

VOLTHA v2.9 Techinar January 11, 2022 | 9am PDT

Andrea Campanella, Matteo Scandolo - ONF Khenaidoo Nursimulu - Ciena

Outline

- SEBA RD 2.0 and VOLTHA Architecture, project state and deployments
- VOLTHA 2.9 release
 - gRPC for inter container communication
 - ONOS OLT application rewrite
 - Transparent OLT workflow (TIM)
 - Platform stabilization (ONOS 2.5.5 with ISSU, BAL 3.10.2.2, OMCI enhancements, ETCD cleanup, multi-uni scenarios)
 - Testing (Multicast, background ping, data cleanup)
 - Certification of new OLTs
- VOLTHA 2.8 LTS Support
- VOLTHA 2.10 Roadmap
- Q/A

VOLTHA: Virtual OLT Hardware Abstraction

- Common Control & Management for PON networks (OLTs and ONUs)
- Different brands of OLTs and ONUs
- Multiple services and operator workflows (ATT, TT, DT)
- Device Management Interface for non datapath operations (e.g olt software upgrade)
- Scale deployments (10 Stack with 10240 subscribers with the same infra)
- Software update (VOLTHA and ONUs)
- Hardware, scale, soak testing
- 2.8 LTS release

VOLTHA 2.8 Webinar

https://docs.voltha.org/master/release_notes/voltha_2.8.html

VOLTHA Deployments with Operators

Voltha is in production with live customers:

- Deutsche Telekom (DT) as part of the A4 project
 - DT's first live deployment
 - Working on FTTB for mass market deployments with VOLTHA 2.10
- Turk Telekom (TT)
 - TT initial deployment
 - TT scale to million of subscribers

gRPC for inter container communication

Kafka in pre-voltha 2.9 release

- Kafka used for inter-container communication
- Voltha Core \Leftrightarrow Adapters
- Adapters \Leftrightarrow Adapters

Why Kafka?

- Ease of HA implementation
- Multipoint to multipoint communication
- Message persistence

Why moving away from Kafka in 2.9?

- Control plane moved from HA to fast restart
- Moved to point-to-point communication
- Message persistency never used
- Boilerplate code (kafka proxies) is complex with some limitations

Kafka still used for events/kpis in 2.9 release

gRPC for inter container communication

gRPC in 2.9 release

- gRPC used for inter-container communication
- Voltha Core ⇔ Adapters
- Adapters \Leftrightarrow Adapters

Why gRPC?

- Point-to-point communication
- Clearly defined interfaces (proto rpcs)
- Code simplicity (no more boilerplate code)
- Improved performance

Implementation – high level

- gRPC client code implemented in voltha-lib-go
- Automatic connection re-establishment implemented in voltha-lib-go
- New gRPC service in Core and Adapters

Better overall performance, code simplicity, code reuse, and clearly defined interfaces for better LTS release support

ONOS OLT application rewrite

Complete OLT application rewrite:

- Queue based mechanism for subscribers and events
- Flow installation feedback
- Workflow separation
- 2x performance increase

• Version 5.0.0

Better overall performance, event sequence handling, code quality and extensibility, ensuring longer lifespan.

ONOS OLT application architecture

ONOS OLT application architecture

ONOS OLT application architecture

Performance Improvement

2 OLTs, 1024 subscriber, 1 voltha stack, ETCD with persistence (on nVME disks):

- ATT test passes in ~250 seconds vs ~500 seconds before
- DT test passes in ~110 seconds vs ~300 seconds before
- TT test passes in ~350 seconds vs ~650 seconds before

Substantial performance improvements in scale test by combining gRPC and new OLT application.

Transparent OLT workflow (TIM)

Transparent VLAN forwarding at the OLT

- configured with s-tag at 4096
- ONU swaps vlan
- OLT forwards with no VLAN operation
- Telecom Italian (TIM) HSIA workflow)

All VLAN operations (double tag, swap, transparent ONU and transparent OLT) are now supported.

ONOS 2.5.5 with ISSU and ETCD cleanup

ONOS In Service Software Upgrade

- upgrade ONOS controller minor version
- no cluster downtime
- ISSU documentation

ETCD Data cleanup

- Remove all data from ETCD
- OLT, ONU device,
- flow, group o meter delete ONU
- smaller footprint and faster ETCD cluster.

Platform stabilization

- ONU interaction enhancements in openonu adapter
 - Prioritized OMCI sending
 - Relaxed decoding and storing of unknown MEs
 - PM counter Reset
 - Flow serialization and queueing mechanism
- ONU image upgrade
 - multiple ONUs
 - abort during any phase
 - Correct indication statuses
- Flow deletion operations during reconciliation
- Flow/GemPort deadlock in multi-uni scenarios
- Error reporting and corrections in openolt agent and adapter
- Bug fixes

Testing: multicast and per service provisioning

- Expanded multicast tests from 1 to 5 scenarios.
 - 2 RGs on same ONU joins same channel
 - 2 RGs on same ONU joins different channels
 - 2 RGs on different ONUs on same PON joins same channel
 - 2 RGs on different ONUs on same PON joins different channels
 - Tests also include verification for IGMP leave
- Added support for subscriber uniTag (per-service) provisioning for TT test suite.

VOLTHA+ONOS 2.9 Testing

New 2.9 Tests

- Multi-uni, multi-olt, extended software update tests for openonu-go.
- Container restart tests now include a continuous background ping during restart
- Enhanced DT soak pod job with bbsim subscribers provisioning
- Empty device, subscriber and service information verification after deletion.

Nightly scale and 180+ Hardware tests

Jenkins view for 2.9 Tests

https://jenkins.opencord.org/view/VOLTHA-2.9/

\odot	IÔI	build_flex-ocp-cord-multi-uni_TP_TT_voltha _master	11 hr - #17	9 days 4 hr - #6	16 min	ø	☆	
\odot	Ŕ	build_flex-ocp-cord-multi-uni_TP_voltha_TT _master_test	10 hr - #14	3 days 10 hr - #11	42 min	ø	☆	6/6pass
\odot	IÔI	build_flex-ocp-cord_Default_voltha_master	20 hr - #825	9 days 20 hr - #814	11 min	ø	☆	
\odot	ጭ	build_flex-ocp-cord_Default_voltha_master _test	20 hr - #729	1 day 20 hr - #728	2 hr 0 min	ø	☆	28/28 pass
\odot	IÔI	build_flex-ocp-cord_TP_TT_voltha_master	16 hr - #425	N/A	14 min	ø	☆	
\odot	۵	build_flex-ocp-cord_TP_voltha_TT_master _test	16 hr - #384	2 days 16 hr - #382	3 hr 7 min	ø	☆	19/20 pass
\odot	IÔI	build_menlo-certification-pod-radisys-gpon _1T8GEM_DT_voltha_master	27 min - #59	N/A	12 min	ø	☆	
\bigcirc	IÔI	build_menlo-certification-pod-radisys-gpon _1T8GEM_voltha_DT_master_test	1 day 0 hr - #59	N/A	4 hr 41 min	ø	☆	28/28 pass
\odot	IÔI	build_onf-demo-pod_1T4GEM_voltha _master	40 min - #575	N/A	19 min	ø	숤	
\bigcirc	IÔI	build_onf-demo-pod_1T4GEM_voltha _master_test	1 day 0 hr - #476	6 days 0 hr - #471	2 hr 16 min	ø	☆	28/28 pass
\odot	IÔI	build_onf-demo-pod_1T8GEM_DT_voltha _master	21 hr - #548	N/A	19 min	ø	☆	
\odot	IÔI	build_onf-demo-pod_1T8GEM_voltha_DT _master_test	21 hr - #488	5 days 3 hr - #483	2 hr 17 min	ø	☆	27/28 pass
\odot	IÔI	nightly-voltha-DTflow-sanity-test	3 hr 51 min - #507	N/A	10 min	ø	☆	1/1pass
\odot	0	periodic-software-upgrade-test-bbsim	14 hr - #358	1 day 20 hr - #355	40 min	ø	☆	3/3 pass

Continuous Certification -- Radisys 1600X, 1600G, Adtran SDX 6320

VOLTHA 2.8 adds the Radisys 1600X, 1600G, Adtran SDX 6320 (GPON) to the Certified Hardware.

Radisys 1600G:

- whitebox OLT
- 16 GPON ports -
- openolt agent and adapter

Radisvs

Radisys 1600X:

- whitebox OLT
- 16 Combo-PON ports
- openolt agent and adapter

Adtran 6320X:

- greybox OLT
- 32 Combo-PON ports
- adtran-olt-adapter

More info: radisvs. adtran

And State of Long Street of Long Str

Continuous Certification

180+ nightly Tests certify several HW:

- Edgecore ASFVOLT16 (XGSPON), ASGVOLT64 (GPON)
- Radisys 3200G (GPON)
- Radisys 1600G (GPON)
- Radisys 1600X (GPON)
- Adtran SDX 6320 (GPON)
- Sercomm FG1000 (GPON ONU)

ONF Marketplace:

<u>https://opennetworking.org/marketplace/?_product_project=voltha</u> **Operator's Procurements is based on successful ONF certification** <u>https://opennetworking.org/continuous-certification-program/</u>

2.9 Accomplishments

- gRPC for inter container communication for faster, more reliable communication and a simpler architecture
- ONOS **OLT application rewrite**: higher performance, simplification, bug fixes
- **Transparent OLT workflow** (TIM), OLT forwards traffic without tagging.
- Platform stabilization
 - ONOS 2.5.5 with in service software upgrade (ISSU),
 - **BAL 3.10.2.2** as base for IPv6, LAG, LACP and bugfixes
 - **OMCI enhancements**, serialization, decoding, software upgrade
 - ETCD cleanup, thus smaller footprint and no stale data
 - bugfixes
- Testing (Multicast, background ping, data cleanup)
- Certification of new OLTs

No Functionality, testing or Scale regressions

https://docs.voltha.org/master/release_notes/voltha_2.9.html

Support for 2.8 VOLTHA LTS release

VOLTHA 2.8 was the first Long Term Support and ONF committed to update, patch and maintain the software (more info)

During release 2.9 continuous testing was done on 2.8 and **more than 50 fixes**, between codebase and tests, were back ported.

Continuous updates were provided to the upstream **2.8 helm charts and**

documentation.

VOLTHA 2.8 will be supported until December 2022.

VOLTHA 2.10 Roadmap

- Edge Scale enhancements:
 - TT: 128k subscribers
 - DT: 50k customer -- possibly 4k ONUs per core.
- Fiber to the building/basement (FTTB)/DPU support
- Voice Support on POTS/multi UNI supported devices
- Rolling Software Upgrade Testing
- New Micro-Service-based VOLTHA controller as replacement for onos-classic
- LAG and LACP (possibile/stretch)
- Certification with Adtran DMI and New OLTs
- **BAL Upgrade to 3.12 LTS** to support newer chipsets

Thank You

<u>TST Meeting</u> (Tuesday at 8 AM PST) <u>docs.voltha.org</u> <u>Year in review part 1</u> <u>Year in review part 2</u>

> andrea@opennetworking.org teo@opennetworking.org knursimu@ciena.com