

Primitives for Finite Field Arithmetic in Network Switches

Daniel Seara*Bernardo Conde*Eduard Marin[†]MurielMédard[‡] Muhammad Shahbaz[§]Fernando M. V. Ramos*

*INESC-ID, IST, ULisboa; †Telefonica Research; ‡MIT; §Purdue

Finite Field arithmetic: a primer

- "Conventional" arithmetic operations are done over infinite fields
- However, it is very common to want to perform arithmetic operations over fields that contain a **finite** number of elements!
 - These elements can all be encoded in a finite amount of space.
- For example, **cryptographic operations**, **network encoding**, ..., are all done over sets of data of known size (e.g., blocks of 128 bits).

In all these common networking cases, we need to perform **finite field arithmetic**

Finite Field arithmetic: a primer

- Field: set of numbers with well defined basic operations: addition, subtraction, multiplication and division
 - For example: field of real numbers (\mathbb{R}) , field of rational numbers (\mathbb{O})
- Finite: the set has a **finite** number of elements
 - ${\mathbb R}$ and ${\mathbb Q}$ have an ${\rm infinite}$ number of elements, so they are not finite fields
- Finite Fields also known as Galois Fields (GF)
 - Most common: $\mathbb{N} \ mod \ p^k$ where p is prime

$$GF(7) = \{0, 1, 2, 3, 4, 5, 6\}$$

 $GF(2^4) = \{0, 1, \dots, 15\}$

All numbers that fit in 4 bits!!!

Operations in Finite Fields

- Operations in these fields output results that are different from common arithmetic
- Why? All operations have to output a number that is part of the field!

Operations in Finite Fields

- Operations in these fields output results that are different from common arithmetic
- Why? All operations have to output a number that is part of the field!

Operations in Finite Fields

- Operations in these fields output results that are different from common arithmetic
- Why? All operations have to output a number that is part of the field!

$$GF(2^8) = \{0, 1, \dots, 255\}$$

10 + 21 = 31
100 + 221 = 185
100 - 221 = 185
10 * 221 = 19
221 / 10 = 145

Outline

- Design approaches for network switches
 - Log/Antilog tables
 - Russian Peasant Algorithm
- A way forward
- Conclusion/Q&A

Design approaches for network switches

Addition and Subtraction in Finite Fields

- Additions and Subtractions in Finite Field GF(2^m) are **simple**
 - It is just a **simple bitwise XOR** between the operands

Multiplication in Finite Fields

- Multiplication is hard
- There are 2 main approaches
 - Memory intensive (using log/antilog tables)
 - Compute intensive (e.g., using the Russian Peasant Algorithm)

Note: division is very similar to multiplication, dividing *a* and *b* is the same as:

$$a/b = a * b^{-1}$$

Where b^{-1} is the *inverse* of *b*.

Multiplication – Table method

$$a * b = g^{log_g(a) + log_g(b)}$$

- Idea: use logarithm tables to turn multiplications into additions
- Problem: requires storing the logarithms of all field values + all the antilogs

	Table of "Exponential" Values																
E(rs)								5	6							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	01	03	05	0f	11	33	55	ff	1a	2e	72	96	a1	f8	13	35
	1	5f	e1	38	48	d8	73	95	a4	f7	02	06	0a	1e	22	66	aa
	2	e5	34	5c	e4	37	59	eb	26	6a	be	d9	70	90	ab	e6	31
	3	53	f5	04	0c	14	3c	44	CC	4f	d1	68	b8	d3	6e	b2	cd
	4	4c	d4	67	a9	e0	3b	4d	d7	62	a6	f1	08	18	28	78	88
	5	83	9e	b9	d0	6b	bd	dc	7f	81	98	b3	се	49	db	76	9 a
	6	b5	c4	57	f9	10	30	50	f0	0b	1d	27	69	bb	d6	61	a3
r	7	fe	19	2b	7d	87	92	ad	ec	2f	71	93	ae	e9	20	60	a0
	8	fb	16	3a	4e	d2	6d	b7	c2	5d	e 7	32	56	fa	15	3f	41
	9	c3	5e	e2	3d	47	c 9	40	c 0	5b	ed	2c	74	9c	bf	da	75
	a	9f	ba	d5	64	ac	ef	2a	7e	82	9d	bc	df	7a	8e	89	80
	b	9b	b6	c 1	58	e8	23	65	af	ea	25	6f	b1	c8	43	c5	54
	С	fc	1f	21	63	a5	f4	07	09	1b	2d	77	99	b0	cb	46	са
	d	45	cf	4a	de	79	8b	86	91	a8	e3	3e	42	c6	51	f3	0e
	е	12	36	5a	ee	29	7b	8d	8c	8f	8a	85	94	a7	f2	0d	17
	f	39	4b	dd	7c	84	97	a2	fd	1c	24	<u>6c</u>	b4	c7	52	f6	01

Antilog table

Multiplication – Table method example

- Let's multiply 10 by 25 using this method
 - 10 = 0x0A; 25 = 0x19
- Step 1: Go to log table and find the values of the logarithms

	Table of "Logarithm" Values																
L	(rs)								5	6							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	-	00	19	01	32	02	1a	c6	4b	с7	1b	68	33	ee	df	03
	1	64	04	e0	0e	34	8d	81	ef	4c	71	Uδ	c8	f8	69	1c	c 1
	2	7d	c2	1d	b5	f9	b9	27	6a	4d	e4	a6	72	9a	c9	09	78
	3	65	2f	8a	05	21	0f	e1	24	12	f0	82	45	35	93	da	8e
	4	96	8f	db	bd	36	d0	се	94	13	5c	d2	f1	40	46	83	38
	5	66	dd	fd	30	bf	06	8b	62	b3	25	e2	98	22	88	91	10
	6	7e	<u>6e</u>	48	c 3	a3	b6	1e	42	3a	6b	28	54	fa	85	3d	ba
r	7	2b	79	0a	15	9b	9f	5e	са	4e	d4	ac	e5	f3	73	a7	57
	8	af	58	a8	50	f4	ea	d6	74	4f	ae	e9	d5	e7	e6	ad	e8
	9	2c	d7	75	7a	eb	16	0b	f5	59	cb	5f	b0	9c	a9	51	a0
	a	7f	0c	f6	6f	17	c4	49	ec	d8	43	1f	2d	a4	76	7b	b7
	b	CC	bb	3e	5a	fb	60	b1	86	3b	52	a1	6c	aa	55	29	9d
	С	97	b2	87	90	61	be	dc	fc	bc	95	cf	cd	37	3f	5b	d1
	d	53	39	84	3c	41	a2	6d	47	14	2a	9e	5d	56	f2	d3	ab
	e	44	11	92	d9	23	20	2e	89	b4	7c	b8	26	77	99	e3	a5
	f	67	4a	ed	de	c 5	31	fe	18	0d	63	8c	80	c 0	f7	70	07

Multiplication – Table method example

- We found 0x1B and 0x71
- Step 2: Add them
 - 0x1B + 0x71 = 0x8C

Table of "Logarithm" Values																	
L	(rs)								5	5							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	-	00	19	01	32	02	1a	c6	4b	c7	1b	68	33	ee	df	03
	1	64	04	e0	0e	34	8d	81	ef	4c	71	08	c8	f8	69	1c	c 1
	2	7d	c2	1d	b5	f9	b9	27	6a	4d	e4	a6	72	9a	c9	09	78
	3	65	2f	8a	05	21	0f	e1	24	12	f0	82	45	35	93	da	8e
	4	96	8f	db	bd	36	d0	се	94	13	5c	d2	f1	40	46	83	38
	5	66	dd	fd	30	bf	06	8b	62	b3	25	e2	98	22	88	91	10
	6	7e	<u>6e</u>	48	c 3	a3	b6	1e	42	3a	6b	28	54	fa	85	3d	ba
r	7	2b	79	0a	15	9b	9f	5e	са	4e	d4	ac	e5	f3	73	a7	57
	8	af	58	a8	50	f4	ea	d6	74	4f	ae	e9	d5	e7	e6	ad	e8
	9	2c	d7	75	7a	eb	16	0b	f5	59	cb	5f	b0	9c	a9	51	a0
	a	7f	0 c	f6	6f	17	c4	49	ec	d8	43	1f	2d	a4	76	7b	b7
	b	CC	bb	3e	5a	fb	60	b1	86	3b	52	a1	6c	aa	55	29	9d
	С	97	b2	87	90	61	be	dc	fc	bc	95	cf	cd	37	3f	5b	d1
	d	53	39	84	3c	41	a2	6d	47	14	2a	9e	5d	56	f2	d3	ab
	e	44	11	92	d9	23	20	2e	89	b4	7c	b8	26	77	99	e3	a5
	f	67	4a	ed	de	c5	31	fe	18	0d	63	8c	80	c0	f7	70	07

Multiplication – Table method example

- Step 3: Check the antilog table for the final value (the result was 0x8C)
 - 0x8C -> 0xFA = 250

	Table of "Exponential" Values																
E((rs)								5	5							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	01	03	05	0f	11	33	55	ff	1a	2e	72	96	a1	f8	13	35
	1	5f	e1	38	48	d8	73	95	a4	f7	02	06	0a	1e	22	66	aa
	2	e5	34	5c	e4	37	59	eb	26	6a	be	d9	70	90	ab	e6	31
	3	53	f5	04	0c	14	3c	44	CC	4f	d1	68	b8	d3	<u>6e</u>	b2	cd
	4	4c	d4	67	a9	e0	3b	4d	d7	62	a6	f1	08	18	28	78	88
	5	83	9e	b9	d0	6b	bd	dc	7f	81	98	b3	се	49	db	76	9a
	6	b5	c 4	57	f9	10	30	50	f0	0b	1d	27	69	bb	d6	61	a3
r	7	fe	19	2b	7d	87	92	ad	ec	2f	71	93	ae	e9	20	60	a0
	8	fb	16	3a	4e	d2	6d	b7	c2	5d	e7	32	56	fa	15	3f	41
	9	c3	5e	e2	3d	47	c9	40	c 0	5b	ed	2c	74	9C	bf	da	75
	a	9f	ba	d5	64	ac	ef	2a	7e	82	9d	bc	df	7a	8e	89	80
	b	9b	b6	c 1	58	e8	23	65	af	ea	25	6f	b1	c8	43	c5	54
	C	fc	1f	21	63	a5	f4	07	09	1b	2d	77	99	b0	cb	46	са
	d	45	cf	4a	de	79	8b	86	91	a8	e3	3e	42	c6	51	f3	0e
	e	12	36	5a	ee	29	7b	8d	8c	8f	8a	85	94	a7	f2	0d	17
	f	39	4b	dd	7c	84	97	a2	fd	1c	24	6c	b4	c 7	52	f6	01

Multiplication – Table method issues

- Although we only need 3 lookups...
- It **does not scale** with respect to memory:
 - GF(2^8) -> 256 values, 1B each value * 2 tables = 256 Bytes per table
 - GF(2^128) -> 2^128 values, 16B each * 2 tables =
 10^39 Bytes of memory!

(NB: 1 Petabyte = 10^15 bytes)

Table of "Logarithm" Values																	
L(rs)								5	5							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	-	00	19	01	32	02	1a	c6	4b	c7	1b	68	33	ee	df	03
	1	64	04	e0	0e	34	8d	81	ef	4c	71	08	c8	f8	69	1c	c 1
	2	7d	c2	1d	b5	f9	b9	27	6a	4d	e4	a6	72	9a	c9	09	78
	3	65	2f	8a	05	21	0f	e1	24	12	f0	82	45	35	93	da	8e
	4	96	8f	db	bd	36	d0	се	94	13	5c	d2	f1	40	46	83	38
	5	66	dd	fd	30	bf	06	8b	62	b3	25	e2	98	22	88	91	10
	6	7e	6e	48	c 3	a3	b6	1e	42	3a	6b	28	54	fa	85	3d	ba
r	7	2b	79	0a	15	9b	9f	5e	са	4e	d4	ac	e5	f3	73	a7	57
	8	af	58	a8	50	f4	ea	d6	74	4f	ae	e9	d5	e7	e6	ad	e8
	9	2c	d7	75	7a	eb	16	0b	f5	59	cb	5f	b0	9c	a9	51	a0
	a	7f	0c	f6	6f	17	c4	49	ec	d8	43	1f	2d	a4	76	7b	b7
	b	CC	bb	3e	5a	fb	60	b1	86	3b	52	a1	6c	aa	55	29	9d
	С	97	b2	87	90	61	be	dc	fc	bc	95	cf	cd	37	3f	5b	d1
	d	53	39	84	3c	41	a2	6d	47	14	2a	9e	5d	56	f2	d3	ab
	e	44	11	92	d9	23	20	2e	89	b4	7c	b8	26	77	99	e3	a5
	f	67	4a	ed	de	c5	31	fe	18	0d	63	8c	80	c 0	f7	70	07

						Tabl	e of "	Exp	onen	tial"	Valu	es					
E	(rs)								5	5							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
	0	01	03	05	0f	11	33	55	ff	1a	2e	72	96	a1	f8	13	35
	1	5f	e1	38	48	d8	73	95	a4	f7	02	06	0a	1e	22	66	aa
	2	e5	34	5c	e4	37	59	eb	26	6a	be	d9	70	90	ab	e6	31
	3	53	f5	04	0c	14	3c	44	CC	4f	d1	68	b8	d3	<u>6e</u>	b2	cd
	4	4c	d4	67	a9	e0	3b	4d	d7	62	a6	f1	08	18	28	78	88
	5	83	9e	b9	d0	6b	bd	dc	7f	81	98	b3	се	49	db	76	9a
	6	b5	c4	57	f9	10	30	50	f0	0b	1d	27	69	bb	d6	61	a3
r	7	fe	19	2b	7d	87	92	ad	ec	2f	71	93	ae	e9	20	60	a0
	8	fb	16	3a	4e	d2	6d	b7	c2	5d	e7	32	56	fa	15	3f	41
	9	c3	5e	e2	3d	47	c9	40	c 0	5b	ed	2c	74	9c	bf	da	75
	a	9f	ba	d5	64	ac	ef	2a	7e	82	9d	bc	df	7a	8e	89	80
	b	9b	b6	c 1	58	e8	23	65	af	ea	25	6f	b1	c8	43	c5	54
	С	fc	1f	21	63	a5	f4	07	09	1b	2d	77	99	b0	cb	46	са
	d	45	cf	4a	de	79	8b	86	91	a8	e3	3e	42	c6	51	f3	0e
	e	12	36	5a	ee	29	7b	8d	8c	8f	8a	85	94	a7	f2	0d	17
	f	39	4b	dd	7c	84	97	a2	fd	1c	24	6c	b4	c 7	52	f6	01

Multiplication – RPA

- Use number decomposition to achieve the result
 - Russian Peasant Algorithm (RPA)
- No lookups necessary a compute intensive approach

```
uint8_t gmul(uint8_t a, uint8_t b) {
    uint8_t p = 0; /* accumulator for the product of the multiplication */
    while (a != 0 && b != 0) {
        if (b & 1) /* if the polynomial for b has a constant term, add the corresponding a to p */
            p ^= a; /* addition in GF(2^m) is an XOR of the polynomial coefficients */
        if (a & 0x80) /* GF modulo: if a has a nonzero term x^7, then must be reduced when it becomes x^8 */
            a = (a << 1) ^ 0x11b; /* subtract (XOR) the primitive polynomial x^8 + x^4 + x^3 + x + 1 (0b1_0001_1011) - you can change it but it must be irreducible */
            b >>= 1;
        }
        return p;
    }
```

• Let's multiply 10 by 25 using this method

Iteration 1:
$$a = 10 = 0b01010$$
 $b = 25 = 0b11001$ $p = 0$

```
uint8_t gmul(uint8_t a, uint8_t b) {
    uint8_t p = 0; /* accumulator for
    while (a != 0 && b != 0) {
        if (b & 1) /* if the polynomi
            p ^= a; /* addition in GF
        if (a & 0x80) /* GF modulo: i
            a = (a << 1) ^ 0x11b; /*
        else
            a <<<= 1; /* equivalent to
        b >>= 1;
    }
    return p;
}
```

• Let's multiply 10 by 25 using this method

Iteration 1:
$$a = 10 = 0b01010$$
 $b = 25 = 0b11001$ $p = 0b01010$

 $0b11001 \& 1 \bigcirc p = p XOR a$

```
uint8_t gmul(uint8_t a, uint8_t b) {
    uint8_t p = 0; /* accumulator for
    while (a != 0 && b != 0) {
        if (b & 1) /* if the polynomi
            p ^= a; /* addition in GF
        if (a & 0x80) /* GF modulo: i
            a = (a << 1) ^ 0x11b; /*
        else
            a <<<= 1; /* equivalent to
            b >>= 1;
      }
    return p;
}
```

• Let's multiply 10 by 25 using this method

Iteration I:

$$a = 0b10100$$
 $b = 0b01100$
 $p = 0b01010$
 $0b11001 \& 1$
 \bigcirc
 $p = p XOR a$
 $0b01010 \& 0x80$
 \bigotimes

• Let's multiply 10 by 25 using this method

0b10100 & 0x80 🔀

Iteration 2:
$$a = 0b10100$$
 $b = 0b01100$ $p = 0b01010$
 $0b01100 \& 1$

uint8 t gmul(uint8 t a, uint8 t b) {

• Let's multiply 10 by 25 using this method

Iteration 2:
$$a = 0b101000$$
 $b = 0b00110$ $p = 0b01010$

$$0b01100 \& 1 \bigotimes 0b10100 \& 0x80 \bigotimes$$

uint8_t gmul(uint8_t a, uint8_t b) {
 uint8_t p = 0; /* accumulator for
 while (a != 0 && b != 0) {
 if (b & 1) /* if the polynomi
 p ^= a; /* addition in GF
 if (a & 0x80) /* GF modulo: i
 a = (a << 1) ^ 0x11b; /*
 else
 a <<<= 1; /* equivalent to
 b >>= 1;
 }
 return p;
}

• Let's multiply 10 by 25 using this method

0b00110 & 1 🔀

0b101000 & 0x80 🔀

Iteration 3:
$$a = 0b101000$$
 $b = 0b00110$ $p = 0b01010$

```
uint8_t gmul(uint8_t a, uint8_t b) {
    uint8_t p = 0; /* accumulator for
    while (a != 0 && b != 0) {
        if (b & 1) /* if the polynomi
            p ^= a; /* addition in GF
        if (a & 0x80) /* GF modulo: i
            a = (a << 1) ^ 0x11b; /*
        else
            a <<<= 1; /* equivalent to
        b >>= 1;
    }
    return p;
}
```

• Let's multiply 10 by 25 using this method

Iteration 3: a = 0b1010000 b = 0b00011 p = 0b01010

```
uint8_t p = 0; /* accumulator for
while (a != 0 && b != 0) {
    if (b & 1) /* if the polynomi
        p ^= a; /* addition in GF
        if (a & 0x80) /* GF modulo: i
            a = (a << 1) ^ 0x11b; /*
        else
            a <<= 1; /* equivalent to
        b >>= 1;
    }
    return p;
}
```

uint8_t gmul(uint8_t a, uint8_t b) {

• Let's multiply 10 by 25 using this method

Iteration 4: a = 0b1010000 b = 0b00011 p = 0b1011010

a = 001010000 b = 000001 $0b00011 \& 1 \bigcirc p = p XOR a$ $0b1010000 \& 0x80 \bigotimes$ uint8_t gmul(uint8_t a, uint8_t b) {
 uint8_t p = 0; /* accumulator for
 while (a != 0 && b != 0) {
 if (b & 1) /* if the polynomi
 p ^= a; /* addition in GF
 if (a & 0x80) /* GF modulo: i
 a = (a << 1) ^ 0x11b; /*
 else
 a <<<= 1; /* equivalent to
 b >>= 1;
 }
 return p;
}

• Let's multiply 10 by 25 using this method

Iteration 4: a = 0b10100000 b = 0b00001 p = 0b1011010

 $0b00011 \& 1 \bigcirc p = p XOR a$ $0b1010000 \& 0x80 \bigotimes$ uint8_t gmul(uint8_t a, uint8_t b) {
 uint8_t p = 0; /* accumulator for
 while (a != 0 && b != 0) {
 if (b & 1) /* if the polynomi
 p ^= a; /* addition in GF
 if (a & 0x80) /* GF modulo: i
 a = (a << 1) ^ 0x11b; /*
 else
 a <<<= 1; /* equivalent to
 b >>= 1;
 }
 return p;
}

• Let's multiply 10 by 25 using this method

Iteration 5:
$$a = 0b10100000$$
 $b = 0b00001$ $p = 0b11111010$

 $0b00001 \& 1 \bigcirc p = p XOR a$

• Let's multiply 10 by 25 using this method

Iteration 5: a = 0b1011011 b = 0b00001 p = 0b11111010

 $0b00001 \& 1 \bigcirc p = p \ XOR \ a$ $0b10100000 \& 0x80 \oslash a = (a << 1)^0x11b$ uint8_t gmul(uint8_t a, uint8_t b) {
 uint8_t p = 0; /* accumulator for
 while (a != 0 && b != 0) {
 if (b & 1) /* if the polynomi
 p ^= a; /* addition in GF
 if (a & 0x80) /* GF modulo: i
 a = (a << 1) ^ 0x11b; /*
 else
 a <<<= 1; /* equivalent to
 b >>= 1;
 }
 return p;
}

• Let's multiply 10 by 25 using this method

Iteration 5: a = 0b1011011 b = 0b00000 p = 0b11111010

 $0b00001 \& 1 \bigcirc p = p \ XOR \ a$ $0b10100000 \& 0x80 \oslash a = (a << 1)^0x11b$ uint8_t gmul(uint8_t a, uint8_t b) {
 uint8_t p = 0; /* accumulator for
 while (a != 0 && b != 0) {
 if (b & 1) /* if the polynomi
 p ^= a; /* addition in GF
 if (a & 0x80) /* GF modulo: i
 a = (a << 1) ^ 0x11b; /*
 else
 a <<<= 1; /* equivalent to
 b >>= 1;
 }
 return p;
}

• Let's multiply 10 by 25 using this method

Iteration 6:
$$a = 0b1011011$$
 $b = 0b00000$ $p = 0b11111010$
b is 0 so we are done

uint8_t gmul(uint8_t a, uint8_t b) {
 uint8_t p = 0; /* accumulator fo

$$p=0b11111010$$

Multiplication – RPA issues

- Problem: computation has dependencies requiring many pipeline stages
- Larger Fields -> More iterations
- Some good news: number of stages **scale linearly** with the field size!
 - Also, no memory needed for log/antilog tables
- However, implementations over large fields are not suitable for current
 Tofino switches
 - Our current proof of concept consumes 16 stages for multiplication in GF(2^8)

A way forward

A way forward

- Modern switch architectures are not enough for generic finite field operations (i.e., for large field sizes)
- However, other switch architectures have been proposed recently
- Question is: can we leverage any to perform Finite Field operations?
 - A preliminary investigation led us to **Taurus [ASPLOS'22]** as a good candidate

A way forward - Taurus

- Data plane architecture for running **ML inference per packet**
- MapReduce abstraction
 - VLIW (Current) vs SIMD (New)
- Parsing, Pre-Processing, Post-Processing and Scheduling all done like common architectures

Taurus - MapReduce

- Map Operations
 - Element-wise vector operations (addition, multiplication, etc)
- Reduce Operations
 - Combine a vector of elements into a single scalar value
- Example:

Taurus - MapReduce

• MapReduce control block in P4

```
1 Control Parser (...) {...}
2 Control PreProcessMAT (...) {...}
3 Control MapReduce( inout metadata FeatureSet,
                      inout metadata Output ) {
4
    Weights = loadModelFromFile(Anomaly.model)
5
    LinearResults = Map(sizeOf(Weights[0])) { i =>
6
      Mult_Results = Map(sizeOf(Weights[1])) { j =>
7
        Weights[i,j] * FeatureSet[j] }
8
      Reduce(Mult_Results) { (x,y) \Rightarrow x + y }
9
    Output = Map(sizeOf(LinearResults)) { k =>
10
      ReLU(LinearResults[k])
11
12 } }
13 Control PostProcessMAT (...) {...}
14 Control Deparser (...) {...}
```

Taurus – CUs and MUs

- MapReduce based on a CGRA, Plasticine [ISCA'17]
- Compute Units (CUs)
 - Composed of Functional Units (FU) and Pipeline Registers (PR)
 - Lanes
 - Stages

Taurus – CUs and MUs

- Memory Units (MUs)
 - Banked SRAMs
 - Interspersed with CUs
- Act like coarse grain Pipeline Registers
- At 1GHz, ensures nano-second level latencies
 - Requirement for modern Tbps switches!

Taurus – Full Mesh

• A full mesh of CUs and MUs

Current research question

- Can we leverage the CUs to execute the iterations required by the RPA algorithm?
- Leveraging SIMD parallelism to perform multiple operations in parallel

Finite Field Multiplication (RPA)

- RPA in an iterative algorithm
- Each CU can be in charge of one iteration
 - 8 CUs -> GF(256); 16 CUs -> GF(65536)
- Number of lanes dictate how many multiplications can be done in parallel

Finite Field Multiplication

- Number of stages per CU is also configurable
 - One CU might be able to perform 2 iterations of RPA
 - That cuts the number of CUs needed in half

```
uint8_t gmul(uint8_t a, uint8_t b) {
    uint8_t p = 0; /* accumulator for
    while (a != 0 && b != 0) {
        if (b & 1) /* if the polynomic
            p ^= a; /* addition in GF;
        if (a & 0x80) /* GF modulo: i;
            a = (a << 1) ^ 0x11b; /* :
        else
            a <<= 1; /* equivalent to
            b >>= 1;
        }
    return p;
}
```


• We are currently working on a Proof of Concept that runs RPA in Taurus (or an architecture based on Taurus)

• Next step is to investigate the division operation.

• We have found an algorithm capable of finding the inverse of a number and are currently working on an implementation

Conclusion/Q&A

- Primitives for Finite Field operations are required by many net applications
 - crypto
 - network coding
 - etc.
- Current switch architectures make it hard to implement FF with large fields, due to memory and/or computational constraints
- New architectures (Taurus-based?) are a solution worth exploring

Thank You