
p4testgen: Automated Test
Generation for Real-World P4 Data

Planes

Fabian Ruffy (Intel/NYU), Jed Liu (Akita Software),
Volodymyr Peschanenko (LitSoft), Vladyslav Dubina (LitSoft),

Havel Vojtěch (Intel), Prathima Kotikalapudi (Intel),
Anirudh Sivaraman (NYU), Nate Foster (Intel/Cornell University)

How Do We Test Network Hardware?

2

Test
specification

Network Device

OK

Correct?

Bug

Packet
input

Packet
output

Expected
output

Control plane
configuration

Reality

The Problem With Manual Testing

• Return of investment for a test is unclear
• What does this test actually cover?
• Have we covered enough?

• Writing packet tests is hard
• Inputs are sequences of bits
• Tedious boilerplate required to test a single feature

4

?
% of program
covered

Tests written

This is also true for programmable networks!

We do not write that many end-to-end tests for network equipment

We Can Do Better

• P4 gives a machine-readable contract on how the network device will behave

• We have full access to the P4 source code and its semantics
• We also know how the target device interprets P4 code
• Rich body of software engineering research and formal methods exists

5

Let’s automate testing!

Idea: Generate Tests With Symbolic Execution

• Walk a random path through the P4 program

• Collect up a symbolic path constraint

• Encode the constraint as a first-order logic formula

• Use an SMT solver to find a model (if it exists)

• Convert the model into an input and output test

• Emit the test and the associated program trace

𝞅

Two Conflicting Requirements

Do not tailor to a target device

(Tofino, eBPF/XDP, BMv2, IPU…)

Model whole program semantics

(How does the HW actually

interpret the P4 code?)

No existing tool
bridges this gap!

p4testgen

• Target-independent
• Designed to support test case generation for any P4 target
• Anyone can add their own target as an extension (we can reuse code!)

• Whole program semantics
• Covers the semantics of the P4 program and the device that executes the program
• Implicitly models the device specification for single packet tests

• Generates inputs and outputs
• p4testgen not only checks crashes, but also semantically incorrect behavior

p4testgen: Example
parser parser(...) {

pkt.extract(hdr.eth);
}
control ingress(...) {

action set_output_port(bit<9> out) {
meta.output_port = out;

}
table forward_table {

key = { h.eth.src: exact; }
actions = { noop; // default action

set_output_port; }
}
h.eth.src = 48w1;
forward_table.apply();

}
control deparser(...) {

pkt.emit(hdr.eth);
}

?

Input packet

Output packet

Table key

Chosen action

Input port

Output port

$eth.dst ++ $eth.src ++ $eth.type

$eth.dst ++ 48w1 ++ $eth.type

48w1

“set_output_port”

$out

$input_port

++ $payload

++ $payload

Action argument $out

Generated test

Required input

Required control plane configuration

Expected output

p4testgen: Example - Solved
parser parser(...) {

pkt.extract(hdr.eth);
}
control ingress(...) {

action set_output_port(bit<9> out) {
meta.output_port = out;

}
table forward_table {

key = { h.eth.src: exact; }
actions = { noop; // default action

set_output_port; }
}
h.eth.src = 48w1;
forward_table.apply();

}
control deparser(...) {

pkt.emit(hdr.eth);
}

What if this
is a hash
function?

What if the
packet is
too short?

hash(h.eth.dst, out);

What if this
is a hash
function?

What if this
table does
not match?

Generated test

Input packet

Output packet

Table key

Chosen action

Input port

Output port

48w0 ++ 48w0 ++ 16w0

48w0 ++ 48w1 ++ 48w0

48w1

“set_output_port”

9w2

9w0

Action argument 9w2

Required input

Required control plane configuration

Expected output
++ 1500w0

++ 1500w0

The Road to Whole Program Semantics

Challenge 1 - Semantics for the Entire Pipeline

• P4 programs only describe the programmable blocks of the target

• How can we know what happens in-between these blocks?
Pa

rs
er

C
on

tro
l

D
ep

ar
se

r

Semantics defined by P4 program

Semantics defined by target

? ? ? ?

Solution 1 - Architecture Model

• Each target must describe an architecture model
• Packets can be dropped, recirculated, or modified

• Current architecture model is a C++ DSL
• Converted into custom control flow (right)
• We are planning to model this in P4 going forward

• Reusable
• Common code can be reused across targets

Parser

Control

Deparser

$drop == true?

$recirculate == true?

$parser_error == true?

Emit packet
at $port

Drop
packet

Architecture description

Technical detail: We use continuations to implement this model

Challenge 2 - Avoiding Unreliable Tests

1. Some program state is undefined or random
• We have no control over this state, and we can not know the generated output
• What to do when a table reads on an uninitialized key field? How can we know we match?

2. Not all target functions (externs) can be modelled using first-order logic
• Expressing hash functions is difficult and solving them can be very slow
• But we still need a concrete mapping to avoid producing unreliable tests

Solution 2.1 - Taint Tracking

1. Mark state affected by unreliable program segments tainted
• E.g.: An assignment that reads from an uninitialized variable will taint the destination

2. Resolve tainted reads as needed:
• Either further propagate taint or resolve taint directly at the program node
• E.g.: An if statement with a tainted condition could execute either branch

3. When generating a test…
• Use “don’t care” settings for unreliable outputs (e.g., tainted segments of the output packet)
• Discard the test wherever we have no choice (e.g., tainted output ports)

Solution 2.2 - Concolic Execution

• We could mark complicated externs tainted, but this will cause taint explosion

• Use concolic execution instead

Approach

1. Pick a set of random inputs for the function
2. Calculate the function output using these inputs

3. Encode these inputs and outputs as constraints for the SMT solver

4. Check whether the solver can find a model

5. Yes? Done.

6. No? Try again or abandon this particular branch.

Current Status

p4testgen: PINS Case Study

• Ran p4testgen on a P4 model of a fixed-function switch
• Part of the P4 Integrated Networking Stack (PINS)

• We cover all reachable statements in the program
• Many branches are hidden within extern execution (e.g., extract)

Coverage over time Test case generation per minute

https://opennetworking.org/pins/

p4testgen: Technical Details

• p4testgen is written as a back end for P4C – the P4 reference compiler
• Uses P4C’s visitor framework to implement the interpreter
• p4testgen benefits from improvements to P4C

• p4testgen currently supports test generation for the Tofino and BMv2 targets
• Goal is to implement the full device specification for single packet tests
• Also includes end-to-end testing scripts

• p4testgen supports the packet/simple test framework (PTF/STF)
• Other test frameworks can easily be added

p4testgen: Limitations

• We only generate single packet tests
• No load testing
• Can not check for race conditions or timing issues
• Can not check for runtime issues with shared register state or memory writes

• No control over metadata or state
• This is purely an implementation problem. HW target may not support this

• No silver bullet
• Target developers still need to spend time to implement the device specification

20

Who Can (Or Should) Use p4testgen?
• Compiler developers can use p4testgen to…

• …prototype new back ends

• Device manufacturers can use p4testgen to…
• …specify the desired behavior of the target device and validate execution

• Resellers/vendors can use p4testgen to…
• …certify they are compliant with the manufacturer and P4 specification

• Device users can use p4testgen to…
• …automatically generate validation tests for their P4 programs

21

Disclaimer

• Intel technologies may require enabled hardware, software or service activation.

• No product or component can be absolutely secure.

• Your costs and results may vary.

• © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as
the property of others.

22

Thank You
Contact:
Fabian Ruffy – fruffy@nyu.edu
Nate Foster – nate.foster@intel.com

mailto:fruffy@nyu.edu
mailto:nate.foster@intel.com

Challenge 1 - Flexible Semantics for P4

Three requirements

1. p4testgen must be an oracle for the P4 language
• Should not worry about P4 semantics when writing a p4testgen extension

2. p4testgen must be as broad as the P4 language specification
• Leave room for target-specific behavior (e.g., drop packet when certain metadata is set)

3. We must be able to stop/resume execution
• We want to continue generating tests after we have completed one branch
• We also want to use different test generation strategies and easily switch branches

• Convert P4 code into tree of program nodes

• Walk each branch and builds program state

• Emit test at each leaf node, then backtrack (Depth first)

State is fully independent
• Can easily switch between program branches

Every node can change subsequent program execution
• Target extensions can implement their own control flow
• Target can change the semantics of every program node (Tables!)

Technical detail: We use continuations to implement this model

Solution 1 - The P4 Abstract Machine

Parser

Control

Table

Action1 NoAction

Deparser

Program nodes

