
PSA-eBPF: 
Portable Switch Architecture for eBPF

Tomasz Osiński (Intel, ex-ONF), 
Mateusz Kossakowski, Jan Palimąka (Orange)



PSA-eBPF in the E2E programmable platform

VNFs/CNFs

PSA-eBPF 
as a P4-programmable vSwitch PSA-eBPF 

as a P4-based VNF development 
framework

PSA-eBPF 

P4 language as a common 
way to specify network 
behavior

P4Runtime as a unified 
control plane



Announcing PSA-eBPF

• New extension to the eBPF backend of the open-source P4 compiler!

• Feature-rich Portable Switch Architecture (PSA) enables more use cases! 

• psabpf API + psabpf-ctl CLI tool to load & manage PSA/eBPF programs

psabpf API / CLI tool

github.com/P4-Research/psabpf 

PSA-eBPF compiler

github.com/p4lang/p4c/tree/main/backends/ebpf/psa 

https://github.com/P4-Research/psabpf
https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa


Overview of the PSA-eBPF workflow

P4 program

psabpf API / CLI tool

PSA-eBPF compiler

Linux OS & eBPF

Load eBPF 
programs

eBPF bytecode

Manage P4/eBPF 
objects

P4 developer

Write P4/PSA program Load & manage PSA-eBPF programs



PSA-eBPF in nutshell: near complete PSA impl.

• P4c -eBPF backend extended with support for PSA
• uses a combination of eBPF data types, primitives & TC/XDP hooks 



PSA-eBPF in nutshell: near complete PSA impl.

• P4c -eBPF backend extended with support for PSA
• uses a combination of eBPF data types, primitives & TC/XDP hooks 

• All PSA packet paths verified, designed & implemented
• e.g., normal unicast, normal multicast, clone sessions (CI2E, CE2E), 

recirculation, resubmission 



PSA-eBPF in nutshell: near complete PSA impl.

• P4c -eBPF backend extended with support for PSA
• uses a combination of eBPF data types, primitives & TC/XDP hooks 

• All PSA packet paths verified, designed & implemented
• e.g., normal unicast, normal multicast, clone sessions (CI2E, CE2E), 

recirculation, resubmission 
• Developed (almost) all match kinds for P4 tables

• exact & lpm implemented by basic eBPF primitives (BPF hash/LPM_TRIE)
• ternary matching implemented by adopting Tuple Space Search (TSS)
• range not supported yet



PSA-eBPF in nutshell: near complete PSA impl.

• P4c -eBPF backend extended with support for PSA
• uses a combination of eBPF data types, primitives & TC/XDP hooks 

• All PSA packet paths verified, designed & implemented
• e.g., normal unicast, normal multicast, clone sessions (CI2E, CE2E), 

recirculation, resubmission 
• Developed (almost) all match kinds for P4 tables

• exact & lpm implemented by basic eBPF primitives (BPF hash/LPM_TRIE)
• ternary matching implemented by adopting Tuple Space Search (TSS)
• range not supported yet

• All PSA externs designed & implemented
• Counter, DirectCounter, Meter, DirectMeter, Register, Hash, Checksum, 

Internet Checksum, Digest, Random, Action Profile, Action Selector



PSA-eBPF in nutshell: near complete PSA impl.

• P4c -eBPF backend extended with support for PSA
• uses a combination of eBPF data types, primitives & TC/XDP hooks 

• All PSA packet paths verified, designed & implemented
• e.g., normal unicast, normal multicast, clone sessions (CI2E, CE2E), 

recirculation, resubmission 
• Developed (almost) all match kinds for P4 tables

• exact & lpm implemented by basic eBPF primitives (BPF hash/LPM_TRIE)
• ternary matching implemented by adopting Tuple Space Search (TSS)
• range not supported yet

• All PSA externs designed & implemented
• Counter, DirectCounter, Meter, DirectMeter, Register, Hash, Checksum, 

Internet Checksum, Digest, Random, Action Profile, Action Selector
• PTF test coverage

• each feature covered by PTF test; currently ~70 PTF tests running as 
pre-merge job



PSA-eBPF in nutshell: near complete PSA impl.

• P4c -eBPF backend extended with support for PSA
• uses a combination of eBPF data types, primitives & TC/XDP hooks 

• All PSA packet paths verified, designed & implemented
• e.g., normal unicast, normal multicast, clone sessions (CI2E, CE2E), 

recirculation, resubmission 
• Developed (almost) all match kinds for P4 tables

• exact & lpm implemented by basic eBPF primitives (BPF hash/LPM_TRIE)
• ternary matching implemented by adopting Tuple Space Search (TSS)
• range not supported yet

• All PSA externs designed & implemented
• Counter, DirectCounter, Meter, DirectMeter, Register, Hash, Checksum, 

Internet Checksum, Digest, Random, Action Profile, Action Selector
• PTF test coverage

• each feature covered by PTF test; currently ~70 PTF tests running as 
pre-merge job

• psabpf C API + CLI tool
• low-level C API to be used by control plane stack (e.g., P4Runtime)



Next steps 

• Learn more:
• Watch the P4 workshop tutorial: 

“Deep dive & Getting started with PSA implementation for eBPF”
• Visit the PSA-eBPF documentation site

• Start playing with PSA-eBPF:
• Re-produce the PSA-eBPF demo implementing a basic load balancer, 

rate limiter & QoS
• Run PSA-eBPF with Mininet

• Feel free to open Github issues to report a bug or ask questions!

• Reach out to us on #p4-ebpf channel in the P4 Lang Slack

https://github.com/p4lang/p4c/tree/main/backends/ebpf/psa
https://github.com/P4-Research/psa-ebpf-demo
https://github.com/P4-Research/psa-ebpf-demo
https://github.com/P4-Research/psabpf/tree/master/mininet
https://github.com/p4lang/p4c/issues
https://p4-lang.slack.com/channels/p4-ebpf
https://p4-lang.slack.com/


Thank You
tomasz.osinski@intel.com / osinstom@gmail.com 

mateusz.kossakowski@orange.com 
jan.palimaka@orange.com 

mailto:tomasz.osinski@intel.com
mailto:osinstom@gmail.com
mailto:mateusz.kossakowski@orange.com
mailto:jan.palimaka@orange.com

