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Host Interface Functions

● Communication between the SmartNIC and the host

○ Networking: Typical Ethernet I/O NIC functions 

■ Includes classic offloads - Checksum / Vlan / TSO / GRO / RSS

○ Storage: NVMe I/O functions for Block storage virtualization

■ NVMe over fabrics virtualization (NVMe over TCP / RDMA)

○ Remote DMA function for applications

■ HPC / Storage

○ Crypto-Dev (DPDK)

● Smart services for host applications

○ Switching/Routing

○ IPsec encryption

○ L4-L7 services (e.g., TLS offload)



Programmability at Host Interface - Why?

● Fixed function logic:  Lack of flexibility/future proofing with changing interface requirements

○ Different I/O descriptor formats - Classic Ethernet/Virtio/VDPA/VMXNet3/UPT ..

○ Offload advanced services – NVME-over-Fabrics/Encryption/Compression ..

● General purpose CPU: Performance issues for

○ High Packets/Connections per-second needs

○ Large stateful DB processing/policy evaluations

↓

Need for specialized instruction-set processors



Programmability at the Host interface - How?
● Leverage P4-programmable switch HW architecture

○ Pipelined and multi processing paradigm

● Extend execution model beyond packet-oriented processing

○ Match-action units act on data in memory

○ DMA engines to transfer data from/to Host/NIC memory

○ Message processing / On demand scheduling of work

● Minimal P4 language extensions beneficial

○ Constructs needed for advanced programming: loops, 

switch-case

● P4 compiler backend extensions

○ Externs/Annotations/Table-properties support in P4 used 

significantly for additional capabilities

○ Support of architecture specific HW constructs - DMA 

engines, schedulers, timers, semaphores

Enables high-performance/line-rate services to host traffic



Fundamental design considerations

● Event-based triggers in addition to packet-based triggers

○ Message/interrupt events for host driver interactions

○ Classification and on-demand/timer based processing of messages

● Stateful processing

○ Associate and maintain context across packets/messages at various granularity

■ Host devices / Interfaces / Queues

■ Flows / Connection states

■ Ex: NVMe volume <-> NVMeoF q-pair <-> TCP-Connection context-block

○ Protocol state-machines - like TCP flow-control / congestion-control



Fundamental design considerations

● Complex data processing, not just packet-header manipulation

○ Units of data dealt with are not just packets, read/write data from memory

○ Memory can be in host/NIC

○ Manipulate in-memory data-structures, with atomic read-modify-write capabilities

○ Need DMA capability for memory<->packet/memory<->memory transfer

○ One or more events/packets as result of an event/packet processing

● Code maintainability, extend language as needed for advanced P4 programming

○ Conducive to implementations of

■ stateful TCP / RDMA protocols

■ higher-level applications like NVMe, TLS



Language / Compiler Extensions
● The extern construct is used extensively to define architecture specific functions

○ Invoke low-level instructions for specialized / hardwired functions like

■ Raw-Table: Setup table match to raw memory address

■ Raw-action: Action reference does not come from table entry (is setup by previous actions)

■ Scheduler events

■ Timer events

■ DMA commands / memory read/write

■ Counters / Rate-limiters

■ Data swizzle / encryption

● Many architecture specific annotations, like

○ Table write-back (parameter

by reference)

action nvme_req_tx_sqcb_process(@__ref sqcb_t d) {

…

if (__likely(d.busy == d.wb_busy)) {

d.ring_empty_sched_eval_done = 0;
...

}



Language / Compiler Extensions
● Annotations..

○ Structure field alignment

○ Symbolic reference to run-time config values

struct metadata_t {
control_metadata_t       cntrl;
csum_metadata_t          csum;
@align(8)
l3_metadata_t            l3;
l4_metadata_t            l4;
..

}

action prexts_tx_sess_wqe_process(@__ref sess_wqe_t d) {
...
@param("nvme_tx_pdu_context_base") bit<64> nvme_tx_pdu_context_base;
bit<64> pdu_ctxt_addr = (bit <64>) (nvme_tx_pdu_context_base + (bit <64>) (d.pduid << 

LOG_PDU_CTXT_SIZE));
...



Language / Compiler Extensions

● New constructs

○ Loops

foreach (bit<2> i in virtio_tx_global.pref_q_index[1:0] .. 2w3) {
if (buffers_left == 0) {

break;
}
form_one_mem2pkt(buffers_left, i[1:0], desc_flit, 0);

}



An example Host-to-Network flow -
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An example Network-to-host flow -
NVMe Initiator IO: Read Command Response
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Thank You
<additional resources>


