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Why do we need this?

● Supporting Infrastructure use cases
○ Blackholing (VM migration)
○ Supporting machine profiles (cloud, baremetal, native)

● Accelerating applications
○ Microservices, L4-L7 classification
○ Application Dedicated Queues (ADQ)



The basic idea….

● Underlying architecture has physical tables with fixed key width, and mechanisms 
to overlay logical P4 tables on this physical table. 
○ Key construction: Selecting a set of fixed width elements that can populate the 

“key space” for the physical table.
○ Action selection: Initial proposal seeks to choose from an available set of 

action functions that are associated with the physical table.
○ Preconditions allow for adding this table to the lookup pipeline.

Key Point: The compiler still gets all the info upfront to decide the resource fitting 
for a given Target.



Proposal – the basic idea

● Exposes the physical table that cannot be used directly 
in the P4 pipeline but serves as a template.

@template_table
table flow_table {

attributes {
unit: 16 (in bits) 
width: 64 (in units)
entries: 32 (number of logical tables)
size: 16384 (total size across all tables)

};
actions {
….regular P4 actions….

}
selector {

packet_field, (list of packet fields)
metadata_field (list of metadata fields)

}
};

● A template table is available to drive 1 of N lookups based 
on conditional evaluation of packet_field and 
metadata_field in the P4 source code

@template flow_table
{

@expr_tag=0
if (packet_field_A == val_A ||packet_field_B == 

val_B) {
ipv4.apply();

}
@expr_tag=3
else if (meta_field_X == val_X) {

l2.apply();
}

};



Proposal – the basic idea (2)

● Insertion/removal of P4 tables into the pipeline at runtime through API
○ int p4_table_insert(p4_table_name, template_tbl, conditional_expression, expression_tag, [packet_field or 

metadata_key with mask], [allowed-actions], default_action, [default_action_arg], size);
■ p4_table_name: Canonical name to allow for future CRUD operations on the table.
■ template_tbl: Template table expressed in P4
■ conditional_expression: Conditional expression (machine friendly postfix?) composed from selector args

only. Runtime validates.
■ expression_tag: Determines the order of evaluation (e.g. can take values 1, 2 to insert before l2_table)
■ [packet_field or metadata_key with mask]: List of packet/metadata fields with masks. Must be subset 

from the template table.
■ [allowed_actions]: List of allowed actions for this table. Must be subset from template table.
■ default_action: Default action to execute for miss.
■ [default_action_arg]: List of default action args (if necessary)
■ size: Size of this table.

○ int p4_table_remove(p4_table_name)
■ Removes a previously inserted table, erases all existing entries, and returns the resources to the system.



Blackholing use case

@template_table
table packet_type_group {

attribute {
unit: 8
width: 1
entries: 512
size: 512 (each table is an entry each)    

}
action {

set_packet_type_grp;
drop;

}
selector {

local_metadata.ptype; // Value set in the parser.
}

}

// P4 code
@expr_tag = 2
if (local_metadata.ptype == IPV4_NON_FRAG) {

v4_grp_table.apply();
}
@expr_tag = 3 
else if (local_metadata.ptype == IPV6_NON_FRAG) {

v6_grp.apply()l
} 



Blackholing use case - runtime

● We would like to drop all packets during VM migration. In this use case, we want to insert a new table as part of 
the same control flow. We can do this by inserting this new logical table into existing P4 profile. 

assert(p4_table_insert(blackhole_table, packet_type_group, [[local_meta.packet_type, [0x0, 0x0]*, ==]], 0, 
[local_meta.packet_type], [drop],drop, [], 1) == 0);

The above call would overlay an additional “blackhole_table” into the packet_type_group template that is the 
first in the sequence to be checked (expr_tag == 0), and is unconditionally executed (packet_type && 0x0 == 0x0). This 
table has only a single action drop, and hence will drop all packets.

After the control plane has migrated away all the VMs, the control plane can remove this table to resume normal 
operation.

assert(p4_table_remove(blackhole_table))

* Contains (mask, value), to be executed if (local_meta.packet_type && mask == value && mask)



Application match use case

@template_table
table ipv4_tcp{
attribute {

unit: 32
width: 6
entries: 2
size: 1K (each table is 512 entry)    

}
action {

set_application_queue;
drop;

}
selector {

ip_src; ip_dest; port_rsc; port_dest; word_32; word_33;
}

}

// P4 code
@expr_tag = 2
if (user_configdata == tuple_1_2_3) {

v4_3tuple_table.apply();
}
@expr_tag = 3 
else if (user_configdata == tuple_1_word_32) {

v4_2tuple_table.apply()l
} 



Application SW Config at Runtime

• Runtime API hooks from Application that go into the P4 Target 
Runtime Server that can define the match for an actual table from 
the template
• Query the template table
• Add table with the match specified.
• Remove table

Result of this match may identify the application flows themselves and/or  
used to provide some user meta data hint to the application.
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