
Primitives for Finite Field Arithmetic
in Network Switches

Daniel Seara* Bernardo Conde* Eduard Marin† Muriel
Médard‡ Muhammad Shahbaz§ Fernando M. V. Ramos*

*INESC-ID, IST, ULisboa;
†Telefonica Research;

‡MIT;
§Purdue

● “Conventional” arithmetic operations are done over infinite fields
● However, it is very common to want to perform arithmetic operations

over fields that contain a finite number of elements!
○ These elements can all be encoded in a finite amount of space.

● For example, cryptographic operations, network encoding, …, are all
done over sets of data of known size (e.g., blocks of 128 bits).

In all these common networking cases, we need to perform finite field
arithmetic

Finite Field arithmetic: a primer

• Field: set of numbers with well defined basic operations: addition,
subtraction, multiplication and division

• For example: field of real numbers (), field of rational numbers ()

• Finite: the set has a finite number of elements
• and have an infinite number of elements, so they are not finite fields

• Finite Fields also known as Galois Fields (GF)
• Most common: where p is prime

Finite Field arithmetic: a primer

All numbers that fit in 4 bits!!!

• Operations in these fields output results that are different from common
arithmetic
• Why? All operations have to output a number that is part of the field!

Operations in Finite Fields

10 + 21 = 31 10 + 21 = 31

100 + 221 = 321 100 + 221 = 321

Operations in Finite Fields

10 + 21 = 31 10 + 21 = 31

100 + 221 = 321 100 + 221 = 185

• Operations in these fields output results that are different from common
arithmetic
• Why? All operations have to output a number that is part of the field!

Operations in Finite Fields

10 + 21 = 31 10 + 21 = 31

100 + 221 = 321 100 + 221 = 185

100 - 221 = -121 100 - 221 = 185

10 * 221 = 2210 10 * 221 = 19

221 / 10 = 22.1 221 / 10 = 145

• Operations in these fields output results that are different from common
arithmetic
• Why? All operations have to output a number that is part of the field!

• Design approaches for network switches
• Log/Antilog tables
• Russian Peasant Algorithm

• A way forward
• Conclusion/Q&A

Outline

Design approaches for network
switches

• Additions and Subtractions in Finite Field GF(2^m) are simple
• It is just a simple bitwise XOR between the operands

Addition and Subtraction in Finite Fields

• Multiplication is hard
• There are 2 main approaches

• Memory intensive (using log/antilog tables)

• Compute intensive (e.g., using the Russian Peasant Algorithm)

Note: division is very similar to multiplication, dividing a and b is the same
as:

Where b^-1 is the inverse of b.

Multiplication in Finite Fields

• Idea: use logarithm tables to turn multiplications into additions
• Problem: requires storing the logarithms of all field values + all the
antilogs

Multiplication – Table method

Log table Antilog table

• Let’s multiply 10 by 25 using this method
• 10 = 0x0A; 25 = 0x19

• Step 1: Go to log table and find the values of the logarithms

Multiplication – Table method example

• We found 0x1B and 0x71
• Step 2: Add them

• 0x1B + 0x71 = 0x8C

Multiplication – Table method example

• Step 3: Check the antilog table for the final value (the result was 0x8C)
• 0x8C -> 0xFA = 250

Multiplication – Table method example

• Although we only need 3 lookups…
• It does not scale with respect to memory:

• GF(2^8) -> 256 values, 1B each value * 2 tables =
256 Bytes per table

• GF(2^128) -> 2^128 values, 16B each * 2 tables =
10^39 Bytes of memory!

(NB: 1 Petabyte = 10^15 bytes)

Multiplication – Table method issues

• Use number decomposition to achieve the result
• Russian Peasant Algorithm (RPA)

• No lookups necessary – a compute intensive approach

Multiplication – RPA

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 1:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 1:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 1:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 2:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 2:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 3:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 3:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 4:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 4:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 5:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 5:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 5:

• Let’s multiply 10 by 25 using this method

Multiplication – RPA example

Iteration 6:

b is 0 so we are done

250

• Problem: computation has dependencies requiring many pipeline
stages
• Larger Fields -> More iterations
• Some good news: number of stages scale linearly with the field size!

• Also, no memory needed for log/antilog tables

• However, implementations over large fields are not suitable for current
Tofino switches

• Our current proof of concept consumes 16 stages for multiplication in GF(2^8)

Multiplication – RPA issues

A way forward

• Modern switch architectures are not enough for generic finite field
operations (i.e., for large field sizes)
• However, other switch architectures have been proposed recently
• Question is: can we leverage any to perform Finite Field operations?

• A preliminary investigation led us to Taurus [ASPLOS’22] as a good candidate

A way forward

• Data plane architecture for running ML inference per packet
• MapReduce abstraction

• VLIW (Current) vs SIMD (New)

• Parsing, Pre-Processing, Post-Processing and Scheduling all done like
common architectures

A way forward - Taurus

ASPLOS’22 paper: Taurus: a data plane architecture for per-packet ML | Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems

https://dl.acm.org/doi/10.1145/3503222.3507726

• Map Operations
• Element-wise vector operations (addition, multiplication, etc)

• Reduce Operations
• Combine a vector of elements into a single scalar value

• Example:

Taurus - MapReduce

• MapReduce control block in P4

Taurus - MapReduce

• MapReduce based on a CGRA, Plasticine [ISCA’17]
• Compute Units (CUs)

• Composed of Functional Units (FU) and Pipeline Registers (PR)

• Lanes

• Stages

Taurus – CUs and MUs

• Memory Units (MUs)
• Banked SRAMs

• Interspersed with CUs

• Act like coarse grain Pipeline Registers
• At 1GHz, ensures nano-second level latencies

• Requirement for modern Tbps switches!

Taurus – CUs and MUs

• A full mesh of CUs and MUs

Taurus – Full Mesh

• Can we leverage the CUs to execute the iterations required by the RPA
algorithm?
• Leveraging SIMD parallelism to perform multiple operations in parallel

Current research question

• RPA in an iterative algorithm
• Each CU can be in charge of one iteration

• 8 CUs -> GF(256); 16 CUs -> GF(65536)

• Number of lanes dictate how many multiplications can be done in
parallel

Finite Field Multiplication (RPA)

• Number of stages per CU is also configurable
• One CU might be able to perform 2 iterations of RPA

• That cuts the number of CUs needed in half

Finite Field Multiplication

• We are currently working on a Proof of Concept that runs RPA in Taurus
(or an architecture based on Taurus)

• Next step is to investigate the division operation.

• We have found an algorithm capable of finding the inverse of a number
and are currently working on an implementation

Next Steps

• Primitives for Finite Field operations are required by many net
applications

○ crypto
○ network coding
○ etc.

• Current switch architectures make it hard to implement FF with large
fields, due to memory and/or computational constraints

• New architectures (Taurus-based?) are a solution worth exploring

Conclusion/Q&A

Thank You

