

Core Information Model
(CoreModel)

TR-512.17
Foundation
(State)

Version 1.5
September 2021

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 2 of 28 © 2021 Open Networking Foundation

ONF Document Type: Technical Recommendation

ONF Document Name: Core Information Model version 1.5

Disclaimer

THIS SPECIFICATION IS PROVIDED " AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

1000 El Camino Real, Suite 100, Menlo Park, CA 94025

www.opennetworking.org

©2021 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to identify,

products or services of their respective owners.

Important note

This Technical Recommendations has been approved by the Project TST, but has not been

approved by the ONF board. This Technical Recommendation is an update to a previously

released TR specification, but it has been approved under the ONF publishing guidelines for

'Informational' publications that allow Project technical steering teams (TSTs) to authorize

publication of Informational documents. The designation of '-info' at the end of the document ID

also reflects that the project team (not the ONF board) approved this TR.

http://www.opennetworking.org/

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 3 of 28 © 2021 Open Networking Foundation

Table of Contents

Disclaimer .. 2

Important note ... 2

Document History ... 4

1 Introduction to the document suite ... 5

1.1 References.. 5

1.2 Definitions ... 5

1.3 Conventions .. 5

1.4 Viewing UML diagrams ... 5

1.5 Understanding the figures ... 5

2 Introduction to the Foundation Model ... 5

3 CoreFoundationModel .. 6

3.1 States .. 6

3.1.1 Classes and attributes .. 7
3.1.1.1 State_Pac ... 7

3.1.2 Enumerations .. 8
3.1.2.1 AdministrativeState ... 8

3.1.2.2 AssignmentState ... 8

3.1.2.3 OperationalState ... 11

3.1.3 Relationship between states in the same context ... 11

3.1.4 Relationship between states in the client context and server context 11

3.1.5 State transition diagrams .. 14
3.1.5.1 Administrative State .. 15

3.1.5.2 Operational State .. 15

3.1.5.3 Assignment State .. 16

3.1.6 Use of states ... 18
3.1.6.1 Model context .. 18

3.1.6.2 Instance relationships ... 19

3.1.6.3 Protected entities .. 24

3.1.6.4 Split entities... 24

3.1.6.5 Merged entities ... 25

List of Figures

Figure 3-1 States for all Objects .. 6

Figure 3-2 Relationship between abstractions .. 7

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 4 of 28 © 2021 Open Networking Foundation

Figure 3-3 Administrative State ... 15

Figure 3-4 Operational State ... 16

Figure 3-5 Assignment State... 16

Figure 3-6 Relationship between entities and abstractions ... 18

Figure 3-7 Component composite relationship.. 21

Figure 3-8 Compound component composite relationships .. 23

Figure 3-9 Alternate intermediate aggregates ... 23

Figure 3-10 Split entity example .. 24

Document History

Version Date Description of Change

1.0 March 30, 2015 Initial version of the base document of the "Core Information Model" fragment

of the ONF Common Information Model (ONF-CIM).

1.1 November 24, 2015 Version 1.1

1.2 September 20, 2016 Version 1.2 [Note Version 1.1 was a single document whereas 1.2 is broken into

a number of separate parts]

1.3 September 2017 Version 1.3 [Published via wiki only]

1.3.1 January 2018 Addition of text related to approval status.

1.4 November 2018 No changes.

1.5 September 2021 State aspects of TR-512.3 split out to form this document, TR-512.17.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 5 of 28 © 2021 Open Networking Foundation

1 Introduction to the document suite

This document is an addendum to the TR-512 ONF Core Information Model and forms part of

the description of the ONF-CIM. For general overview material and references to the other parts

refer to TR-512.1.

1.1 References

For a full list of references see TR-512.1.

1.2 Definitions

For a full list of definition see TR-512.1.

1.3 Conventions

See TR-512.1 for an explanation of:

• UML conventions

• Lifecycle Stereotypes

• Diagram symbol set

1.4 Viewing UML diagrams

Some of the UML diagrams are very dense. To view them either zoom (sometimes to 400%) or

open the associated image file (and zoom appropriately) or open the corresponding UML

diagram via Papyrus (for each figure with a UML diagram the UML model diagram name is

provided under the figure or within the figure).

1.5 Understanding the figures

Figures showing fragments of the model using standard UML symbols and also figures

illustrating application of the model are provided throughout this document. Many of the

application-oriented figures also provide UML class diagrams for the corresponding model

fragments (see TR-512.1 for diagram symbol sets). All UML diagrams depict a subset of the

relationships between the classes, such as inheritance (i.e. specialization), association

relationships (such as aggregation and composition), and conditional features or capabilities.

Some UML diagrams also show further details of the individual classes, such as their attributes

and the data types used by the attributes.

2 Introduction to the Foundation Model

The focus of this document is the parts of Core Foundation Model of the ONF-CIM that deal

with states.

A data dictionary that sets out the details of all classes, data types and attributes is also provided

(TR-512.DD).

../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
TR-512.DD_OnfCoreIm-DataDictionary.pdf

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 6 of 28 © 2021 Open Networking Foundation

3 CoreFoundationModel

This Model includes all aspects of the core that are relevant to all other parts of the ONF CIM

such as identifiers, naming and states. This document addresses the states.

3.1 States

The Core Foundation Model also defines a State_Pac artifact, which provides state attributes.

The work on states is preliminary at this stage (it is derived from [ITU-T X.731]). The State_Pac

is inherited by GlobalClass and LocalClass object classes. The use of these states provides a

consistent way represent the overall operability, usability and current usage of the resource.

It should be noted that the states are «Mature»/«Preliminary».

CoreModel diagram: State-FullModel

Figure 3-1 States for all Objects

The states described above apply to individual abstractions, it is also important to understand

how the states of an abstraction are related to the states of the supporting abstractions. The

relationship between the states of the abstractions is illustrated in Figure 3-2 below.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 7 of 28 © 2021 Open Networking Foundation

Client context

Client context

Server context

Controller n+1

Controller n

1:1

Instances of the
information model

Client abstraction

Dependent abstraction

Supporting abstractionServer context

j:1

k:1

Figure 3-2 Relationship between abstractions

A description of the client abstraction, dependent abstraction and supporting abstraction is

provided in section 3.1.6.

3.1.1 Classes and attributes

3.1.1.1 State_Pac

Qualified Name: CoreModel::CoreFoundationModel::StateModel::ObjectClasses::State_Pac

Provides general state attributes.

This class is abstract.

This class is Preliminary.

Table 1: Attributes for State_Pac

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

operationalState Mature

The operational state is used to indicate whether or not the resource is

installed and working.

administrativeState Mature

Shows whether or not the client has permission to use or has a prohibition

against using the resource.

The administrative state expresses usage permissions for specific resources

without modification to the provisioning of those resources.

assignmentState Preliminary

Used to track the planned deployment, allocation to clients and withdrawal

of resources.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 8 of 28 © 2021 Open Networking Foundation

3.1.2 Enumerations

3.1.2.1 AdministrativeState

Qualified Name:

CoreModel::CoreFoundationModel::StateModel::TypeDefinitions::AdministrativeState

The administrative state is used to show whether use of a resource is allowed or prohibited.

The administrative state can be observed and directly controlled by certain operational roles.

Typically, only a user with administrative privileges is allowed to write the administrative state,

any other users are restricted to read only.

Applied stereotypes:

• Mature

Contains Enumeration Literals:

• LOCKED:

o Users are administratively prohibited from making use of the resource.

o Applied stereotypes:

▪ Mature

• UNLOCKED:

o Users are allowed to use the resource.

o Applied stereotypes:

▪ Mature

• SHUTTING_DOWN:

o The resource is administratively restricted to existing instances of use only. There

may be specific actions to remove existing uses. No new instances of use can be

enabled.

The resource automatically transitions to "locked" when the last user quits.

The assignment state PENDING_WITHDRAWAL should be used to indicate to

the client that the provider intends to withdraw the resource from service.

o Applied stereotypes:

▪ Preliminary

3.1.2.2 AssignmentState

Qualified Name:

CoreModel::CoreFoundationModel::StateModel::TypeDefinitions::AssignmentState

This state is used to track the planned deployment, allocation to clients and withdrawal of

resources.

Applied stereotypes:

• Preliminary

Contains Enumeration Literals:

• PLANNED:

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 9 of 28 © 2021 Open Networking Foundation

o The resource is planned but is not present in the network or has not been made

available for use.

The following additional information may also be provided:

- Time: An indication of when the resources are expected to be available for use.

- Comments on the status of the plan: For example:

--- Preliminary – Initial plan, subject to change

--- Committed

--- Installation in progress

--- Client request

o Applied stereotypes:

▪ Preliminary

• POTENTIAL_AVAILABLE:

o The supporting resources are present in the network and available for use. The

resources are shared with other clients but are not currently in use.

A temporal expression is used to indicate when the resource will allocated to the

client.

(1) When a potential resource is configured and allocated to a client it is moved to

the SCHEDULED_WITHDRAWAL state for that client.

(2) If the potential resource has been consumed (e.g., allocated to another client) it

is moved to the POTENTIAL_BUSY state for all other clients.

o Applied stereotypes:

▪ Preliminary

• POTENTIAL_BUSY:

o The supporting resources are either present in the network but are not available

for use by this client or, the resources have not been installed.

- A temporal expression is used to indicate when the resource will free (i.e.,

POTENTIAL_AVAILABLE) or will be allocated to the client (i.e., will be moved

to SCHEDULED_WITHDRAWAL for the client).

o Applied stereotypes:

▪ Preliminary

• INSTALLED:

o The resource is present in the network has been allocated to the client (i.e., the

resource is not shared) and should be capable of providing the service.

Note that if a resource is shared, then the SCHEDULED_WITHDRAWAL or

SCHEDULED_CAPACITY_CHANGE enumeration is used (instead of

INSTALLED) to indicate that the resource has been allocated to the client for a

defined period of time and should be capable of providing service.

o Applied stereotypes:

▪ Preliminary

• PENDING_WITHDRAWAL:

o The resource has been marked for withdrawal (e.g., to allow maintenance or

removal of the resource). Should include

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 10 of 28 © 2021 Open Networking Foundation

- Withdrawal Time: Indicates when the resources will be withdrawn

- Return Time: Indicates when the resources are expected to be made available for

use.

If the resource will not be returned to service, then the return time is empty.

Notes:

- If the return time is empty the abstraction (including the UUID) should be

deleted after the resource is withdrawn

- If a return time is defined the abstraction should be moved to the

UNAVAILABLE state after the resource is withdrawn

o Applied stereotypes:

▪ Preliminary

• UNAVAILABLE:

o The resource is present in the network but is unable to provide service for a

predefined period of time (e.g., maintenance is being performed on the resource).

Should include:

- Time: Indicates when the resource is expected to be available for use.

o Applied stereotypes:

▪ Preliminary

• PENDING_WITHDRAWAL_FREE:

o - Only used in a dependent abstraction or a client abstraction

- The resource is not currently in use and the provider may be withdraw the

resource

(without causing disruption to the client service).

o Applied stereotypes:

▪ Preliminary

• SCHEDULED_CAPACITY_CHANGE:

o The resource is present in the network. It is shared with other clients and the

capacity available to the client changes over time.

- A temporal express is used to indicate when the capacity allocated to the client

will be changed.

o Applied stereotypes:

▪ Preliminary

• SCHEDULED_WITHDRAWAL:

o The resource is present in the network and is capable of providing the service for

the client for a predefined period of time.

- A temporal expression is used to indicate when the resource will be

(temporarily) withdrawn.

o Applied stereotypes:

▪ Preliminary

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 11 of 28 © 2021 Open Networking Foundation

3.1.2.3 OperationalState

Qualified Name:

CoreModel::CoreFoundationModel::StateModel::TypeDefinitions::OperationalState

The operational state is used to indicate whether or not the resource is installed and working.

Applied stereotypes:

• Mature

Contains Enumeration Literals:

• DISABLED:

o The resource is unable to meet the SLA of the user of the resource.

If no (explicit) SLA is defined the resource is disabled if it is totally inoperable

and unable to provide service to the user.

o Applied stereotypes:

▪ Mature

• ENABLED:

o The resource is partially or fully operable and available for use.

o Applied stereotypes:

▪ Mature

3.1.3 Relationship between states in the same context

If the assignmentState is PLANNED then the operationalState must be DISABLED and the

administrativeState should be LOCKED.

If the assignmentState is POTENTIAL_BUSY, POTENTIAL_AVAILABLE or

UNAVAILABLE the administrativeState should be LOCKED.

If the administrativeState is SHUTTING_DOWN the assignmentState should be

PENDING_WITHDRAWAL.

In all other circumstances the states are independent.

3.1.4 Relationship between states in the client context and server context

The tables below list the states in the server context (supporting abstraction) that influence the

states in the client context (dependent abstraction) in the same controller.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 12 of 28 © 2021 Open Networking Foundation

Administrative state

Supporting abstraction

administrativeState

Dependent abstraction

administrativeState
Notes

LOCKED LOCKED
Service is blocked by the supporting

abstraction

UNLOCKED

UNLOCKED

LOCKED

Local modification:

Service is not blocked in the

supporting abstraction

Operational state

Supporting abstraction

operationalState

Dependent abstraction

operationalState

ENABLED ENABLED

DISABLED DISABLED

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 13 of 28 © 2021 Open Networking Foundation

Assignment state

Supporting abstraction

assignmentState

Permitted dependent abstraction

assignmentState
Notes

PLANNED PLANNED

INSTALLED

PLANNED

Local modification:

The administrator may choose to

delay showing the change to

INSTALLED

INSTALLED

POTENTIAL_AVAILABLE;

Controlled by the entity

managing the supporting

abstraction:

Only used if more than one

client has a view of the same

resource

POTENTIAL_BUSY

Controlled by the entity

managing the supporting

abstraction:

Only used if more than one

client has a view of the same

resource

PENDING_WITHDRAWAL_FREE

Local modification: Controlled

by client using the resource:

Resource may be removed from

this client. No impact on the

supporting abstraction

SCHEDULED_WITHDRAWAL

Controlled by the entity

managing the supporting

abstraction:

Only used if more than one

client has a view of the same

resource

SCHEDULED_CAPACITY_CHANGE

Controlled by the entity

managing the supporting

abstraction:

Only used if more than one

client has a view of the same

resource

POTENTIAL_AVAILABLE

POTENTIAL_AVAILABLE

PENDING_WITHDRAWAL_FREE

Local modification: Controlled

by client using the resource:

Resource may be removed from

this client. No impact on the

supporting entity

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 14 of 28 © 2021 Open Networking Foundation

Supporting abstraction

assignmentState

Permitted dependent abstraction

assignmentState
Notes

POTENTIAL_BUSY

POTENTIAL_BUSY;

PENDING_WITHDRAWAL_FREE

Local modification: Controlled

by client using the resource:

Resource may be removed from

this client.

PENDING_WITHDRAWAL

PENDING_WITHDRAWAL

PENDING_WITHDRAWAL_FREE

Local modification: Controlled

by client using the resource:

The client is no longer using the

resource

UNAVAILABLE UNAVAILABLE

No other states in the dependent abstraction (in the client context) have a dependency on the state

of the supporting abstraction (in the server context).

The states in the client abstraction (in the server context of the "n+1" controller – as shown in

Figure 3-2) should track the states of the dependent abstraction (in the client context of the "n"

controller – as shown in Figure 3-2) except for PENDING_WITHDRAWAL_FREE which is

controlled by the client using the resource.

The AdministrativeState in the server context is not visible in the client context. The client

context may maintain an independent AdministrativeState.

The provider controls the assignmentState of the dependent abstraction that is visible to the client

context as described in the table above.

3.1.5 State transition diagrams

These state transition diagrams are preliminary sketches that may be refined in following

releases.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 15 of 28 © 2021 Open Networking Foundation

3.1.5.1 Administrative State

Figure 3-3 Administrative State

The shutting down state is used in a supporting abstraction when a dependent abstraction is in the

assignment state of Installed (i.e., a client may be using the resource). The ShuttingDown state is

not visible to the dependent abstraction. The assignmentState of the supporting abstraction

should be changed to PENDING_WITHDRAWAL when the AdministrativeState transitions to

SHUTTING_DOWN. After the assignmentState of the dependent abstraction has transitioned to

PENDING_WITHDRAWAL_FREE the AdministrativeState of the supporting abstraction can

transition to LOCKED and the assignmentState of the dependent abstraction should be changed

to UNAVAILABLE or the abstraction should be deleted.

3.1.5.2 Operational State

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 16 of 28 © 2021 Open Networking Foundation

Figure 3-4 Operational State

The operationalState is controlled by the supporting hardware or software and is read only. The

operationalState of a dependent abstraction in the INSTALLED state must match the

operationalState of the supporting abstraction.

3.1.5.3 Assignment State

Startup

Normal Operation

Abnormal event – e.g., removal of a resource

Resource returned to normal operation

Key

Figure 3-5 Assignment State

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 17 of 28 © 2021 Open Networking Foundation

The allocation of a resource may be migrated between the use cases as described below.

From PermananetDedicatedResource to FixedCapacitySharedResource (1)

• From INSTALLED to SCHEDULED_WITHDRAWAL

From FixedCapacitySharedResource to PermananetDedicatedResource (2)

• From SCHEDULED_WITHDRAWAL or POTENTIAL_AVAILABLE to INSTALLED

From VariableCapicitySharedResource to PermananetDedicatedResource (3)

• From SCHEDULED_CAPACITY_CHANGE to INSTALLED

From PermananetDedicatedResource to VariableCapicitySharedResource (4)

• From INSTALLED to SCHEDULED_CAPACITY_CHANGE

FixedCapacitySharedResource to VariableCapicitySharedResource (5)

• From SCHEDULED_WITHDRAWAL to SCHEDULED_CAPACITY_CHANGE

From VariableCapicitySharedResource to FixedCapacitySharedResource (6)

• From SCHEDULED_CAPACITY_CHANGE to SCHEDULED_WITHDRAWAL

If a resource is shared by two or more clients (dependent abstractions) when the supporting

abstraction changes to INSTALLED, the dependent abstraction transitions to

POTENTIAL_AVAILABLE, POTENTIAL_BUSY, SCHEDULED_WITHDRAWAL or

SCHEDULED_CAPACITY_CHANGE. A resource may be POTENTIAL_AVAILABLE in all

of the dependent abstractions or PENDING_WITHDRAWAL in one dependent abstraction and

POTENTIAL_BUSY in all other dependent abstractions.

A resource in a supporting abstraction is moved to PENDING_WITHDRAWAL when the

provider of that resource intends to withdraw the resource from the client. The provider should

indicate the time when the resource will be withdrawn and indicate if the withdrawal will be

permanent or temporary (e.g., to allow network maintenance).

A resource is moved to PENDING_WITHDRAWAL_FREE when the user of that resource is no

longer using the resource. This causes the corresponding resource in the client context (the

dependent abstraction) to transition to PENDING_WITHDRAWAL_FREE. The provider may

withdraw the resource after the specified time even if the client has not transitioned to

PENDING_WITHDRAWAL_FREE.

When the resource in the dependent abstraction moves to PENDING_WITHDRAWAL_FREE

the administrativeState of the supporting abstraction may be changed to LOCKED. If the

withdrawal is temporary, the dependent abstraction should be changed to UNAVAILABLE. If

the withdrawal is permanent the abstraction should be deleted.

Note that an abstraction in a server context my play the role of both the client abstraction (when

viewed from the perspective of controller n in Figure 3-2) and the supporting abstraction (when

viewed from the perspective of controller n+1 in Figure 3-2). In this case the

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 18 of 28 © 2021 Open Networking Foundation

POTENTIAL_AVAILABLE and POTENTIAL_BUSY states are used in the supporting

abstraction.

3.1.6 Use of states

3.1.6.1 Model context

Figure 3-6 below is an informal sketch of the relationship between the "platform," that supports

the functions, the logical resource model, that provides a view of the logical resources and the

equipment and software models, that provide a view of the implementation platform. Note that

this figure shows a highly simplified view of the equipment model and software model, only the

major relationships of interest are shown. The client context and server context may be

represented by constrain domains. The equipment model is in TR-512.6 and the software model

is in TR-512.12.

Platform – supports “Functions”
(Hardware or software)

Function described as “processes”
in G.798, G.8021…

Functions (e.g. adaptation, termination etc.)
Modelled by artefacts in TR512/G.7711…

Represented by object instances
that aggregate artefacts
• e.g. LTP, FD in a controller
• have logical ports

Platform
Modelled by artefacts

Client context

Client context

Server context

Controller n+1

Controller n

Has physical ports

Represented by
object instances

(equipment, software,
“physical” ports)

1:1

k:1

m:n
Relates logical resource

to supporting “platform”

m:n

1:n

Logical resource model

Equipment and software model

Instances of the
information model

One or more levels of recursion if the
functions are supported by software

Description

Implementation

Client abstraction

Dependent abstraction

Supporting abstraction

Server context

j:1

Figure 3-6 Relationship between entities and abstractions

Figure 3-8 illustrates the relationship between the logical resource model and the supporting

hardware or software platform, it does not show the full hardware or software model. In the

equipment model and software model a field replaceable unit (FRU) or a running software

module is represented by an object. These objects support one or more of the artefacts in the

logical resource model. In the logical resource model, the lowest level objects are the

aggregation of one or more of the artefacts.

Example:

• An interface card on an Ethernet switch (a single FRU) may support 10 * 1GE interfaces

and thus 10 "Ethernet" LTPs.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 19 of 28 © 2021 Open Networking Foundation

• The PHY of each of the Ethernet interfaces may be on a separate pluggable module

(FRU) so each Ethernet LTP is supported by both the interface card (FRU) and the

pluggable module (FRU).

The objects in a server context are referred to as the "supporting abstraction" and the objects in

the client context are referred to as the "dependent abstraction". The states of an object in a client

context (the dependent abstraction) should be consistent with the state of the corresponding

supporting object(s) in the server context (in the same controller). Also, the state of the object in

the server context in the n+1 controller (client abstraction) should track the state of the object in

the corresponding client context (in the n controller). Note that when the state of one or more of

the supporting abstractions changes the state of the dependent abstraction and client abstraction

will not be consistent until that change has been processed. In a recursive hierarchy, the client

abstraction will play the role of supporting abstraction in the next level of the hierarchy.

Within a controller, the objects "directly" representing the implementation (e.g., in the server

context in Controller n in Figure 3-6) should support the Administrative State. When the

administrativeState is set to LOCKED, the implementation prevents the resource from being

used. Abstraction in any other context (e.g., in the client context in controller n or server context

in controller n+1) support of the administrative state is optional. Setting the administrativeState

to LOCKED does not have any influence on the resource and it will continue to function

normally.

The resources in a server context (i.e., the supporting abstractions) may be aggregated into a

single object in a client context that is "mirrored" in the server context of the client controller by

the client abstraction.

3.1.6.1.1 Alarms, fault isolation and control
The "lowest level" objects in the resource model are "directly connected" to the implementation

and have access to the forwarding namespace. They can configure the resources that implement

the logical functions and receive alarm/status information directly from the implementation.

Fault location, to the level required for FRU replacement, can only be performed with

information from this lowest level which provides access to the resource and physical name

spaces.

When an object is presented in a client context, the alarm/status information is abstracted and

aggregated, the relationship to the implementation is not visible from the client context.

3.1.6.2 Instance relationships

As described above, the supporting entity may be a "platform" or a managed object. The

dependent entity is always a managed object. The relationships between the supporting and

dependent abstractions may be:

Number of supporting

abstractions/resources

Number of

dependent abstractions

1 1

1 n

m 1

m n

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 20 of 28 © 2021 Open Networking Foundation

The state of a dependent abstraction must be consistent with the state of the supporting

abstraction(s). For the m:1 and m:n cases the states are considered in the order of the precedence

described in section 3.2.6.2 below.

The state of the client abstraction (in the server context of controller n+1) should match the state

of the dependent abstraction (in the client context of controller n).

3.1.6.2.1 Supporting:Dependent 1:1 Case and 1:n Case
The state of the dependent objects is set based on the state of the supporting abstraction and in

some cases may be modified by the local controller as described in 3.1.4. For the 1:n case local

modifications are made independently on each of the dependent abstractions.

3.1.6.2.2 Supporting:Dependent m:1 Case
The state of the dependent object is set based on the state of the composite supporting instance as

described below. The precedence of the states in the tables below are used to determine the state

of the composite supporting abstraction.

Administrative state

administrativeState Precedence

LOCKED Highest

SHUTTING_DOWN

UNLOCKED Lowest

Operational state

operationalState Precedence

DISABLED Highest

ENABLED Lowest

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 21 of 28 © 2021 Open Networking Foundation

Assignment state

assignmentState Precedence

PLANNED Highest

UNAVAILABLE

PENDING_WITHDRAWAL

PENDING_WITHDRAWAL_FREE

POTENTIAL_BUSY

POTENTIAL_AVAILABLE

INSTALLED
SCHEDULED_WITHDRAWAL

SCHEDULED_CAPACITY_CHANGE

Lowest

The m:1 case has two sub-cases:

3.1.6.2.2.1 Simple
This arrangement of supporting abstraction and composite abstraction is illustrated in Figure 3-7

below.

Figure 3-7 Component composite relationship

The state of the composite abstraction is determined by making a list of the states of the

component supporting abstractions and arranging that list of states from the lowest to highest

precedence. The resource policy defines the number of component supporting abstractions that

must be in a given state (or in a lower precedence state) for the composite abstraction to be in

that state.

3.1.6.2.2.1.1 Example of the application of resource policy
Using the assignment state enumerations as an example, then in the case of six component

supporting abstractions with the following states:

Abstraction A B C D E F

State PLANNED INSTALLED POTENTIAL_AVAILABLE INSTALLED POTENTIAL_BUSY POTENTIAL_AVAILABLE

Components

Composite

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 22 of 28 © 2021 Open Networking Foundation

Rearranging into an ordered list:

 Abstraction State

1 B INSTALLED

2 D INSTALLED

3 C POTENTIAL_AVAILABLE

4 F POTENTIAL_AVAILABLE

5 E POTENTIAL_BUSY

6 A PLANNED

The state of the composite abstraction is determined by applying the resource policy for the

number of component supporting abstractions that must be in a given state (or in a lower

precedence state) for the composite abstraction to be in that state. If the policy only requires 1 the

composite state will be INSTALLED: If the policy requires 3 the composite state will be

POTENTIAL_AVAILABLE; If the policy requires 6 the composite state will be PLANNED.

3.1.6.2.2.2 Compound
This may be modelled by concatenating the appropriate set of simple cases described above. The

state of the intermediate composite is evaluated for each (simple) group and is used to define the

state of the intermediate component for the next stage of evaluation. That is, each of sets of

"lower" components are evaluated, using the rules described above, to determine the

intermediate composite states. These intermediate composite states are then used as the

intermediate component state when evaluating the state of the next level of composite

abstractions. Figure 3-8 below shows an example where three levels of evaluation used to map

from the component states into the composite state. The sets of component abstractions that are

grouped to form an intermediate composite abstraction is determined by the topological

relationship between those abstractions. The compound case could, for example, be used to

derive the state of a forwarding domain that is supported by a set of forwarding domains and

links (each with its own intermediate composite state).

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 23 of 28 © 2021 Open Networking Foundation

Composite

Intermediate

Composite

Components

Intermediate

Components

Intermediate

Composite

Intermediate

Components

Figure 3-8 Compound component composite relationships

Some (or all) of the intermediate composite abstractions may be exposed to a client. Also,

alternate intermediate aggregates of the same component resources may be exposed to a client as

illustrated in Figure 3-9 below.

Composite

Intermediate

Composite

Components

Intermediate

Components

Intermediate

aggregation 1

Intermediate

aggregation 2

Figure 3-9 Alternate intermediate aggregates

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 24 of 28 © 2021 Open Networking Foundation

In this case it is important that the state of the composite derived via intermediate aggregation 1

is the same as the state derived via intermediate aggregation 2.

3.1.6.2.3 Supporting:Dependent m:n case
Note: This does not represent a m:n protection scheme.

First the state of the m component abstractions are mapped into a single composite state as

described above in 3.1.6.2.2. Then this composite state is used to derive the state of the

dependent abstraction as described described above in 3.1.6.2.1. This would be used for example

when a forwarding domain that is supported by forwarding domains and links is shared between

n clients.

3.1.6.3 Protected entities

The state of an abstraction that is representing a protected resource is determined by the C&SC

that is managing/representing the protection scheme. Note that a client (controller) may have a

view of both the protected resource and the (unprotected) resources that support it.

3.1.6.4 Split entities

The view (abstractions) presented to a client controller cannot provide a more detailed view than

that offered by the lowest level instances that have been created. When a client (controller) view

of an entity is "split" as shown in the example in Figure 3-10 below where the original client FD

is split into two FDs (X and Y). The links 2, 3 and LTPs 4, 5, 6, 7 are now exposed to the client.

The client must retain the context of the original (parent) FD to understand the link between

Client FD X and Client FD Y.

FD A

FD C

FD B

Client FD X

Client LTP 2

Client LTP 3

Client LTP 1

link 1

link 3

link 2

Server LTP 2

Server LTP 3

Server LTP 1

Client FD Y

Client Parent FD

LTP 4 LTP 5

LTP 6 LTP 7

Note: In this figure the terms “client” and “server” refer to SDN controllers in a hierarchy

Figure 3-10 Split entity example

The states of the dependent resources provided by the server (controller) must reflect the states

of the supporting resources as described above.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 25 of 28 © 2021 Open Networking Foundation

The new client FDs should be provided with new identifiers so that the identifier for the parent

FD can be retained.

3.1.6.5 Merged entities

The state of the merged entity must be consistent with the state of the supporting resources as

described above.

Considering the example above where the server controller is required to "merge" client FD X

and client FD Y into a single FD. We have two cases:

• The parent FD is already visible (with an identifier) in the client context, in this case no

further action is required.

• The parent FD is not visible in the client context. In this case a new ID for the parent FD

should be created. This option must be used if the client has the option of viewing either

level of abstraction (i.e., FD X, Y and Parent FD). The ID of either FD X or FD Y could

be used for the parent FD. However, this is not recommended since it precludes the

possibility of leaving FD X and FD Y visible to the client.

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 26 of 28 © 2021 Open Networking Foundation

Appendix 1

Examples of the use of temporal expressions for the assignmentState

Example temporal expression for a fixed capacity resource shared by client A and B

 Period 1 Period 2 Period 3

Server

view
Assigned to A Assigned to B Free

Client A

view
SCHEDULED_WITHDRAWAL POTENTIAL_BUSY POTENTIAL_AVAILABLE

Client B

view
POTENTIAL_BUSY SCHEDULED_WITHDRAWAL POTENTIAL_BUSY*

* The server may choose not to expose POTENTIAL_AVAILABLE capacity to client B

Example temporal expression for a variable capacity shared resource shared by clients A

and B

Packet variable capacity shared resource allocation:

Total capacity = 100:

 allocated CIR  100:

 allocated PIR  200: PIR allocated to one client  100

Note: in this example the PIR is over-subscribed. Depending on the traffic loading a client may

not be able to use the full allocated PIR.

 Period 1 Period 2 Period 3 Period 4

Capacity allocation Table 1 Table 2 Table 3 Table 4

Table 1

 CIR PIR

Client A 50 80

Client B 20 30

Unallocated 30 90

Table 2

 CIR PIR

Client A 0 0

Client B 90 100

Unallocated 10 100

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 27 of 28 © 2021 Open Networking Foundation

Table 3

 CIR PIR

Client A 0 10

Client B 20 30

Unallocated 80 160

Table 4

 CIR PIR

Client A 10 20

Client B 90 100

Unallocated 0 80

TDM variable capacity shared resource

Total capacity = 100:

 allocated capacity  100

 Period 1 Period 2 Period 3 Period 4

Capacity allocation Table 1 Table 2 Table 3 Table 4

Table 1

 Allocated
Potential

available1

Client A 50 30

Client B 20 30

Unallocated 30 -

Table 2

 Allocated
Potential

available 1

Client A 0 0

Client B 90 10

1 The server may decide how much of the POTENTIAL_AVAILABLE capacity is exposed to

each of the clients

TR-512.17 Core Information Model – Foundation - State Version 1.5

Page 28 of 28 © 2021 Open Networking Foundation

Unallocated 10 -

Table 3

 Allocated
Potential

available1

Client A 0 30

Client B 20 50

Unallocated 80 -

Table 4

 Allocated
Potential

available1

Client A 10 0

Client B 90 0

Unallocated 0 -

End of document

	Disclaimer
	Important note
	Document History
	1 Introduction to the document suite
	1.1 References
	1.2 Definitions
	1.3 Conventions
	1.4 Viewing UML diagrams
	1.5 Understanding the figures

	2 Introduction to the Foundation Model
	3 CoreFoundationModel
	3.1 States
	3.1.1 Classes and attributes
	3.1.1.1 State_Pac

	3.1.2 Enumerations
	3.1.2.1 AdministrativeState
	3.1.2.2 AssignmentState
	3.1.2.3 OperationalState

	3.1.3 Relationship between states in the same context
	3.1.4 Relationship between states in the client context and server context
	3.1.5 State transition diagrams
	3.1.5.1 Administrative State
	3.1.5.2 Operational State
	3.1.5.3 Assignment State

	3.1.6 Use of states
	3.1.6.1 Model context
	3.1.6.1.1 Alarms, fault isolation and control

	3.1.6.2 Instance relationships
	3.1.6.2.1 Supporting:Dependent 1:1 Case and 1:n Case
	3.1.6.2.2 Supporting:Dependent m:1 Case
	3.1.6.2.2.1 Simple
	3.1.6.2.2.1.1 Example of the application of resource policy

	3.1.6.2.2.2 Compound

	3.1.6.2.3 Supporting:Dependent m:n case

	3.1.6.3 Protected entities
	3.1.6.4 Split entities
	3.1.6.5 Merged entities

