
P4 as a single source of truth for SONiC DASH
use cases on both SoftSwitch and Hardware

Reshma Sudarshan, Dir. Applications
Engineering, Intel Corp.

Chris Sommers, Sr. SW Architect,
Keysight Technologies

DASH SONiC

SONiC Switch | TOR | Spine | Border-Leaf

DASH SmartNIC | Appliance | Smart-Switch

DASH extends SONiC APIs to Edge Use cases
- Stateless Underlay Route, LPM, ACL Support
- Stateful Connections for L4 Load Balancing
- SDN managed Overlay Services

Use case Scenarios
- VNET to VNET Service - Optimal TCP flow management

Optimize high CPS, add-on miss HW tables
Connection Tracking, optimize Flow-close state machine

- Load Balancer Service
Customized algorithms with fine grained criteria for LB

- Encryption Gateway Service
Crypto Offload IPsec infrastructure tenant crypto

Logical
Architecture

IPU
SmartNIC
SOC

P4 to Describe all Network Elements

Rich data plane representation
• Precise and comprehensive definition of life of a packet

• Visibility and control to the Network operator

• Allows manageability

• Network function specific mechanism – PSA | PNA

PNA for DASH scenarios -
New P4 properties and extern functions defined in P4 standard
Portable NIC Architecture.

Uniform standards based way to describe all
network functions in P4

Programmable NIC Architecture

P4 for DASH Overlay - Stateful Connection Tracking

Optimal management of large number of Flows

High Connections Per Second rules are programmed in HW to add flow
entry in HW without Control Plane involvement

P4 to program flow Creation – Termination Timers and State Machine

- First SYN triggers add-on-miss adds to flow cache, start absolute timer

- In New state SYN+ACK flags trigger Established state timer

- In Established state TCP FIN or RST flags transition to teardown state and start
timers

- In Tear Down state machine FIN+ACK triggers flow deletion

A public version of this example program can be found here:
https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4

https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4

Stateful Firewall and Load Balancer
Stateful Firewalls

• Stateless Firewall : Match = Remote IP, IP
Protocol, Dest L4 port)

• Stateful Firewall : Match = 5 tuple + CT
Zone (Unique connection)

• Packet Permitted by Stateless firewall rule
OR is part of existing connection.

SDN based Centralized load balancing

Incoming request to Service VIP load balanced to service
end point

Security - IPsec Crypto offload

P4 implementation for IPsec

• Table lookup check ESP header in IPsec
packet

• Parser SPI + Src-IP lookup
• - Security association index
• Parse decrypted packet
• IPSEC and is wrapped in a tunnel like

GRE
IPsec feature in SONiC (Roadmap)

• New IPsec container in SONiC
• StrongSwan application for IKE

exchange
• Plugin for Security Association

index programming

P4 Implementation for DASH Smart Switch
Smart Switch assumes role of Switch and offloads server
functionality via SmartNIC

Flow table lookups in NPU and IPUs are described in P4

• 5 tuple lookups for flow programming

• IPU add-on-miss

• IPSEC cache with entropy

• 3-tuple hash with Src-IP+Dest-IP+SP

• VxLAN lookup

• UDP src port 5-tuple hash in VxLAN header

Smart Switch
in Data Center

table l1_cache {
key = {

ig_md.lkp.ip_src_addr[95:64] : exact;
ig_md.lkp.ip_dst_addr[95:64] : exact;
ig_md.lkp.ip_proto : exact;
ig_md.lkp.l4_src_port: exact;
ig_md.lkp.l4_dst_port: exact;

}

SONiC DASH SoftSwitch with P4DPDK
Same software stack to manage

DASH HW and SW

SONiC runs in Host / VM

• OS de-coupled from customer’s
environment

• Separate software lifecycle
P4-DPDK Dataplane

P4 Compiled Dataplane

action set_nexthop_id(
nexthop_id_t nexthop_id)

nexthop_id_valid =
true;

nexthop_id_value =
nexthop_id;

table ipv4_table {
key = {

hdr.ipv4.dst_addr : lpm;}
actions = {
set_nexthop_id;
@defaultonly NoAction;}

const default_action = NoAction;

SONiC DASH Softswitch
Architecture

SAI PTF Test Harness for DASH
• Auto-generated Python based dataplane testing framework

• Thrift wrapper functions to call C-based SAI functions

• Generated wrapper functions for SAI which can instead be generated based on
SAI headers

DASH related enhancements:

• Auto-generation framework and
Underlay Test cases adopt to platforms
with fewer ports

• Auto-generation framework for DASH SAI
APIs meta infrastructure

• DASH and new Overlay test cases using
this new framework

v Global electronic test and measurement company, multi-$B revenue. If it has
electrons, radio waves or qubits, we can test it!

v Known in the SONiC community for our testing expertise; HW & SW solutions such
as Testbed-in-a-box; Plug-fests; WG presence; and GitHub contributions.

v Our IXIA-brand Traffic Generators are a fixture in the networking industry.

v Leveraging our SONiC expertise in the SONiC-DASH project.

v Keysight is a trusted, neutral partner, to help define and deliver test infrastructure,
automation, and test cases.

v Community engagement: Contributions to GitHub and working groups.

v Customer engagement: confidential testing and evaluations.

Keysight’s Role in the SONiC & DASH Communities

DASH Testing – Objectives
v Stateless (Layer2/Layer3) and stateful (Layer4) traffic tests

v Performance (e.g. 3M+ connections per sec) and Conformance (thorough API/functional)

v P4 models the dataplane traffic path; SAI configures the dataplane.

v Test multiple API layers: dataplane (SAI); SONiC (Redis); SDN (gNMI)

v Same functional tests used for multiple targets (scale/performance varies):
§ Pure SW implementations (P4), can run on a server w/ SW traffic generators

§ Line-rate, HW implementations – DPU/IPU/SmartNIC + HW Traffic Generators

§ Automated CI/CD regression testing, in the cloud and the lab (GitHub actions)

§ Provide a framework where everyone can contribute test cases

DASH Testing – Workflows & auto-generated artifacts

SAI-Thrift test harness

HW target
implementation is

vendor-specific, may
or may not use P4.

SW reference
models use DASH

P4 code

HW & SW
implementations

should pass
same func. tests

P4 defines the
dataplane… P4 defines the

dataplane API…

DASH Testing – API/Schema layers, common test cases

SAI-redis
test client

Test the Redis
DB API

gNMI Test
Client

Test the
northbound
SDN API

SAI-thrift test
client/server

Test the SAI
dataplane API

Common
test cases…

…drive tests
on multiple
interfaces

DASH Testing – P4 Model, multiple SW targets

First SW
target

Second
SW target

Traffic
generators,

scale to line-
rate

DASH Testing Framework:Traffic Generators
v Traditional PTF: Python Framework + Scapy

* See “snappi” video links at end of document

+ • Very popular; a large body of test cases
• SW Traffic generator, great for packet-at-a-time

functional tests
• No line-rate support

v Enhancement: Python Framework + snappi

+
Also available

• SW or HW Traffic Generators
• Agnostic data model & API
• Advanced features – latency, flow stats, etc.
• Scale to line rate w/ same scripts

https://github.com/open-traffic-generator • https://github.com/open-traffic-generator/snappi

ixia-c

Each approach has merits and
DASH will embrace both

https://github.com/open-traffic-generator
https://github.com/open-traffic-generator/snappi

Conclusions
v P4 is being used to model stateful DASH overlay services, as a single source of truth for dataplane

behavior.

v DASH P4 can be run in pure SW switches, or HW/SoC-based devices

v DASH P4 can model behavior on both non-P4 devices and P4-based devices

v DASH P4 code generates APIs, e.g., DASH-SAI header files + SAI-Thrift test harness.

v Declarative, data-driven test cases can exercise multiple API layers in the SONiC stack: SAI, SAI-
Redis, gNMI.

v Classic SAI-thrift tests are being extended to support new DASH services

v Adding snappi-based tests to handle slow or fast traffic testing with same scripts, HW or SW

Call to Action
Join the DASH Project:
• https://github.com/Azure/DASH

• https://groups.google.com/g/sonic-dash • https://groups.google.com/g/sonic-dash-test-workgroup

Join the IPDK Project:
• https://ipdk.io

Join the Portable NIC Architecture Working Group:

• https://p4.org/working-groups • https://github.com/p4lang/pna

Contribute to the Open Traffic Generator data models and implementations:
• https://github.com/open-traffic-generator • https://github.com/open-traffic-generator/snappi

https://github.com/Azure/DASH
https://groups.google.com/g/sonic-dash
https://groups.google.com/g/sonic-dash-test-workgroup
https://ipdk.io/
https://p4.org/working-groups
https://github.com/p4lang/pna
https://github.com/open-traffic-generator
https://github.com/open-traffic-generator/snappi

Additional Links
• https://github.com/Azure/DASH/tree/main/sirius-pipeline
• https://github.com/opencomputeproject/SAI/tree/master/test/saithriftv2

• Goodbye Scapy hello snappi – YouTube (https://www.youtube.com/watch?v=Db7Cx1hngVY)
• Open Traffic Generator snappi Ixia-c – YouTube (https://www.youtube.com/watch?v=3p72YnLFZVQ)

https://www.youtube.com/results?search_query=goodbye+sscapy+hello+snappi
https://www.youtube.com/watch?v=3p72YnLFZVQ
https://www.youtube.com/watch?v=3p72YnLFZVQ

Notices and disclaimers

• Intel technologies may require enabled hardware, software or service activation.

• No product or component can be absolutely secure.

• Your costs and results may vary.

• Intel does not control or audit third-party data. You should consult other sources to
evaluate accuracy.

• © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

Thank You
Sudarshan, Reshma reshma.sudarshan@intel.com

Chris Sommers chris.sommers@keysight.com

mailto:reshma.sudarshan@intel.com
mailto:chris.sommers@keysight.com

