
P4 at the Interface
between NIC and Host

Raghava Sivaramu
Fellow, Pensando

Agenda

● Host interface functions

● Programmability at the host interface

● Fundamental design considerations

● Language / Compiler extensions

● Example Host I/O call-flow

Host Interface Functions

● Communication between the SmartNIC and the host

○ Networking: Typical Ethernet I/O NIC functions

■ Includes classic offloads - Checksum / Vlan / TSO / GRO / RSS

○ Storage: NVMe I/O functions for Block storage virtualization

■ NVMe over fabrics virtualization (NVMe over TCP / RDMA)

○ Remote DMA function for applications

■ HPC / Storage

○ Crypto-Dev (DPDK)

● Smart services for host applications

○ Switching/Routing

○ IPsec encryption

○ L4-L7 services (e.g., TLS offload)

Programmability at Host Interface - Why?

● Fixed function logic: Lack of flexibility/future proofing with changing interface requirements

○ Different I/O descriptor formats - Classic Ethernet/Virtio/VDPA/VMXNet3/UPT ..

○ Offload advanced services – NVME-over-Fabrics/Encryption/Compression ..

● General purpose CPU: Performance issues for

○ High Packets/Connections per-second needs

○ Large stateful DB processing/policy evaluations

↓

Need for specialized instruction-set processors

Programmability at the Host interface - How?
● Leverage P4-programmable switch HW architecture

○ Pipelined and multi processing paradigm

● Extend execution model beyond packet-oriented processing

○ Match-action units act on data in memory

○ DMA engines to transfer data from/to Host/NIC memory

○ Message processing / On demand scheduling of work

● Minimal P4 language extensions beneficial

○ Constructs needed for advanced programming: loops,

switch-case

● P4 compiler backend extensions

○ Externs/Annotations/Table-properties support in P4 used

significantly for additional capabilities

○ Support of architecture specific HW constructs - DMA

engines, schedulers, timers, semaphores

Enables high-performance/line-rate services to host traffic

Fundamental design considerations

● Event-based triggers in addition to packet-based triggers

○ Message/interrupt events for host driver interactions

○ Classification and on-demand/timer based processing of messages

● Stateful processing

○ Associate and maintain context across packets/messages at various granularity

■ Host devices / Interfaces / Queues

■ Flows / Connection states

■ Ex: NVMe volume <-> NVMeoF q-pair <-> TCP-Connection context-block

○ Protocol state-machines - like TCP flow-control / congestion-control

Fundamental design considerations

● Complex data processing, not just packet-header manipulation

○ Units of data dealt with are not just packets, read/write data from memory

○ Memory can be in host/NIC

○ Manipulate in-memory data-structures, with atomic read-modify-write capabilities

○ Need DMA capability for memory<->packet/memory<->memory transfer

○ One or more events/packets as result of an event/packet processing

● Code maintainability, extend language as needed for advanced P4 programming

○ Conducive to implementations of

■ stateful TCP / RDMA protocols

■ higher-level applications like NVMe, TLS

Language / Compiler Extensions
● The extern construct is used extensively to define architecture specific functions

○ Invoke low-level instructions for specialized / hardwired functions like

■ Raw-Table: Setup table match to raw memory address

■ Raw-action: Action reference does not come from table entry (is setup by previous actions)

■ Scheduler events

■ Timer events

■ DMA commands / memory read/write

■ Counters / Rate-limiters

■ Data swizzle / encryption

● Many architecture specific annotations, like

○ Table write-back (parameter

by reference)

action nvme_req_tx_sqcb_process(@__ref sqcb_t d) {

…

if (__likely(d.busy == d.wb_busy)) {

d.ring_empty_sched_eval_done = 0;
...

}

Language / Compiler Extensions
● Annotations..

○ Structure field alignment

○ Symbolic reference to run-time config values

struct metadata_t {
control_metadata_t cntrl;
csum_metadata_t csum;
@align(8)
l3_metadata_t l3;
l4_metadata_t l4;
..

}

action prexts_tx_sess_wqe_process(@__ref sess_wqe_t d) {
...
@param("nvme_tx_pdu_context_base") bit<64> nvme_tx_pdu_context_base;
bit<64> pdu_ctxt_addr = (bit <64>) (nvme_tx_pdu_context_base + (bit <64>) (d.pduid <<

LOG_PDU_CTXT_SIZE));
...

Language / Compiler Extensions

● New constructs

○ Loops

foreach (bit<2> i in virtio_tx_global.pref_q_index[1:0] .. 2w3) {
if (buffers_left == 0) {

break;
}
form_one_mem2pkt(buffers_left, i[1:0], desc_flit, 0);

}

An example Host-to-Network flow -
NVMe Initiator IO: Write Command Request

NVME Driver Data Buffers
(PRP List)

XTS
Engine

Hash Engine

Read Clear-Text Data

NVME Write Command posted on IO SQ

NVME Command Capsule PDU

TCP Stack (TCP Tx)

NVMe/TCP Packet to Target

D
D
R

Pre XTS
(Prepare XTS request)

NVMe Request Handler
(Parse command,

Select backend session for Namespace)

Post XTS
(Handle XTS response)

Pre Digest
(Prepare hdr & data digest requests)

Post Digest
(Handle digest responses,

tcp segmentation)

Write Encrypted Data

Compute Digest

P4 Programs to process
user’s NVMe command to
generate NVMe over TCP
Write cmd capsule onto
wire

HOST
NIC

Packetize

Scheduler Event

Packet Tx Event

Extern Request

DMA Event

An example Network-to-host flow -
NVMe Initiator IO: Read Command Response

NVME Driver

Hash
Engine

NVME Completion Posted to IO CQ

NVME C2H PDU

TCP Stack (TCP Rx)
NVMe/TCP Packet from Target

D
D
R

Post Digest
(Validate Hdr & Data Digest)

CQ
(Free resources and Post completion)

Pre Digest
(Prepare Hdr & Data Digest requests)

NVMe Response Handler
(TCP segment reassembly)

Compute Digest

P4 Programs to process
Write response from
Target and post
completion to host NVMe
driver

HOST
NIC

Pre XTS
(Prepare XTS Request)

Post XTS
(Handle XTS response) XTS

Engine

Write Clear-Text Data

Data Buffers
(PRP List)

Scheduler Event

Packet Rx Event

Extern Request

DMA Event

Write TCP Rx payload (XTS Encrypted) to
memory

Read Encrypted data

Thank You
<additional resources>

