Primitives for Finite Field Arithmetic in Network Switches

Daniel Seara* Bernardo Conde* Eduard Marin ${ }^{\dagger}$ Muriel
Médard \ddagger Muhammad Shahbaz ${ }^{\S}$ Fernando M. V. Ramos*
*INESC-ID, IST, ULisboa;
†Telefonica Research; \ddagger MIT;
§Purdue

Finite Field arithmetic: a primer

- "Conventional" arithmetic operations are done over infinite fields
- However, it is very common to want to perform arithmetic operations over fields that contain a finite number of elements!
- These elements can all be encoded in a finite amount of space.
- For example, cryptographic operations, network encoding, ..., are all done over sets of data of known size (e.g., blocks of 128 bits).

In all these common networking cases, we need to perform finite field arithmetic

Finite Field arithmetic: a primer

- Field: set of numbers with well defined basic operations: addition, subtraction, multiplication and division
- For example: field of real numbers (\mathbb{R}), field of rational numbers (\mathbb{Q})
- Finite: the set has a finite number of elements
- $\mathbb{R}^{\text {and }} \mathbb{Q}^{\text {have an infinite number of elements, so they are not finite fields }}$
- Finite Fields also known as Galois Fields (GF)
- Most common: $\mathbb{N} \bmod p^{k}$ where p is prime

$$
\begin{gathered}
G F(7)=\{0,1,2,3,4,5,6\} \\
G F\left(2^{4}\right)=\{0,1, \ldots, 15\}
\end{gathered}
$$

Operations in Finite Fields

- Operations in these fields output results that are different from common arithmetic
- Why? All operations have to output a number that is part of the field!

$$
\begin{gathered}
\mathscr{R} \\
10+21=31 \\
100+221=321
\end{gathered}
$$

$$
\begin{gathered}
G F\left(2^{8}\right)=\{0,1, \ldots, 255\} \\
10+21=31 \\
100+221=321
\end{gathered}
$$

Operations in Finite Fields

- Operations in these fields output results that are different from common arithmetic
- Why? All operations have to output a number that is part of the field!

$$
\begin{gathered}
\text { R } \\
10+21=31 \\
100+221=321
\end{gathered}
$$

$$
\begin{gathered}
G F\left(2^{8}\right)=\{0,1, \ldots, 255\} \\
10+21=31 \\
100+221=185
\end{gathered}
$$

Operations in Finite Fields

- Operations in these fields output results that are different from common arithmetic
- Why? All operations have to output a number that is part of the field!

$$
\begin{gathered}
G F\left(2^{8}\right)=\{0,1, \ldots, 255\} \\
10+21=31 \\
100+221=185 \\
100-221=185 \\
10 * 221=19 \\
221 / 10=145
\end{gathered}
$$

Outline

- Design approaches for network switches
- Log/Antilog tables
- Russian Peasant Algorithm
- A way forward
- Conclusion/Q\&A

Workshop
May 24-26th

Addition and Subtraction in Finite Fields

- Additions and Subtractions in Finite Field GF($2 \wedge \mathrm{~m}$) are simple
- It is just a simple bitwise XOR between the operands

Multiplication in Finite Fields

- Multiplication is hard
- There are 2 main approaches
- Memory intensive (using log/antilog tables)
- Compute intensive (e.g., using the Russian Peasant Algorithm)

Note: division is very similar to multiplication, dividing a and b is the same as:

$$
a / b=a * b^{-1}
$$

Where $b^{\wedge-1}$ is the inverse of b.

Multiplication - Table method

$$
a * b=g^{\log _{g}(a)+\log _{g}(b)}
$$

- Idea: use logarithm tables to turn multiplications into additions
- Problem: requires storing the logarithms of all field values + all the antilogs

Table of "Logarithm" Values																
L(rs)	s															
	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	-	00	19	01	32	02	1a	c6	4b	c7	1b	68	33	ee	df	03
1	64	04	e0	0e	34	8d	81	ef	4c	71	08	c8	f8	69	1c	c1
2	7d	c2	1d	b5	f9	b9	27	6a	4d	e4	a6	72	9a	c9	09	78
3	65	2 f	8a	05	21	Of	e1	24	12	f0	82	45	35	93	da	8 e
4	96	8f	db	bd	36	d0	ce	94	13	5c	d2	f1	40	46	83	38
5	66	dd	fd	30	bf	06	8b	62	b3	25	e2	98	22	88	91	10
6	7 e	6 e	48	c3	a3	b6	1e	42	3a	6b	28	54	fa	85	3d	ba
$\mathbf{r} 7$	2b	79	0a	15	9b	9f	5 e	ca	4e	d4	ac	e5	f3	73	a7	57
8	af	58	a8	50	f4	ea	d6	74	4f	ae	e9	d5	e7	e6	ad	e8
9	2c	d7	75	7a	eb	16	0b	f5	59	cb	5 f	b0	9c	a9	51	a0
a	7 f	0c	f6	6 f	17	c4	49	ec	d8	43	1f	2d	a4	76	7b	b7
b	CC	bb	3 e	5a	fb	60	b1	86	3b	52	a1	6c	aa	55	29	9d
c	97	b2	87	90	61	be	dc	fc	bc	95	cf	cd	37	3 f	5b	d1
d	53	39	84	3c	41	a2	6d	47	14	2a	9e	5d	56	f2	d3	ab
e	44	11	92	d9	23	20	2e	89	b4	7c	b8	26	77	99	e3	a5
f	67	4a	ed	de	c5	31	fe	18	0d	63	8c	80	c0	f7	70	07

Log table

Table of "Exponential" Values																
E(rs)	s															
	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	01	03	05	0f	11	33	55	ff	1a	2e	72	96	a1	f8	13	35
1	$5 f$	e1	38	48	d8	73	95	a4	f7	02	06	0a	1 e	22	66	aa
2	e5	34	5c	e4	37	59	eb	26	6 a	be	d9	70	90	ab	e6	31
3	53	f5	04	0c	14	3c	44	CC	4f	d1	68	b8	d3	6 e	b2	cd
4	4c	d4	67	a9	e0	3b	4d	d7	62	a6	f1	08	18	28	78	88
5	83	9e	b9	d0	6b	bd	dc	7 f	81	98	b3	ce	49	db	76	9a
6	b5	c4	57	f9	10	30	50	f0	0b	1d	27	69	bb	d6	61	a3
7	fe	19	2b	7d	87	92	ad	ec	2f	71	93	ae	e9	20	60	a0
8	fb	16	3a	4e	d2	6d	b7	c2	5d	e7	32	56	fa	15	3f	41
9	c3	5e	e2	3d	47	c9	40	c0	5b	ed	2c	74	9c	bf	da	75
a	9f	ba	d5	64	ac	ef	2a	7 F	82	9d	bc	df	7a	8 e	89	80
b	9b	b6	c1	58	e8	23	65	af	ea	25	6 f	b1	c8	43	c5	54
c	fc	1f	21	63	a5	f4	07	09	1b	2d	77	99	b0	cb	46	ca
d	45	cf	4a	de	79	8b	86	91	a8	e3	3 C	42	c6	51	f3	0e
e	12	36	5a	еe	29	7b	8d	8c	8 f	8a	85	94	a7	f2	0d	17
I	39	4b	dd	7c	84	97	a2	fd	1c	24	6c	b4	c7	52	f6	01

Antilog table

Multiplication - Table method example

- Let's multiply 10 by 25 using this method
- $10=0 \times 0 \mathrm{~A} ; 25=0 \times 19$
- Step 1: Go to log table and find the values of the logarithms

Table of "Logarithm" Values																	
L(rs)		s															
		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
r	0	-	00	19	01	32	02	1a	c6	4b	7	1b	68	33	ee	df	03
	1	64	04	e0	0e	34	8d	81	ef	4c	71	08	c8	f8	69	1c	c1
	2	7d	c2	1d	b5	f9	b9	27	6a	4d	e4	a6	72	9a	c9	09	78
	3	65	2 f	8a	05	21	Of	e1	24	12	f0	82	45	35	93	da	8 e
	4	96	8f	db	bd	36	d0	ce	94	13	5c	d2	f1	40	46	83	38
	5	66	dd	fd	30	bf	06	8b	62	b3	25	e2	98	22	88	91	10
	6	7e	6 e	48	c3	a3	b6	1e	42	3a	6b	28	54	fa	85	3d	ba
	7	2b	79	0a	15	9b	9f	5e	ca	4e	d4	ac	e5	f3	73	a7	57
	8	af	58	a8	50	f4	ea	d6	74	4f	ae	e9	d5	e7	e6	ad	e8
	9	2c	d7	75	7a	eb	16	0b	f5	59	cb	5 f	b0	9c	a9	51	a0
	a	7 f	0c	f6	6 f	17	c4	49	ec	d8	43	1f	2d	a4	76	7b	b7
	b	CC	bb	3 C	5a	fb	60	b1	86	3b	52	a1	6c	aa	55	29	9d
	c	97	b2	87	90	61	be	dc	fc	bc	95	cf	cd	37	3f	5b	d1
	d	53	39	84	3c	41	a2	6d	47	14	2a	9e	5d	56	f2	d3	ab
	e	44	11	92	d9	23	20	2e	89	b4	7c	b8	26	77	99	e3	a5
	f	67	4a	ed	de	c5	31	fe	18	0d	63	8c	80	c0	f7	70	07

Multiplication - Table method example

- We found 0x1B and 0x71

- Step 2: Add them
- $0 x 1 B+0 x 71=0 x 8 C$

Table of "Logarithm" Values																	
L(rs)		s															
		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
r	0	-	00	19	01	32	02	1a	c6	4b	7	1b	68	33	ee	df	03
	1	64	04	e0	0e	34	8d	81	ef	4c	71	08	c8	f8	69	1c	c1
	2	7d	c2	1d	b5	f9	b9	27	6a	4d	e4	a6	72	9a	c9	09	78
	3	65	2 f	8a	05	21	0f	e1	24	12	f0	82	45	35	93	da	8 e
	4	96	8 f	db	bd	36	d0	ce	94	13	5c	d2	f1	40	46	83	38
	5	66	dd	fd	30	bf	06	8b	62	b3	25	e2	98	22	88	91	10
	6	7 e	6 e	48	c3	a3	b6	1e	42	3a	6b	28	54	fa	85	3d	ba
	7	2b	79	0a	15	9b	9f	5e	ca	4e	d4	ac	e5	f3	73	a7	57
	8	af	58	a8	50	f4	ea	d6	74	4f	ae	e9	d5	e7	e6	ad	e8
	9	2c	d7	75	7a	eb	16	0b	f5	59	cb	5 f	b0	9c	a9	51	a0
	a	7 f	0c	f6	6 f	17	c4	49	ec	d8	43	1f	2d	a4	76	7b	b7
	b	CC	bb	3 C	5a	fb	60	b1	86	3b	52	a1	6c	aa	55	29	9d
	c	97	b2	87	90	61	be	dc	fc	bc	95	cf	cd	37	3 f	5b	d1
	d	53	39	84	3c	41	a2	6d	47	14	2a	9 e	5d	56	f2	d3	ab
	e	44	11	92	d9	23	20	2e	89	b4	7c	b8	26	77	99	e3	a5
	f	67	4a	ed	de	c5	31	fe	18	0d	63	8c	80	c0	f7	70	07

Multiplication - Table method example

- Step 3: Check the antilog table for the final value (the result was $0 \times 8 \mathrm{C}$)
- $0 x 8 \mathrm{C}$-> $0 x F A=250$

Table of "Exponential" Values																	
E(rs)		S															
		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
r	0	01	03	05	Of	11	33	55	ff	1a	2e	72	96	a1	f8	13	35
	1	5 f	e1	38	48	d8	73	95	a4	f7	02	06	0a	1e	22	66	aa
	2	e5	34	5c	e4	37	59	eb	26	6a	be	d9	70	90	ab	e6	31
	3	53	f5	04	0c	14	3c	44	CC	4f	d1	68	b8	d3	6 e	b2	cd
	4	4c	d4	67	a9	e0	3b	4d	d7	62	a6	f1	08	18	28	78	88
	5	83	9e	b9	d0	6b	bd	dc	7f	81	98	b3	ce	49	db	76	9a
	6	b5	c4	57	f9	10	30	50	f0	0b	1d	27	69	bb	d6	61	a3
	7	fe	19	2b	7d	87	92	ad	ec	2 f	71	93	ae	e9	20	60	a0
	8	fb	16	3a	4e	d2	6d	b7	c2	5d	e7	32	56	fa	15	3f	41
	9	c3	5e	e2	3d	47	c9	40	c0	5b	ed	2c	74	\%	bf	da	75
	a	9f	ba	d5	64	ac	ef	2a	7 e	82	9d	bc	df	7a	8 e	89	80
	b	9b	b6	c1	58	e8	23	65	af	ea	25	6 f	b1	c8	43	c5	54
	c	fc	1 f	21	63	a5	f4	07	09	1b	2d	77	99	b0	cb	46	ca
	d	45	cf	4a	de	79	8b	86	91	a8	e3	3 C	42	c6	51	f3	0e
	e	12	36	5a	ee	29	7b	8d	8c	8 f	8a	85	94	a7	f2	0d	17
	f	39	4b	dd	7c	84	97	a2	fd	1c	24	6c	b4	c7	52	f6	01

Multiplication - Table method issues

- Although we only need 3 lookups...
- It does not scale with respect to memory:
- $G F(2 \wedge 8)$-> 256 values, 1 B each value * 2 tables $=$ 256 Bytes per table
- GF(2^128) -> 2^128 values, 16B each * 2 tables = 10^39 Bytes of memory!
(NB: 1 Petabyte $=10 \wedge 15$ bytes $)$

Table of "Logarithm" Values																
L(rs)	s															
	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	-	00	19	01	32	02	1a	c6	4b	c7	1b	68	33	ee	df	03
1	64	04	e0	0e	34	8d	81	ef	4c	71	08	c8	f8	69	1c	c1
2	7d	c2	1d	b5	f9	b9	27	6a	4d	e4	a6	72	9a	c9	09	78
3	65	2 f	8a	05	21	Of	e1	24	12	f0	82	45	35	93	da	8 e
4	96	8 f	db	bd	36	d0	ce	94	13	5c	d2	f1	40	46	83	38
5	66	dd	fd	30	bf	06	8b	62	b3	25	e2	98	22	88	91	10
6	7e	6 C	48	c3	a3	b6	1 e	42	3a	6b	28	54	fa	85	3d	ba
7	2b	79	0a	15	9b	9f	5 e	ca	4e	d4	ac	e5	f3	73	a7	57
8	af	58	a8	50	f4	ea	d6	74	4f	ae	e9	d5	e7	e6	ad	e8
9	2c	d7	75	7a	eb	16	0b	f5	59	cb	5 f	b0	9c	a9	51	a0
a	7 f	0c	f6	6 f	17	c4	49	ec	d8	43	1f	2d	a4	76	7b	b7
b	CC	bb	3 C	5a	fb	60	b1	86	3b	52	a1	6c	aa	55	29	9d
c	97	b2	87	90	61	be	dc	fc	bc	95	cf	cd	37	3 f	5b	d1
d	53	39	84	3c	41	a2	6 d	47	14	2a	9 C	5d	56	f2	d3	ab
e	44	11	92	d9	23	20	2e	89	b4	7c	b8	26	77	99	e3	a5
1	67	4a	ed	de	c5	31	fe	18	0d	63	8c	80	c0	f7	70	07

E(rs)	s															
	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0 1 2 3 4 5 5 6	01	03	05	0f	11	33	55	ff	1a	2 e	72	96	a1	f8	13	35
	5 f	e1	38	48	d8	73	95	a4	f7	02	06	0a	1 e	22	66	aa
	e5	34	5c	e4	37	59	eb	26	6a	be	d9	70	90	ab	e6	31
	53	f5	04	0c	14	3c	44	cc	4f	d1	68	b8	d3	6 e	b2	cd
	4c	d4	67	a9	e0	3b	4d	d7	62	a6	f1	08	18	28	78	88
	83	9e	b9	d0	6b	bd	dc	7 f	81	98	b3	ce	49	db	76	9a
	b5	c4	57	f9	10	30	50	f0	0b	1d	27	69	bb	d6	61	a3
	fe	19	2b	7d	87	92	ad	ec	2 f	71	93	ae	e9	20	60	a0
8	fb	16	3a	4e	d2	6d	b7	c2	5d	e7	32	56	fa	15	3 f	41
9	c3	5e	e2	3d	47	c9	40	c0	5b	ed	2c	74	9c	bf	da	75
a	9 f	ba	d5	64	ac	ef	2a	7	82	9d	bc	df	7a	8 e	89	80
b	9b	b6	c1	58	e8	23	65	af	ea	25	6 f	b1	c8	43	c5	54
c	fc	1f	21	63	a5	f4	07	09	1b	2d	77	99	b0	cb	46	ca
d	45	cf	4a	de	79	8b	86	91	a8	e3	3e	42	c6	51	f3	0e
e	12	36	5a	ee	29	7b	8d	8c	8 f	8a	85	94	a7	f2	0d	17
f	39	4b	dd	7c	84	97	a2	fd	1c	24	6c	b4	c7	52	f6	

Multiplication - RPA

- Use number decomposition to achieve the result
- Russian Peasant Algorithm (RPA)
- No lookups necessary - a compute intensive approach

```
uint8_t gmul(uint8_t a, uint8_t b) {
    uint8_t p = 0; /* accumulator for the product of the multiplication */
    while-(a != 0 && b != 0) {
        if (b & 1) /* if the polynomial for b has a constant term, add the corresponding a to p */
            p^= a; /* addition in GF(2^m) is an XOR of the polynomial coefficients */
            if (a & 0x80) /* GF modulo: if a has a nonzero term }\mp@subsup{x}{}{\wedge}7\mathrm{ , then must be reduced when it becomes }\mp@subsup{x}{}{\wedge}8 *
                a = (a<< 1) ^ 0x11b; /* subtract (XOR) the primitive polynomial x^8 + x^4 + x^3 +x + 1 (0b1_0001_1011) - you can change it but it must be irreducible */
            else
            a <<= 1; /* equivalent to a*x */
            b >>= 1;
    }
    return p;
}
```


Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration I: $a=10=0 b 01010 \quad b=25=0 b 11001 \quad p=0$
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0 ; /^{*}$ accumulator for while (a $!=\theta \& \& b!=\theta$) \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF
if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$
else
a <<= 1; /* equivalent to
b $\gg=1$;
\}
return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 1: $\quad a=10=0 b 01010 \quad b=25=0 b 11001 p=0 b 01010$
$0 b 11001 \& 1 \oslash p=p X O R a$
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0 ; /^{*}$ accumulator for while (a $!=\theta \& \& b \quad!=\theta$) \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$ else a <<=1; /* equivalent to \} return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 1: $a=0 b 10100 \quad b=0 b 01100 \quad p=0 b 01010$
$0 b 11001 \& 1 \oslash p=p X O R a$
$0 b 01010 \& 0 x 80$
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0 ; /^{*}$ accumulator for while $(\mathrm{a}!=0$ \& \& $\mathrm{b}!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a}$; /* addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1) \wedge 0 \times 11 b ; /^{*}$ else a <<=1; /* equivalent to b $\gg=1$; fetur return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 2: $a=0 b 10100 \quad b=0 b 01100 \quad p=0 b 01010$
$0 b 01100$ \& 1 X
$0 b 10100$ \& $0 x 80$ Х
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0$; /* accumulator for while $(\mathrm{a}!=0$ \& \& $\mathrm{b}!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1) \wedge 0 \times 11 b ; /^{*}$ else a <<=1; /* equivalent to b $\gg=1$;
fetur
return p;
\}

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 2: $a=0 b 101000 \quad b=0 b 00110 \quad p=0 b 01010$
$0 b 01100 \& 1 \times$
$0 b 10100$ \& $0 x 80$ Х
uint8_t gmul(uint8_t a, uint8_t b) \{
uint8_t $p=0$; /* accumulator for while $(\mathrm{a}!=0$ \& \& $\mathrm{b}!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1) \wedge 0 \times 11 b ; /^{*}$ else a <<= 1; /* equivalent to b $\gg=1$; retu return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 3: $a=0 b 101000 \quad b=0 b 00110 \quad p=0 b 01010$
0600110 \& $1 \boldsymbol{\wedge}$
$06101000 \& 0 x 80$ ®
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0 ; /^{*}$ accumulator for while $(\mathrm{a}!=0$ \& \& $\mathrm{b}!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$ else a <<= 1; /* equivalent to b $\gg=1$; retur return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 3: $a=0 b 1010000 \quad b=0 b 00011 \quad p=0 b 01010$
0600110 \& $1 \boldsymbol{x}$
$06101000 \& 0 x 80$ ®
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0 ; /^{*}$ accumulator for while $(\mathrm{a}!=0$ \& \& $\mathrm{b}!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1) \wedge 0 \times 11 b ; /^{*}$ else a <<= 1; /* equivalent to b $\gg=1$;
\}
return p;
\}

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 4: $\quad a=0 b 1010000 \quad b=0 b 00011 \quad p=0 b 1011010$
$0 b 00011 \& 1 \oslash p=p$ XOR a
$0 b 1010000 \& 0 x 80$ \&
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0$; /* accumulator for while (a $!=\theta \& \& b \quad!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF
if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$ else a $\ll=1$; /* equivalent to b >>=1; \} return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 4: $a=0 b 10100000 \quad b=0 b 00001 \quad p=0 b 1011010$
$0 b 00011 \& 1 \oslash p=p$ XOR a
$0 b 1010000 \& 0 x 80$ \&
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0 ; /^{*}$ accumulator for while ($\mathrm{a}!=\theta$ \&\& $\mathrm{b}!=\theta$) \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1) \wedge 0 \times 11 b ; /^{*}$ else a <<=1; /* equivalent to b $\gg=1$;
\} ret
return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 5: $a=0 b 10100000 \quad b=0 b 00001 \quad p=0 b 11111010$
$0 b 00001 \& 1 \oslash p=p X O R a$
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0$; /* accumulator for while (a $!=\theta \& \& b \quad!=\theta$) \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$ else a <<=1; /* equivalent to b >>=1;
\}
return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 5: $\quad a=0 b 1011011 \quad b=0 b 00001 \quad p=0 b 11111010$
$0 b 00001 \& 1 \oslash p=p$ XOR a
$0 b 10100000 \& 0 x 80 \oslash a=(a \ll 1)^{\wedge} 0 x 11 b$
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0$; /* accumulator for while (a $!=\theta \& \& b \quad!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$ else a <<= 1; /* equivalent to b >>=1; \} return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 5: $\quad a=0 b 1011011 \quad b=0 b 00000 \quad p=0 b 11111010$

$$
\begin{aligned}
& 0 b 00001 \& 1 \oslash p=p \text { XOR } a \\
& 0 b 10100000 \& 0 x 80 \oslash a=(a \ll 1)^{\wedge} 0 x 11 b
\end{aligned}
$$

uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0$; /* accumulator for while (a $!=\theta \& \& b \quad!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$ else a <<= 1; /* equivalent to b >>=1;
\}
return p;

Multiplication - RPA example

- Let's multiply 10 by 25 using this method

Iteration 6: $a=0 b 1011011 \quad b=0 b 00000 \quad p=0 b 11111010$
b is 0 so we are done
uint8_t gmul(uint8_t a, uint8_t b) \{ uint8_t $p=0$; /* accumulator for while $(\mathrm{a}!=0$ \& \& $\mathrm{b}!=\theta)$ \{
if (b \& 1) /* if the polynomi $\mathrm{p}^{\wedge}=\mathrm{a} ; /^{*}$ addition in GF
if (a \& 0x80) /* GF modulo: i $a=(a \ll 1)^{\wedge} 0 \times 11 b ; /^{*}$ else a $\ll=1$; /* equivalent to b $\gg=1$; ret
return p;
$p=0 b 11111010$

Multiplication - RPA issues

- Problem: computation has dependencies requiring many pipeline stages
- Larger Fields -> More iterations
- Some good news: number of stages scale linearly with the field size!
- Also, no memory needed for log/antilog tables
- However, implementations over large fields are not suitable for current Tofino switches
- Our current proof of concept consumes 16 stages for multiplication in $\operatorname{GF}(2 \wedge 8)$

A way forward

A way forward

- Modern switch architectures are not enough for generic finite field operations (i.e., for large field sizes)
- However, other switch architectures have been proposed recently
- Question is: can we leverage any to perform Finite Field operations?
- A preliminary investigation led us to Taurus [ASPLOS'22] as a good candidate

A way forward - Taurus

- Data plane architecture for running ML inference per packet
- MapReduce abstraction
- VLIW (Current) vs SIMD (New)
- Parsing, Pre-Processing, Post-Processing and Scheduling all done like common architectures

Taurus - MapReduce

- Map Operations
- Element-wise vector operations (addition, multiplication, etc)
- Reduce Operations
- Combine a vector of elements into a single scalar value
- Example:

Taurus - MapReduce

- MapReduce control block in P4

```
Control Parser (...) {...}
Control PreProcessMAT (...) {...}
Control MapReduce( inout metadata FeatureSet,
                inout metadata Output ) {
    Weights = loadModelFromFile(Anomaly.model)
    LinearResults = Map(sizeOf(Weights[0])) { i =>
        Mult_Results = Map(sizeOf(Weights[1])) { j =>
            Weights[i,j] * FeatureSet[j] }
        Reduce(Mult_Results) { (x,y) => x + y } }
    Output = Map(sizeOf(LinearResults)) { k =>
        ReLU(LinearResults[k])
    } }
Control PostProcessMAT (...) {...}
Control Deparser (...) {...}
```


Taurus - CUs and MUs

- MapReduce based on a CGRA, Plasticine [ISCA'I7]
- Compute Units (CUs)
- Composed of Functional Units (FU) and Pipeline Registers (PR)
- Lanes
- Stages

Taurus - CUs and MUs

- Memory Units (MUs)
- Banked SRAMs
- Interspersed with CUs
- Act like coarse grain Pipeline Registers
- At lGHz, ensures nano-second level latencies
- Requirement for modern Tbps switches!

Taurus - Full Mesh

- A full mesh of CUs and MUs

Current research question

- Can we leverage the CUs to execute the iterations required by the RPA algorithm?
- Leveraging SIMD parallelism to perform multiple operations in parallel

Finite Field Multiplication (RPA)

- RPA in an iterative algorithm
- Each CU can be in charge of one iteration
- 8 CUs -> GF (256); 16 CUs -> GF(65536)
- Number of lanes dictate how many multiplications can be done in parallel

Finite Field Multiplication

- Number of stages per CU is also configurable
- One CU might be able to perform 2 iterations of RPA
- That cuts the number of CUs needed in half

Next Steps

- We are currently working on a Proof of Concept that runs RPA in Taurus (or an architecture based on Taurus)
- Next step is to investigate the division operation.
- We have found an algorithm capable of finding the inverse of a number and are currently working on an implementation

Conclusion/Q\&A

- Primitives for Finite Field operations are required by many net applications
- crypto
- network coding
- etc.
- Current switch architectures make it hard to implement FF with large fields, due to memory and/or computational constraints
- New architectures (Taurus-based?) are a solution worth exploring

Thank You

