PINS: P4 Integrated Network Stack

OCP Global Summit
November 9 - 10, 2021
PINS = SONiC + SDN

● **SONiC** is widely deployed, modular, open source, and vendor agnostic
 ○ Runs a traditional control plane (e.g. BGP)
 ○ Solid foundation for SDN-enabled switch OS

● Enabling SDN in SONiC requires:
 ○ *Formal Pipeline Specification:* **P4** used to model the SAI pipeline
 ■ Emerging as the industry standard
 ■ Works for fixed and programmable switching targets
 ■ Enables programmatic validation of the pipeline

 ○ *Remote interface for controlling forwarding entries:* **P4Runtime**
 ■ Standard, open, silicon-independent
 ■ Enables runtime-control of data plane objects

 ○ Remote interface for management / operations: **OpenConfig, gNMI, gNOI**
 ■ Standard, open, widely used
 ■ *Already used in SONiC today*
PINS Highlights

- **Hybrid Control Plane Support**: Gives network operators a choice on network control plane and which parts run where (locally or remotely).
- **Opt-In Path Towards SDN**: The P4Runtime server is added to SONiC as an optional interface enabling users to implement new functionality using SDN, and to incrementally migrate towards an SDN solution.
- **Familiar Interface**: P4 is used to model the SAI pipeline, and enables users to control all essential networking features, including L2 bridging, L3 routing, ACLs, tunnels, and more.
- **Rapid Innovation**: New features can quickly be modeled in P4 and exposed to control plane applications using P4Runtime.
- **Automated Validation**: P4 and P4Runtime enables tools to be used to test and validate every packet path automatically in the forwarding pipeline.
SAI P4 Routing

sai/routing.p4

```p4
@p4runtime_role(P4RUNTIME_ROLE_ROUTING)
@id(ROUTING_IPV4_TABLE_ID)
table ipv4_table {
  key = {
    // Sets vrf_id in sai_route_entry_t.
    local_metadata.vrf_id : exact @id(1) @name("vrf_id")
    @refers_to(vrf_table, vrf_id);
    // Sets destination in sai_route_entry_t to an IPv4 prefix.
    headers.ipv4.dst_addr : lpm @format(IPV4_ADDRESS) @id(2)
    @name("ipv4_dst");
  }
  actions = {
    @proto_id(1) drop;
    @proto_id(2) set_nexthop_id;
    @proto_id(3) set_wcmp_group_id;
  }
  const default_action = drop;
  size = ROUTING_IPV4_TABLE_MINIMUM_GUARANTEED_SIZE;
}
```

Legend:
- **P4 Table** (maps to SAI header)

SAI P4 Routing

IP Routing *(sairoute.h)*

Match Keys:
- VRF ID
- IP Dest

Action (one of):
- Set Next Hop Group ID
- Set Next Hop ID

Next Hop *(sainexthop.h)*

Match Keys:
- Next Hop ID

Action:
- Set RIF ID
- Set Neighbor IP

Next Hop Group *(sainexthopgroup.h)*

Match Keys:
- Next Hop Group ID

Action:
- Set Next Hop ID via WCMP

Router Interface *(sairouterinterface.h)*

Match Keys:
- RIF ID

Action:
- Set Dest Port
- Set Src MAC

Neighbor *(saineighbor.h)*

Match Keys:
- RIF ID
- Neighbor IP

Action:
- Set Dest MAC
Users can define custom ACLs in P4
- Match fields
- Actions
- Counter
- Meters
- Table Size

P4 fields mapped to SAI using annotations

ACL tables are configured on the switch when the P4 pipeline is pushed via P4Runtime
Use Cases for SDN

- Software Defined WAN
- Hitless Route Sequencing
- Inline Network Functions
 - Load balancers
 - Firewalls
 - Telemetry
- Inband Network Telemetry (INT)
- Unequal Cost MultiPath (UCMP, aka WCMP)
 - Focus of this demo

![Diagram of SDN network with spine, leaf, and host layers, showing link failure and SDN Controller with Set Weights via P4Runtime functionality.](attachment:image.png)
Weighted Cost Multipath
In Summary

- **PINS** brings SDN capabilities to **SONiC 202111** release
- **SD-Fabric** and **ONOS** are used to program the routing tables with WCMP
- Common, well-defined **P4** program enables interoperability across disparate hardware

PINS Working Group