
May 2022

NGCO Vision
Daniel Bernier

Food for thought

… Let’s try not to do the same mistakes again

While the visionary ten operators who launched NFV back in 2012 didn’t envision
it in these terms, what they were doing was applying virtualization principles of
the time to problems of the time. ” (http://blog.cimicorp.com/?p=2893)

http://blog.cimicorp.com/?p=2893)

Landscape Transformation

The Processor vs ASIC Dilemma

We can do whatever we want

We do it with code, not custom circuits

We can develop new ideas quite fast

… but we can’t do it efficiently

x86 at the edge

We know exactly what it needs to do

We design/buy a chip that does it
… building or acquiring generally not
fast or cheap

We hope we do not have any new bright
ideas afterwards

ASICs at the edge

What is best suited ?

Ref: Ian Wells, Cisco Systems, OPI project kick-off

Comparing Apples with Pineapples
2nd Generation DNX (our current switches)
• Jericho+ 900Gbps Throughput
• 175W
• Closed SDK
• Fixed resource limits

• Bandwith, SerDes, Max Ports
• L2/L3/Tunnels/MPLS/ACLs

• Coupled with Celeron processor

Marvell Octeon 10
• 1Tbps integrate switch Throughput
• 20W
• P4, VPP offload, Velox-SDK
• Integrated AI/ML + Crypto
• ARM Neoverse 2 (64C)

CSR

The Changing Landscape of Processing

Metro /
Backbone

DPUx86

CNFx86

MECx86

MECx86

vDUx86

…

DPUx86

CNFx86

MECx86

MECx86

DPUx86

MECx86

CNFx86

CNFx86
… …

CNFx86

CNFx86…

Internet

SpineSpine

Leaf

PNF

Leaf Leaf

PNF

PNF

LeafLeafLeaf

Spine Spine

Smart SFP

TPA hosting

Programmable DPU/IPUs

Smart Camera

TPA = Third Party Application Hosting

Programmable ASICs

OLT BX RTR

The Great Hyperscale Migration

Tenet #1
Protocol Simplification

The road towards Application Aware Infrastructure
Because in the end, this is what we want

NetworkApp

Worker node

Control-Plane
k8s APIs

Magic

https://datatracker.ietf.org/wg/apn/about/
https://datatracker.ietf.org/rg/panrg/about/
https://conferences.sigcomm.org/sigcomm/2020/workshop-nai.html

https://datatracker.ietf.org/wg/apn/about/
https://datatracker.ietf.org/rg/panrg/about/
https://conferences.sigcomm.org/sigcomm/2020/workshop-nai.html

SRv6 Introduction

Internet

PNF
CNF

o Source Routing Paradigm where path is encoded at source within an outer IPv6 header
or via an extension header (RFC8754)

o Path Segments are represented within an IPv6 address format
o in 128-bit BASE format (f128)
o In 16-bit uSID format (f3216) à https://datatracker.ietf.org/doc/html/draft-filsfils-

spring-net-pgm-extension-srv6-usid-12

o The SRv6 Network Programming Framework https://datatracker.ietf.org/doc/rfc8986/
allows for the definition of instructions (behaviors) that form a “Network Program” or
Policy

o SRv6 is not prescriptive on the control plane architecture although BGP Enabled
Service equivalence is being standardized in IETF

o It provides a Single encapsulation for underlay and overlay

o Leverages standard IPv6 routing
(no special FIB table, totally stateless)

https://datatracker.ietf.org/doc/html/draft-filsfils-spring-net-pgm-extension-srv6-usid-12
https://datatracker.ietf.org/doc/rfc8986/

SRv6 Policies

o In SRv6, Layer 2 Cross-Connects (END.DX2), Layer 3 VPNs (END.DT46), Service Chains
(END.SC) or GTP DMM Mapping are all variations of SR Policies

o Ingress traffic is steered into policies based on various criterias
o Physical/Logical Interface
o Src/Dst prefix match
o 5-Tupple or advanced flow mapping
o GTP Header
o BGP route-coloring/Flowspec

What if we used Cloud Constructs / SDN to apply build these policies ?

END.DX2

ETH

PAYLOAD

ETH

PAYLOAD SRv6

ETH

PAYLOAD

ETH

IP

IP

PAYLOAD

END.DT46

SRv6

ETH

PAYLOAD

ETH

IP

PAYLOAD

ETH ETH

PAYLOAD

SRv6

PAYLOAD

SRH

IP

UDP

GTP

IP

IP

ETH

PAYLOAD

IP

UDP

GTP

IP

END.M.GTP6.E End.M.GTP6.D

ETH

Network PE

SRv6 – Extension of Architecture to Cloud Resources

Worker node

Network GW

Cluster A

eBPF

BGP

BGP
RR

10.2.0.10/24

POD

Eth IPv6 IPv4 Payload

b:2:0:0:200::fd01::1

Outer SA Outer DA

o POD still only has a single interface with only a default route.

o POD is associated with one or more VRFs if required by owner

o CRD defines VRF attributes (RT, name, etc.)

o SRv6-to-MPLS (or else) Gateway maps SRv6 VPN to MPLS/VPN or equivalent

Eth MPLS IPv4 Payload

Tenet #2
Supply Chain Simplification

North Star à True Platform Independence

Cisco NCS

Switch OS + SDK

Silicon A Silicon A

Switch OS + SDK Switch OS + SDK

Silicon A+B

OCP Compliant HW OCP Compliant HW

Select the right Software on the right Hardware at the right Cost

Can I
introduce a
new NOS ?

Can I select the
HW design?

o Pick the best HW platform based on need/cost à not because of OEM product choices.

o Pick the best HW platform based on right silicon à not because of OEM product choices.

o Pick the best Network OS based on integration, features and support

Opening up the eco-system

SPINE
XR1
57B1

A-LEAF
SR-1
57B1

A-LEAF
SR-1
57B1

SPINE
XR1
57B1

S-LEAF
MX10K

S-LEAF
MX10K

A-LEAF
SR-1
57B1

A-LEAF
SR-1
57B1

Current Approach
• Pick and chose SKUs per selected vendor – Buy a lot

in advance

• Forces you in a vendor lock

• Changing vendor, means changing / introducing HW

• Bound to single vendor supply delays

Disruptive Approach
• Pick HW like COTS servers based on ASIC requirements

• Select SW vendor based on preference (agility, CI/CD, etc.)

• Less willingness from incumbents to participate

• Moves out of comfort zone so intent/automation is key

SPINE
RAMON
J2C

A-LEAF
JC2

A-LEAF
J2C

SPINE
RAMON
J2C

S-LEAF
Q2C

S-LEAF
Q2C

A-LEAF
J2C

A-LEAF
J2C

Common HW platforms,
multiple vendor options

• RTBrick

• Arrcus

• DriveNets

• SONiC

• Cisco IOS-XR*

• CASA/BENU

Journey Towards

Supply chain issues are a real problem for execution, 2 approaches to address it

CO Evolution Use Case – A Disruptive Approach (2019)

Switch OS

Network OS

Switch OS

Network OS

Switch OS

k8s-node

CONTROLx86

CONTROLx86

VNF/CNF

VNF/CNFFPGA

NOS

Switch OS

k8s-node

CONTROLx86

CONTROLx86

VNF/CNF

VNF/CNFFPGA

NOS

Switch OS

CONTROLx86

VNF/CNFx86

Switch OS

FPGA

GPU GPU

Switch OS

k8s-node

VNF/CNFx86

𝑓 𝑦 𝑓 𝑦 NOS 𝑓 𝑦
Host (Kernel)

Network Operating
System (e.g. XR)

CPU
RAM
HDD

BGP

CP/API

𝑓 𝑦 .p4NOS.p4

𝑓 𝑦ISIS

Runtime APIRuntime API

P4 program cohabitation

NOS BNG NOS UPF

OLT

CSR

Evolution Towards P4-PINS / Stratum

o Reduce network fragmentation by merging middle boxes with the network à SR Aware DDoS, BNG, etc

o Optimized Traffic Flow by remove appliance chokepoints à Better performance, experience

o Introduce agility without making the network too complex à Keep the network OS simple

Tenet #3
Cloud Native Transformation

TNA (Google’s Nephio)

• Is Google's implementation of Nephio (formerly CNNA)

• Built natively on the Kubernetes Resources Model (KRM)

• Uses an intent-based, declarative deployment model (CaD)

• Follows a GitOps approach with a specific toolset (defined by Google)

• Leverages Kpt functions for implementation of assignment, design &
configuration mapping (CRD to CRD / K8S resources, CRD to config)

• Built on top of Google's cloud ecosystem

• Initially built for CNFs but to be extended covering VNFs/Physical devices
(DC Networking, external/transport)

• Heavily relies on the controller/operator pattern of Kubernetes, and
requires blueprints & artifacts for the NF's to be built & supplied by NEP's

TNA is Google's implementation of the Nephio open-source project

Nephio Reference Architecture

E2E service orchestration w/ TNA
• Developers define a high level service model (once, which includes the

CRDs used) in SDC, and define corresponding attributes to be used in
overrides

• They build (once) CDS packages (CBA's) that implement the
automated assignment & design logic, but only for high-level CRD attributes

• When deploying, they instantiate the service instances via SO (providing
any parameters that are not auto-assigned or generated, and specifying
the environment to deploy to)

• CDS leveraged to generate/push the intent to the intent repo

• TNA handles the deployment, technology-specific assignment & config
generation per vendor-supplied blueprints + can handle assignment & design
specific to Bell via extension of those blueprints

• Kubernetes operators (vendor supplied) handle configuration generation and
lifecycle of the cloud-based services / CNF's

cl
ou

d
or

ch
es

tra
tio

n
se

rv
ic

e
or

ch
es

tra
tio

n

NGCO Effort

Path Towards a Next-Generation CO

Metro Computing Networks (BBF TR-466)

o Cloudification of Central-Offices
• Design for Macro and micro-nodes (C-RAN, D-RAN, URLLC)
• Decentralized Management Control
• PNF/VNF/CNF & VAS support
• Legacy and transformed CO Co-Existence (TR-408)

o Embedded within a Metro Computing Fabric

o NGCO Evolution

CloudCO Ref Architecture (BBF TR-384)

NGCO Vision
o Disaggregated and Cloudified Fabric to support

• 5G xHAUL evolution
• PON rollout and evolution
• Edge Computing Deployments
• Metro Network Refresh

SPINE
GW

BACKBONE
IPv4 / SR-MPLS /

IPv6 / SRv6

TS

TS

SPINE
LEAF

SPINE
LEAF

SPINE
GW

S-LEAF

S-LEAF

UPF

MEC STACK

CSR

CSR

SPINE
LEAF

SPINE
LEAF

C
W

D
M

CSR

Bell Edge Cloud (BEC)
and/or Google GDEC

DNS

OLT

Access
Controller

Fabric
Controller

k8s APIsAPI-GW

Cloud
Orch.

NGCO POD Target Design

o Evolution of Broadband and IP Edge

o Cloudification of CO architecture

o Cloudification of CO orchestration

o Cloudification of VAS services

Hyperscaler
hosted racks

Broadband
Access IO

Front Haul
C/DWDM

A-Leaf
A-Leaf

A-Leaf
CSP ToRA-Leaf

A-Leaf

Spine + GWSpine + GW

BBU Hotelling

vDU Pool

OLTs

A-Leaf
A-Leaf

Direct Fiber

PLE

CEM

A-Leaf
S-Leaf

Regional Core
Aggregation

Regional Core
Aggregation

RAN hosted
racks

BEC (MEC)

Dedicated
Service PNFs

Transport
Services

“NGCO” POD

“Transport” Evolution

A-Leaf
A-Leaf

A-Leaf

A-Leaf

OOB SWITCH

NGCO POD – Composable Infrastructure

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

OCP Rack v2 – Modular Blocks

o Modular SLED based form factor for easy insertion/removal
o Easily adaptable to varying workload requirements (CPU

Node, Storage Node, Network IO, GPU, etc.)
o Simplified life cycle evolution over time

RSU : Rack Scale Unit

o Initial deployment with base required workload (reduces
over engineering)

o Leverage HPE greenlake* (or similar) for pre-installed ready
to use additional blades (pay on use)

o Rack decomposed in various “blocks” that can be purposed
for specific needs.
• Standard compute clusters
• NF server farm (ie Lanner)
• Network IO (OLT, vDU, etc.)

o Factory or integrator assembled for quick, cost effective,
turn-up

o Leverage expertise from industry (WWT, Vertiv, Schneider,
HPE, Mobia, etc.) rather than custom in-house engineering

o SKU based rack layout for easy ordering
o ”Just in time” deployment.

o Leveraging from Open Compute Project and hyper-scalers practices
• https://www.opencompute.org/wiki/Open_Rack/SpecsAndDesigns
• https://www.systemverilog.io/modular-design-in-open-compute-project

A-LEAF

A-LEAF

OOB SWITCH

NGCO POD – Enhanced Modularity

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

Pre-built, pre-cabled with
base config and spares

A-LEAF

A-LEAF

OOB SWITCH

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

N
ovisw

itch

N
ovisw

itch

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

A-LEAF

AA-LEAF

OOB SWITCH

DPU Node

DPU Node

DPU Node

CPU Node

CPU Node

DPU Node

CPU Node

CPU Node

A-LEAF

A-LEAF

OOB SWITCH

CPU Node

vDU Node

DPU Node

DPU Node

CPU Node

vDU Node

vDU Node

DPU Node

CPU Node

vDU Node

vDU Node

vDU Node

CPU Node

vDU Node

vDU Node

vDU Node

CPU Node

vDU Node

vDU Node

vDU Node

CPU Node

vDU Node

vDU Node

vDU Node

CPU Node

vDU Node

vDU Node

vDU Node

CPU Node

vDU Node

vDU Node

vDU Node

CPU Node

CPU Node

Storage
Shelf

CPU Node

CPU Node

Storage
Shelf

GPU Node

GPU Node GPU Node

Capacity addition at Day 2
also with alternate platforms

Supporting use case driven
modular workloads

Specialized SKUs for
focused deployments

o Only achievable with well defined design blueprints and effective supply-chain

Anatomy of the NGCO POD
Provides external network connectivity, MPLS interop
(”stitching” PE functionality)

Provides COMPUTE/OLT/DIRECT(CSR) connectivity, SRv6 PE
functionality, SRTE policy endpoint (ingress/egress).

SPINE

A-LEAF

Console
Server

Compute
Nodes

Provides serial and IPMI access to POD elements for lights-
out management. Targeted LTE backup support.

Provides flexible compute resources for MEC workloads to
support various requirements (GPU, CNF, Storage, etc.)

Can support various cloud platform implementations
(Openshift, Anthos Bare Metal, EKS Anywhere, Azure Edge)

Open approach that can be offered through various
suppliers.

Standard S-Leaf when deploying centralized or specialized
PNF functionS-LEAF

A-LEAF

A-LEAF

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

CPU Node

SPINE

SPINE

Console Server + OOB

S-LEAF

S-LEAF

Access I/O
OLT Fixed or modular chassis, Fiber Cross Connects.

IO
 C

a
rd

IO
 C

a
rd

IO
 C

a
rd

IO
 C

a
rd

IO
 C

a
rd

IO
 C

a
rd

IO
 C

a
rd

