for our example because it is well known and has useful
documentation.

An Open vSwitch could be running directly on a server or via a VM or container. This example
shows the direct case, but it can be combined with the previous examples for the other cases.

"Open vSwitch is a multilayer
software switch ... Open
vSwitch is well suited to
function as a virtual switch in
VM environments. ... it was
designed to support bridges”

distribution across multiple

physical servers."

NetFlow

Flow_Sample_Collector_Set|

bridge

(Slightly redrawn
for clarity)

controller*

Flow_Table

flow_tables value*

manager_options*

mirrors®

queues value*

Diagram from
http://openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.pdf

Software Process Open_vSwitch f:;:zguration for an Open vSwitch daemon. There must be exactly one record in the Open_vSwitch

Bridge Configuration for a bridge within an Open_vSwitch.
ProcessingConstruct

A Bridge record represents an Ethernet switch with one or more “ports,” which are the Port records
Figure 3-10 Soft switch example

pointed to by the Bridge’s ports column.

We can see from the documentation extracts above that the vSwitch process can support many
bridges (the functional switch blocks).

Our block diagram is consistent with our previous examples, but now we are also showing detail

within each ProcessingConstruct and the related ForwardingDomain and its ports and the related
LTP.

Note that in this case the legacy NetworkElement concept has been used to define the constraint
boundary — of course a physical boundary or ControlDomain constraint boundary will also work.

Page 15 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

CD="NE”
PC = Eth Bridge
EthO 4 8 N

\
\

)

RunningOS

Eth3

Eth4

[—

S invokes |Process
Y

)
Running

Software

Process
.

]

Eth7
Eth6

Figure 3-11 Ethernet bridge

3 pr1:RunningSoftwareApplication
£ 0s1:RunningCperatingSystem| OsInvokesProcesses name=open vSwitch daemon

name=Linux OS processld=34
priority=6
invokingLser=admin
runState=RUNNING

PcFromRunningSoftwareProcess

] pcl ProcessingConstruct] pc2:ProcessingConstruct
name=Bridgel name=Bridge2
SymmetricPcIsBoundedByLtp SymmetricPclsBoundedByLtp

i3 ltp1:LogicalTerminationPoint &3 Itp2:LogicalTerminationPaint €3 Itp3:LogicalTerminationPoint &3 Itp4:Logical TerminationPoint
name=Eth0 name=Ethl name=Eth& name=Eth7

Figure 3-12 Instance example for Ethernet bridge

In some cases a port on one bridge and a port on another bridge may go to the same hardware
port.

Page 16 of 17 © 2021 Open Networking Foundation

TR-512.A.13 Core Information Model — Appendix — Software Examples Version 1.5

3.7 Constraint Domain Example
Now we will look at how the software model aligns with the ControlConstruct concept.

The figure below shows a diagram modified from the previous "Simple Host with Host OS
VMM" example.

Adding the control information adds a lot of complexity to the diagram (which is why it has been
left off the previous examples).

There may be a number of variations to this example, but a common scenario is where there is:

e amanagement interface to manage the host operating system

e aseparate management interface to manage the VMM and to enable the creation,
configuration and removal of VMs (often provided with the VMM software)

e amanagement interface to manage each of the guest operating systems

CD = Phy(Chassis)

CD=CtrID :
CtrIConstruct Runnlngos
o (Host OS)

o OS invokes

= p
Ctrl ﬂrt rocess

Construct
/"/.7 CD=CtrID VMM
- VMM

L : .
ctrl [Pqrt invokesV
Construct \ 4 Ms

|

CD =VM2
CD=CtrID
Ctrl ﬂrt

Construct Runningos Running

- Software
CtrlcO\nsQuct (GueSt OS) Process 1
controls -

CtrlDom “a OS invokes Process

Figure 3-13 Considering control

Note that the diagram highlights the information available from each ControlConstruct. The
references that cross the ControlDomain boundaries are the ones that a network management
system will need to stitch together to provide a consistent end-to-end view.

End of Document

Page 17 of 17 © 2021 Open Networking Foundation

	Disclaimer
	Open Networking Foundation
	Important note
	Document History
	1 Introduction to the document suite
	1.1 References
	1.2 Definitions
	1.3 Conventions
	1.4 Viewing UML diagrams
	1.5 Understanding the figures
	1.6 Appendix Overview

	2 Introduction to this Appendix document
	3 General Examples
	3.1 Routing 'Process' on a Router
	3.2 Simple Host with Host OS VMM
	3.3 Simple Host with Container Engine and Containers
	3.4 CPU, Memory & Storage Example
	3.5 FPGA Example
	3.6 Soft Switch Example
	3.7 Constraint Domain Example

