
Deep dive & Getting started with PSA
implementation for eBPF

Tomasz Osiński (Intel, ex-ONF),
Mateusz Kossakowski, Jan Palimąka (Orange)

Agenda

• Introduction to PSA-eBPF
• Background:

• eBPF
• Short overview of Portable Switch Architecture (PSA)

• Deep dive into PSA design & implementation for eBPF:
• How PSA is mapped to eBPF subsystem?
• How PSA externs are implemented?

• Getting started with PSA-eBPF:
• psabpf C library and CLI tool
• Hands-on session
• Integration with Mininet
• Troubleshooting

• Summary:
• Programming guidelines
• Future work
• How to get started? How to get involved?

PSA implementation for eBPF (aka PSA-eBPF)

• eBPF is a popular technology for flexible and
high-speed packet processing on the Linux
OS

• P4 compiler already implements eBPF
backend

• P4 developers can write P4 programs and
compile them to eBPF instructions that are
further injected into the Linux kernel to process
packets

• legacy eBPF backend only supports packet
filtering with limited capabilities (only a few P4
externs)

• PSA-eBPF is an extension to P4-eBPF,
implementing a fully-featured Portable
Switch Architecture (PSA) for eBPF

PSA-eBPF components

psabpf API / CLI tool

github.com/P4-Research/psabpf

PSA-eBPF compiler

github.com/p4lang/p4c/tree/main/backends/ebpf/psa

https://github.com/P4-Research/psabpf
https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa

Overview of the PSA-eBPF workflow

P4 program

P4 developer

Write P4/PSA program

Overview of the PSA-eBPF workflow

P4 program

PSA-eBPF compiler
eBPF bytecode

P4 developer

Write P4/PSA program

Overview of the PSA-eBPF workflow

P4 program

PSA-eBPF compiler

Linux OS & eBPF
eBPF bytecode

P4 developer

Write P4/PSA program

Overview of the PSA-eBPF workflow

P4 program

psabpf API / CLI tool

PSA-eBPF compiler

Linux OS & eBPF
eBPF bytecode

P4 developer

Write P4/PSA program

Overview of the PSA-eBPF workflow

P4 program

psabpf API / CLI tool

PSA-eBPF compiler

Linux OS & eBPF

Load eBPF
programs

eBPF bytecode

Manage P4/eBPF
objects

P4 developer

Write P4/PSA program Load & manage PSA-eBPF programs

Background

Introduction to eBPF

• extended Berkeley Packet Filter (eBPF)
• eBPF provides in-kernel virtual machine

that can safely run eBPF programs
• eBPF program - set of instructions

• JIT-ed or interpreted
• eBPF programs can be injected at runtime

(no kernel extensions, no reboot)

eBPF subsystem in Linux kernel

eBPF program

Cilium provides excellent BPF and XDP Reference Guide

https://docs.cilium.io/en/latest/bpf/#bpf-guide

Introduction to eBPF

• extended Berkeley Packet Filter (eBPF)
• eBPF provides in-kernel virtual machine

that can safely run eBPF programs
• eBPF program - set of instructions

• JIT-ed or interpreted
• eBPF programs can be injected at runtime

(no kernel extensions, no reboot)
• eBPF concepts:

• BPF verifier - static in-kernel checker,
verifies eBPF program before it’s injected
into the kernel

eBPF subsystem in Linux kernel

Cilium provides excellent BPF and XDP Reference Guide

https://docs.cilium.io/en/latest/bpf/#bpf-guide

Introduction to eBPF

• extended Berkeley Packet Filter (eBPF)
• eBPF provides in-kernel virtual machine

that can safely run eBPF programs
• eBPF program - set of instructions

• JIT-ed or interpreted
• eBPF programs can be injected at runtime

(no kernel extensions, no reboot)
• eBPF concepts:

• BPF verifier - static in-kernel checker,
verifies eBPF program before it’s injected
into the kernel

• BPF maps - persistent key-value store (e.g.,
based on hash table)

• can be accessed from userspace or from eBPF
program

eBPF subsystem in Linux kernel

Cilium provides excellent BPF and XDP Reference Guide

https://docs.cilium.io/en/latest/bpf/#bpf-guide

Introduction to eBPF

• extended Berkeley Packet Filter (eBPF)
• eBPF provides in-kernel virtual machine

that can safely run eBPF programs
• eBPF program - set of instructions

• JIT-ed or interpreted
• eBPF programs can be injected at runtime

(no kernel extensions, no reboot)
• eBPF concepts:

• BPF verifier - static in-kernel checker,
verifies eBPF program before it’s injected
into the kernel

• BPF maps - persistent key-value store (e.g.,
based on hash table)

• can be accessed from userspace or from eBPF
program

• BPF helpers - external kernel functions that
can be called from within eBPF program

eBPF subsystem in Linux kernel

Cilium provides excellent BPF and XDP Reference Guide

https://docs.cilium.io/en/latest/bpf/#bpf-guide

eBPF hooks

• BPF hook is an attachment point for
eBPF programs

• Linux provides many BPF hooks..
• BPF hooks for packet processing:

• XDP (eXpress Data Path)
• runs in the NIC driver
• Ingress only
• high-speed packet processing
• limited capabilities (e.g., no QoS)

• TC (Traffic Control)
• runs before Linux TCP/IP stack
• Ingress + Egress
• lower performance
• more feature-rich (e.g., integrated with TC

qdisc for QoS)

Portable Switch Architecture (PSA)

• “The Portable Switch Architecture is a target architecture that describes
common capabilities of network switch devices that process and forward
packets across multiple interface ports.”

• PSA consists of:
• 2 P4-programmable pipelines (ingress/egress)
• Packet Replication Engine (PRE) and Buffer Queueing Engine (BQE)
• Basic primitives (e.g., to send or drop packet) and set of PSA externs (e.g., Meter, Register,

etc.)
• Pre-defined packet paths (RESUBMIT, RECIRCULATE, etc.)

Deep dive into PSA-eBPF
design & implementation

PSA-eBPF compiler

• PSA-eBPF compiler
• translates P4 programs written for PSA to eBPF

programs
• extends the eBPF backend of the open-source P4

compiler:
• https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa

• PSA-eBPF compiler generates a set of eBPF
programs

• General-purpose TC-based design that
implements any PSA program at the cost of
performance

• High-performance XDP-based design coming up
next..

https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa

TC-based design of PSA-eBPF

TC-based design of PSA-eBPF

TC-based design of PSA-eBPF

XDP helper program

• Non-programmable eBPF program attached to XDP
• Makes TC protocol-independent..

• Reads original EtherType & saves it as “XDP2TC” metadata
• Replaces original EtherType with IPv4
• Sends “XDP2TC” metadata up to TC
• TC Ingress must restore original EtherType from “XDP2TC”

metadata
• XDP2TC metadata modes (compiler flag):

• meta - uses bpf_xdp_adjust_meta() helper +
skb->data_meta field to send EtherType to TC

• head - uses bpf_xdp_adjust_head() helper to prepend a
packet with EtherType

• cpumap (testing only) - uses BPF per-CPU array map to
transfer EtherType from XDP to TC

• What are the consequences?
• You’ll see malformed packets (invalid EtherType) when

sniffing interfaces with tcpdump/tshark
• eBPF program must be attached to “native” XDP hook →

some NIC drivers may not support native XDP, for vEth pairs
XDP program must be attached to both ends…

XDP helper program

PSA pipeline to eBPF translation

• PSA pipeline (Ingress/Egress) is translated to
single eBPF program

• PSA pipeline consists of Parser, Control block and
Deparser

• eBPF program operates on packet buffer via skb
(socket buffer) descriptor

• Parser:
• packet headers are read by load() functions and

saved into BPF array map
• supports ValueSet, lookahead(), advance(), length()..

• Control block:
• P4 table is translated to set of BPF maps (depending

on match kind) + BPF array map storing default
action

• Most P4 externs uses a combination of BPF maps +
extern-specific code in data plane

• Deparser:
• constructs outgoing packet based on packet headers

stored in the “Parsed Headers” map

P4 tables & match kinds

• Each P4 table is translated to:
• BPF map(s) depending on the P4 match kind
• BPF array map with a single element storing default P4 action

• exact table - a P4 table consisting of exact match kinds only
• translated to BPF hash map

• lpm tables - a P4 table with at least one lpm match field (no
ternary/range)

• translated to BPF LPM_TRIE map
• ternary tables - a P4 table with at least one ternary field

• no built-in eBPF primitive
• translated to set of BPF hash & array maps implementing Tuple Space Search

• range tables are not supported yet!
• can be implemented by naive range-to-prefix conversion

https://dl.acm.org/doi/10.1145/316194.316216

PSA externs

• Most PSA externs uses
a combination of eBPF
maps & helpers to
achieve the goal

• Refer to PSA-eBPF
documentation for
more technical details

PSA extern eBPF map types Data plane code

Action Profile Additional BPF hash map
storing mapping between
member ID and action spec.

2 lookups (instead of 1) to
BPF maps

Action
Selector

3 additional BPF maps:
- BPF map of maps storing
ActionSelector groups and its
members
- BPF map storing action for
empty group
- BPF map for member ID ->
action spec. mapping

Sequential lookups to BPF
maps + set of eBPF
instructions calculating hash
value from selector fields to
dynamically select member
from ActionSelector group

Counter BPF array map per instance Lookup to BPF array map +
__sync_fetch_and_add()

DirectCounter - __sync_fetch_and_add()

Digest BPF queue map (FIFO) per
instance

bpf_map_push_elem()

https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa
https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa

PSA externs

• Most PSA externs uses
a combination of eBPF
maps & helpers to
achieve the goal

• Refer to PSA-eBPF
documentation for
more technical details

PSA extern eBPF map types Data plane code

Meter BPF hash map + BPF
spinlock

bpf_ktime_get_ns() + lookup
& update to modify Meter
state

DirectMeter BPF spinlock only
(for exact tables,

lpm/ternary not supported)

bpf_ktime_get_ns() + update
to modify Meter state

Register BPF map per instance:
array if width type <= bit<32>,

hash otherwise

bpf_map_lookup_elem() for
Register read(),
bpf_map_update_elem() for
Register write()

Hash,
Checksum,
Internet
Checksum

- Set of eBPF instructions
calculating hash or
checksum from a given data.

Random - bpf_get_prandom_u32() to
get pseudo-random number

https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa
https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa

Packet Replication Engine (PRE) in PSA-eBPF

• PRE functionality is integrated into
eBPF programs for Ingress (CI2E) &
Egress (CE2E)

• Clone sessions/multicast groups are
organized as BPF map of maps

• Data plane implementation:
• eBPF program performs lookup to an

outer array map based on
clone_session_id or multicast_group
(from PSA metadata) to get an inner
map

• The inner map stores all clone
session/multicast group members

• eBPF prog iterates over inner map
entries and calls bpf_clone_redirect()
for each member

Memory organization of PRE in PSA-eBPF:
1) a new clone session member is allocated and the next

element is set as an element located in the front of the list
2) the head of the list is updated to point to a new element

Buffering & Queueing Engine (BQE)

• PSA-eBPF leverages TC qdisc to
map BQE functionality

• TC qdisc is a powerful QoS
engine:

• Shaping, scheduling, policing,
dropping..

• Classful disciplines (e.g., HQoS)
• Classless disciplines (e.g., fq_codel)

• PSA-eBPF <-> TC qdisc interface
via PSA class_of_service:

• skb->priority is set based on PSA
class_of_service

• skb->priority is analyzed by TC
qdisc to select QoS class

Buffering &
Queueing Engine

(BQE)

https://man7.org/linux/man-pages/man8/tc.8.html

Getting started with
PSA-eBPF

Compile P4/PSA to eBPF

Structure of C program generated by
PSA-eBPF compiler

SECTION tc-egress

SECTION tc-ingress

SECTION xdp-helper

SECTION map_initialize()

BPF map definitions

Preamble (includes, helper funcs, typedefs)$ p4c-ebpf -arch psa demo.p4 -o demo.c

$ P4C=$(path_to_p4c_repository)/backends/ebpf/runtime

$ clang -O2 -g -c -DPSA_PORT_RECIRCULATE=2 -I$P4C/usr/include/

-I$P4C/ -emit-llvm -DBTF -o demo.bc demo.c

$ llc -march=bpf -mcpu=generic -filetype=obj -o demo.o demo.bc

To compile:

Two-step process automated via Makefile:

$ make -f ${P4C_REPO}/backends/ebpf/runtime/kernel.mk \

BPFOBJ=out.o P4FILE=program.p4 ARGS="-DPSA_PORT_RECIRCULATE=2" \

psa

Structure of C program generated by PSA-eBPF compiler

SECTION tc-egress

SECTION tc-ingress

SECTION xdp-helper

SECTION map_initialize()

BPF map definitions

Preamble (includes, helper funcs, typedefs)

Defines size & types of BPF maps

eBPF pseudo-program initializing default actions,
const entries, etc.

Fixed eBPF prog implementing XDP helper

eBPF prog generated from PSA Ingress + PRE

eBPF prog generated from PSA Egress + PRE

psabpf - a low-level library + psabpf-ctl CLI

• Designed to manage PSA-eBPF programs in almost every aspect:
• Load & unload programs from eBPF subsystem
• Attach & detach programs from network interfaces
• Manage P4 tables & externs
• Configure Packet Replication Engine

• psabpf is a low-level library to manage PSA-eBPF programs:
• Exposes C API
• Hides dependency on libbpf and its API
• Use BTF (BPF Type Format) to operate on eBPF maps
• p4info isn’t used

psabpf C API for Digest extern

psabpf-ctl - a CLI tool

• psabpf-ctl is a CLI tool bundled within psabpf repository
• Uses C API from psabpf
• Currently provides CLI commands for: pipeline management, add/remove

ports, clone sessions, multicast groups, table management, operations on
externs (Action Selector, Meter, Digest, Counter)

• Both psabpf C API & psabpf-ctl are still under development
• some externs are not supported yet

Sample usage of psabpf-ctl

psabpf-ctl table add pipe 1 ingress_tbl id 2 key 10.0.0.1 192.168.0.0/16 0x6^0xFF data AA:BB:00:11:22:33 priority 1

Pipeline ID

Table name

Action ID

Exact key

LPM key

Ternary key with mask

Action parameter

table tbl {
 key = {
 hdr.ipv4.src_addr : exact;
 hdr.ipv4.dst_addr : lpm;
 hdr.ipv4.protocol : ternary;
 }
 actions = { act_A; act_B; NoAction;}
} /* action ID: 1 2 0 */

sample P4 table

Load & initialize PSA-eBPF programs with psabpf

• Load PSA-eBPF programs into eBPF subsystem
• Programs verified by in-kernel BPF verifier

• Pin BPF objects under /sys/fs/bpf/pipelineN
• N is a pipeline ID
• Maps are pinned under /sys/fs/bpf/pipelineN/maps/ subdirectory

• Initialize maps by running map_initilize() with bpf_prog_test_run()
• default values, const entries, etc.
• Called only once

• Done by single psabpf-ctl command:

$ psabpf-ctl pipeline load id N FILENAME.o

Attach/detach ports with psabpf

• Loaded eBPF programs must be attached to network interface to
process packets

• There are three programs to attach for every single interface:
• TC Ingress
• TC Egress
• XDP helper

• Single command to attach/detach an interface:

$ psabpf-ctl add-port pipe N dev INTERFACE (to attach interface)

$ psabpf-ctl del-port pipe N dev INTERFACE (to detach interface)

Hands-on session

Hands-on session plan

• Demo topology:
• 4 Linux namespaces (client, switch, server1,

server2)
• All-in-one P4 program compiled to eBPF

• Hands-on session steps:
• How to compile P4/PSA program to eBPF?
• How to load PSA/eBPF programs with

psabpf-ctl?
• How to attach PSA/eBPF program to ports?
• Scenario 1: Load balancer
• Scenario 2: Rate limiter
• Sceanrio 3: Traffic prioritization (QoS)

• Steps to reproduce:
• https://github.com/P4-Research/psa-ebpf-demo

Switch

Server 1 Server 2

Client

eth0

eth1 eth2

https://github.com/P4-Research/psa-ebpf-demo

How to compile P4/PSA program to eBPF?

Switch

Server 1 Server 2

Client

eth0

eth1 eth2

Load balancer

Rate limiter QoS

PSA-eBPF compiler

eBPF bytecode

$ p4c-ebpf -arch psa demo.p4 -o demo.c

$ P4C=$(path_to_p4c_repository)/backends/ebpf/runtime

$ clang -O2 -g -c -DPSA_PORT_RECIRCULATE=2 -I$P4C/ -emit-llvm

-DBTF -c -o demo.bc demo.c

$ llc -march=bpf -mcpu=generic -filetype=obj -o demo.o demo.bc

Commands reference

How to load PSA/eBPF programs and attach to ports?

Switch

Server 1 Server 2

Client

eth0

eth1 eth2

Load balancer

Rate limiter QoS

PSA-eBPF compiler

eBPF bytecode

psabpf-ctl

$ psabpf-ctl pipeline load id 1 demo.o

$ psabpf-ctl pipeline add-port pipe 1 dev psa_recirc

$ psabpf-ctl pipeline add-port pipe 1 dev eth0

$ psabpf-ctl pipeline add-port pipe 1 dev eth1

$ psabpf-ctl pipeline add-port pipe 1 dev eth2

Commands reference

Scenario 1: Load balancer

• Performs load-balancing between HTTP
servers running on Server 1 and 2

• Uses Action Selector to dynamically select
output port based on 5-tuple

Switch

Server 1 Server 2

Client

eth0

eth1 eth2

HTTP 1

$ psabpf-ctl action-selector add_member pipe 1 DemoIngress_as id 2 data 1

SW:IT:CH:MA:C0:01 SE:RV:ER:MA:C0:01 17.0.0.1

$ psabpf-ctl action-selector add_member pipe 1 DemoIngress_as id 2 data 2

SW:IT:CH:MA:C0:02 SE:RV:ER:MA:C0:02 17.0.0.2

$ psabpf-ctl action-selector create_group pipe 1 DemoIngress_as

$ psabpf-ctl action-selector add_to_group pipe 1 DemoIngress_as 4 to 1

$ psabpf-ctl action-selector add_to_group pipe 1 DemoIngress_as 5 to 1

$ psabpf-ctl action-selector add_member pipe 1 DemoIngress_as id 3 data 0

SW:IT:CH:MA:C0:00 CL:IE:NT:MA:C0:00 10.192.168.44

$ psabpf-ctl table add pipe 1 DemoIngress_tbl_routing ref key "10.192.168.44/32" data

group 1

$ psabpf-ctl table update pipe 1 DemoIngress_tbl_routing ref key "10.0.0.1/24" data 6

HTTP 2

HTTP 2

HTTP 1

Commands reference

Scenario 2: Rate limiter

• Performs rate limiting for UDP flows
between Client and Server 1

• Uses P4 Meter to rate-limit traffic on
output port

Switch

Server 1 Server 2

Client

eth0

eth1 eth2

Limit to 1
Mb/s# 1 Mb/s -> PIR&CIR=125kbytes/s, PBS&CBS=10kbytes

$ psabpf-ctl meter update pipe 1 DemoIngress_meter index 1

125000:10000 125000:10000

Commands reference

Scenario 3: Traffic prioritization (QoS)

• Performs traffic prioritization for
ICMP flows

• Uses class_of_service to
determine QoS class in TC qdisc

Switch

Server 1 Server 2

Client

eth0

eth1 eth2

Prioritize ICMP
traffic!

$ psabpf-ctl table add pipe 1 DemoIngress_qos_classifier id 1 key 1

Commands reference

Live session

Run PSA-eBPF with Mininet!

• We’ve prepared a basic Python/Mininet wrapper on top of
psabpf-ctl:
https://github.com/P4-Research/psabpf/blob/master/mininet/lib/psabpf_mn.py

• Mininet demo!
• https://github.com/P4-Research/psabpf/tree/master/mininet

https://github.com/P4-Research/psabpf/blob/master/mininet/lib/psabpf_mn.py
https://github.com/P4-Research/psabpf/tree/master/mininet

Troubleshooting PSA-eBPF

• --trace compiler flag - programs will log what they are doing
• bpftool prog tracelog
• cat /sys/kernel/debug/tracing/trace_pipe

• bpftool - https://github.com/torvalds/linux/tree/master/tools/bpf/bpftool
• bpftool prog show - list loaded programs into eBPF subsystem
• bpftool net show - list interfaces with attached programs
• bpftool map show, bpftool map dump - list maps and dump its content
• bpftool prog dump - allow to manually inspect generated eBPF bytecode

• Remove programs from eBPF subsystem
• psabpf-ctl del-port pipe N dev INTERFACE - detaches programs from

interface
• psabpf-ctl pipeline unload id N - removes program from eBPF subsystem

• Clear state of eBPF subsystem
• rm -rf /sys/fs/bpf/pipelineN and detach programs from all interfaces
• Reboot OS :)

https://github.com/torvalds/linux/tree/master/tools/bpf/bpftool

Summary

Programming guidelines

• Avoid egress processing - if the PSA Egress pipeline is empty, the
PSA-eBPF compiler optimizes the eBPF egress program out, resulting
in a noticeable performance gain

• Minimize P4 table lookup - each P4 table lookup contributes
additional processing overhead, even if the result is not used. If
possible, minimize table lookups (e.g., guard P4 table lookup by
header validity or exit pipeline earlier)

• Use index type equal or shorter than bit<32> for PSA externs - in
such case, PSA-eBPF compiler uses a more efficient BPF array map
for Counters, Registers and Meters.

• If possible, prefer direct externs over indirect externs - indirect
externs (Counter/Meter) require additional lookup to a BPF map, so
using direct externs reduces the processing overhead as only a
single lookup is generated

Summing up..

• PSA-eBPF brings the power of P4/PSA to Linux & eBPF and enables
programming advanced use cases for end-host networking with P4!

• Possible advanced use cases:
• P4-programmable K8s plugin (e.g., with Host-INT support)
• software-based P4 implementation of 5G UPF
• P4-programmable datapath for BIRD (or other routing daemons)

• Future work:
• P4Runtime integration
• missing features (e.g., range matching)
• meet parity with the latest Linux kernel version

How to get started/involved?

• We’re eager to support you in using PSA-eBPF in your projects!
• PSA-eBPF documentation is a good starting point
• Feel free to open Github issues to report a bug or ask questions!
• Reach out to us on #p4-ebpf channel in the P4 Lang Slack
• To learn more about eBPF refer to eBPF/XDP guide from ebpf.io

https://github.com/p4lang/p4c/blob/main/backends/ebpf/psa/README.md
https://github.com/p4lang/p4c/issues
https://p4-lang.slack.com/channels/p4-ebpf
https://p4-lang.slack.com/
https://ebpf.io/

Thank You
tomasz.osinski@intel.com / osinstom@gmail.com

mateusz.kossakowski@orange.com
jan.palimaka@orange.com

mailto:tomasz.osinski@intel.com
mailto:osinstom@gmail.com
mailto:mateusz.kossakowski@orange.com
mailto:jan.palimaka@orange.com

