P7 (P4 Programmable Patch Panel): an instant 100G emulated network testbed in a pizza box

Fabricio E Rodriguez Cesen (UNICAMP), Marcos Felipe Schwarz (RNP), Christian Esteve Rothenberg (UNICAMP)
Agenda

• P7 overview
• Link characteristics
• Generated files
• Demo
• Topology definition and generation
• Challenges
• Future of P7
Link characteristics and implementation approaches

| Link Connectivity | Jumper cabling with/without internal Tag
| | Intern Recirculation + internal Tag
| Latency [ms] | Internal timer + recirculation
| | TM + Pipelines recirculation
| Jitter [ms] | Hash to determine recirculation times
| | Lookup table with mathematical functions
| Packet loss [%] | Random function to determine the probability to discard packets
| | Realistic packet loss model
| Re-ordering | TNA TM features
| | Targeted probabilistic packet (ID) recirculation within a flow
| Bandwidth | Rate limit TNA TM feature
| | Port configuration and mapping

Network topology

Diagram showing network topology with switches SW1, SW2, SW3, SW4, SW5, and hosts H1, H2, H3, H4.
P7 topology
Generated files

- P4 program
- Interfaces configuration
- TM
- Tables information

User needs to define the port distribution
DEMO
Link characteristics

- **Physical Topology**
 - Direct link

- **Emulated Topology**
 - Device in the middle

- **Emulated Topology**
 - Various devices in the middle
Link characteristics

- **Direct link**
 - Physical Topology
 - Emulated Topology

- **Device in the middle**
 - Emulated Topology

- **Various devices in the middle**
 - Emulated Topology

- **P7 vlan**
 - other vlans
 - no P7 processing
from src.data import *

topo = generator('main')

Stratum ip:port
topo.addstratum("192.168.119.238:9550")

Recirculation port default 68
topo.addrec_port(68)

addhost(name, port, B_P, speed bps, AU, FEC, vlan)
topo.addhost("h1", 19, 20, 100000000000, "False", "False", 1920)
topo.addhost("h2", 20, 28, 100000000000, "False", "False", 1920)

addlink(node1, node2, bw, pkt_loss, latency)
topo.addlink("h1", "h2", 100000000000, 0, 5)

topo.generate_chassis()
topo.generate_p4rt()
topo.generate_p4code()
topo.generate_graph()
Direct link

donode 1
donode 2
link bw
latency
pkt loss

```python
from src.data import *

topo = generator('main')

# Stratum ip:port
topo.addstratum("192.168.110.238:9559")

# Recirculation port default 68
topo.addrec_port(68)

# addhost(name, port, D, P, speed, bps, AU, FEC, vlan)
topo.addhost("h1", 19, 20, 10000000000, "False", "False", 1920)
topo.addhost("h2", 20, 28, 100000000000, "False", "False", 1920)

# addlink(node1, node2, bw, pkt loss, latency)
topo.addlink("h1", "h2", 100000000000, 0.15)

topo.generate_chassis()
topo.generate_p4rt()
topo.generate_p4code()
topo.generate_graph()
```
from src.data import *

topo = generator('main')

Stratum ip:port
topo.addstratum("192.168.110.238:9559")

Recirculation port default 68
topo.addrec_port(68)

addswitch(name)
switch_name = "sw1"

addhost(name, port, D_P, speed_bps, AU, FEC, vlan)

include the link configuration

addlink(node1, node2, bw, pkt_loss, latency)

generate Chassis

topo.generate_chassis()

topo.generate_p4rt()

topo.generate_p4code()

topo.generate_graph()}
Future of P7

- Address open challenges
 - Topology Size
 - Buffers consumption
- New features
 - Packet generation for background/congestion traffic
 - In-band Network Telemetry (INT)
 - Dynamic link behaviors (e.g., pkt loss patterns)
 - Trace base link characteristics
- Open source repository and community
- Embed into disaggregated network testbed initiatives
P7 repository

Available soon at:

https://github.com/intrig-unicamp/p7
References / Related Work

- TurboNet: Faithfully Emulating Networks with Programmable Switches. [Link Code](http://mininet.org/)
- CrystalNet: Faithfully Emulating Large Production Networks. [Link](http://mininet.org/)
- BNV: Enabling Scalable Network Experimentation through Bare-metal Network Virtualization. [Link](http://mininet.org/)
Thank You

Fabricio Rodriguez
frodrig@dca.fee.unicamp.br

https://intrig.dca.fee.unicamp.br