Yy
\
*

2022 % CSIEANSHI N 2 NN A
/ [\\N= B o o) N\ & .7 o y s
= o) R\ \ s o g // °
e ° e ® o /) Q \ o\ —— e ° e °)

® / Q ® 5 / o \ — 9 Q ® / o

(o] g € op 7 ° o |o ° Y) —— / o o |9/ °

/ » '/ ® o o/, S / 4 o o/ / / o}

bu— \ o |62) | @ / Q S o (6R) |/ /

May 24-26th

P4 as a single source of truth for SONiC DASH
use cases on both SoftSwitch and Hardware

Reshma Sudarshan, Dir. Applications
Engineering, Intel Corp.

Chris Sommers, Sr. SW Architect,
Keysight Technologies

DASH SONIC

DASH extends SONIC APIs to Edge Use cases
- Stateless Underlay Route, LPM, ACL Support
- Stateful Connections for L4 Load Balancing

- SDN managed Overlay Services

VNETto VNET service \
VNET peering service

Service tunnel & Private link service
Load balancer service

Encryption gateway service

A

Expressroute gatewayservice

Use case Scenarios
- VNET to VNET Service - Optimal TCP flow management
Optimize high CPS, add-on miss HW tables st <naain. oo
Connection Tracking, optimize Flow-close state machine i it
- Load Balancer Service User Space
Customized algorithms with fine grained criteria for LB gNMI container £ SONIC app containers
- Encryption Gateway Service
Crypto Offload IPsec infrastructure tenant crypto

Logical
Architecture

Switch State Service (SWSS)
Redis

»
Switch Abstraction Interface (SAl) API DASH oxtcnslor.v
Technology provider ASIC SDK I P U

.\liC 4 Switch | TOR | Spine | Border-Leaf T SmaortNIC
SOC

.&H + SmartNIC | Appliance | Smart-Switch - DASH capable ASICs)

P4 to Describe all Network Elements

Rich data plane representation

® Precise and comprehensive definition of life of a packet

® Visibility and control to the Network operator 5 /bsum[Svgmms

¢ Allows manageability m'a' g
® Network function specific mechanism — PSA | PNA cﬁa(ﬁ .
PNA for DASH scenarios - B smoswien

Programmable NIC Architecture
New P4 properties and extern functions defined in P4 standard 9

Portable NIC Architecture. ! R

_ Programmed in P4
Fixed function

N

]
Pre control
L
Main control
T

Uniform standards based way to describe all
network functions in P4

Net-to-host
inline extern

Main Deparser

Network Ports

Host-to-net
inline extern

N

| HostN |-| Host1 |

P4 for DASH Overlay - Stateful Connection Tracking

Optimal management of large number of Flows

High Connections Per Second rules are programmed in HW to add flow
entry in HW without Control Plane involvement

P4 to program flow Creation — Termination Timers and State Machine
= First SYN triggers add-on-miss adds to flow cache, start absolute timer
= In New state SYN+ACK flags trigger Established state timer

= In Established state TCP FIN or RST flags transition to teardown state and start
timers

= In Tear Down state machine FIN+ACK triggers flow deletion

A public version of this example program can be found here:
https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4

@)n ct_tcp table hit (FlowId t flow_id)x

_ /

my TlOwW_1U = T1OW_lU;

if (update_expire_time) {
set_entry expire time(new_expire time);
restart_expire_timer();

} else {
restart_expire_timer();

}

action ct _tcp table miss() {

if (do_add on miss) {
my flow id = allocate_flow_id();
add_succeeded =
add_entry(action_name = "ct_tcp table hit", // name of action

action params = (ct_tcp table hit params t)
{flow_id = my flow id});

https://github.com/p4lang/pna/blob/main/examples/pna-example-tcp-connection-tracking.p4

Stateful Firewall and Load Balancer

4 Log (mirror)

Trusted Direction

Stateless B& Stateful
Untrusted Direction Firewall Firewall

No Hit, Check Connection

Connection does not Exist
-> Drop or Exception Path

SDN based Centralized load balancing

Incoming request to Service VIP load balanced to service
end point

Stateful Firewalls

® Stateless Firewall : Match = Remote IP, IP

Protocol, Dest L4 port)

¢ Stateful Firewall : Match =5 tuple + CT

Zone (Unique connection)

® Packet Permitted by Stateless firewall rule
OR is part of existing connection.

///::d(FWD_FIREWALL_POLICY_L4PQ_ID)

table firewall policy_L4PQ {
key = {

headers.ipv4.dst_addr
headers.ipv4.src_addr
headers.ipvé4.protocol
headers.tcp.sport

headers.tcp.dport
}
actions = {

count;

}

auto_insert;

const default _action = drop;

}

: exact
: exact
: exact
: range
: range

@name ("ipv4_dst");
@name ("ipv4_src");
@name ("ipv4_prot");

AN

@name ("ipv4_sport_range");
@name ("ipv4_dport_range");

/

Security - IPsec Crypto offload

P4 implementation for IPsec

* Table lookup check ESP header in IPsec
packet

e Parser SPI + Src-IP lookup

e - Security association index

* Parse decrypted packet

e |IPSEC and is wrapped in a tunnel like
GRE

IPsec feature in SONiIC (Roadmap)

* New IPsec container in SONIC
« StrongSwan application for IKE

exchange

* Plugin for Security Association

index programming

IPsec decrypt

|

Network Po‘s

Programmed in P4
Planned Extension

Fixed function

S—

Host-to-net
inline extern

g
N
2
M
2
g
3

l Host N I I Host 1 I

P4 Implementation for DASH Smart Switch

Smart Switch assumes role of Switch and offloads server
functionality via SmartNIC

Flow table lookups in NPU and IPUs are described in P4
¢ 5tuple lookups for flow programming
® IPU add-on-miss
® IPSEC cache with entropy
® 3-tuple hash with Src-IP+Dest-IP+SP
¢ VxLAN lookup
® UDP src port 5-tuple hash in VXLAN header

ﬁable 11_cache { \

key = {
ig_md.lkp.ip_src_addr[95:64] : exact;
ig_md.lkp.ip_dst_addr[95:64] : exact;
ig_md.lkp.ip_proto : exact;
ig_md.lkp.l4_src_port: exact;
ig_md.lkp.l4_dst_port: exact;

_ Y,

Smart Switch Q Q

in Data Center

WAN Equipment WAN Equipment
DataCenter

’
Tier 2 || Tier 2 1 Smart Switch ‘| Tier 2 || Tier 2
West Ea. 1 1 West East
=) - !
ar” 1
| S S |
[i 1
1S S
- '
Row(s) R =2
DASH on
S En D oEn mEn]S e
Appliance
Rack w/Applian;;'e' . Rack w/Appliange
DASH on ToR
o KA
&) L =) (o]
— i 2= DASH on NIC
[F Appliance F
Server w/VMs Server w/VMs

O

SONIC DASH SoftSwitch with P4ADPDK

Same software stack to manage

::::::

DASH HW and SW S T

SONIC runs in Host / VM

® 0OS de-coupled from customer’s RN B =D
environment o D s
° Separate software lifecycle S R L)
sai api DASH$J
P4-DPDK Dataplane
P4 Compiled Dataplane m———- ; - - l
platform drivers l| networkdriver:l‘ asic drivers l|
action set nexthop id(
nexthop id t nexthop id) SONIC DASH Softswitch
nexthop id valid = (?able ipv4_table { “\ Architecture
true; key = {
nexthop id value = hdr.ipv4.dst addr : lpm;}
nexthop id; actions = {

set nexthop id;
@defaultonly NoAction;}
const default action = NoAction;

SAI PTF Test Harness for DASH

Auto-generated Python based dataplane testing framework
Thrift wrapper functions to call C-based SAIl functions

Generated wrapper functions for SAl which can instead be generated based on
SAl headers

IR ¢ Test executed via .f/tools/run_p4_tests.sh script
[CENICRN ¢ Files located in p4factory/ptf/saiv2/ directory

DASH related enhancements:

PTE + Python-based data plane test framework
. EWEIESY « Packets' definitions and verification functions

* Auto-generation framework and

Underlay Test cases adopt to platforms

with fewer ports SR L packets’ decoding
* Auto-generation framework for DASH SAI ;;ﬁi'ﬁiﬁf,, + Traffic generation

APIls meta infrastructure
* DASH and new Overlay test cases using

this new framework

S0 o Actual packets' flow via physical or virtual connection
e« Packets handling by model or physical switch

Keysight's Role in the SONIC & DASH Communities
KEYSIGHT

TECHNOLOGIES

Global electronic test and measurement company, multi-SB revenue. If it has
electrons, radio waves or qubits, we can test it!

Known in the SONiC community for our testing expertise; HW & SW solutions such

as Testbed-in-a-box; Plug-fests; WG presence; and GitHub contributions.
Our IXIA-brand Traffic Generators are a fixture in the networking industry. IXIa

Leveraging our SONIC expertise in the SONiC-DASH project.

Keysight is a trusted, neutral partner, to help define and deliver test infrastructure,
automation, and test cases.

Community engagement: Contributions to GitHub and working groups.

Customer engagement: confidential testing and evaluations.

DASH Testing — Objectives

Stateless (Layer2/Layer3) and stateful (Layer4) traffic tests

Performance (e.g. 3M+ connections per sec) and Conformance (thorough API/functional)
P4 models the dataplane traffic path; SAl configures the dataplane.

Test multiple API layers: dataplane (SAI); SONIC (Redis); SDN (gNMIl)

Same functional tests used for multiple targets (scale/performance varies):
Pure SW implementations (P4), can run on a server w/ SW traffic generators

Line-rate, HW implementations — DPU/IPU/SmartNIC + HW Traffic Generators
Automated CI/CD regression testing, in the cloud and the lab (GitHub actions)

Provide a framework where everyone can contribute test cases

DASH Testing — Workflows & auto-generated artifacts

Hand-written and/or
templated test cases Reusable for multiple

northbound/southbound APIs

Abstract format

@

dash/test .
SAI-Thrift test harness DASH
Standard OCP SAI -~ "~~~ ~~=-=-=-==============~= BN P aid CI/CD Pipeline
header files subset, ¥ N %
T 4 o
% (underlay) \ ©
1
= 1
opencompute/SAl 1 Saithrift code Python client R Traffic generator commands (Scapy, snappi)
: generator + helpers Import libs §
e — Inputs Generate :
Git 1 PRt
| DASH SAl — g
I header files
~—— 1 (overrlay)
dash/sirius-pipeline 1 g
1 Automatic saithrift client : DTSN
— | and server code
b) DU fi
/ ih Sirius P4 generator : CbT):confia
' behavioral model .
!/ (source of truth) 1 Automated and
Generate I > repeatable traffic
! \4 tests
1 docker
: DUT image
—»

I - Thrift server Target libsai 4 Build image DUT Hardware
efines the
~ skeleton C++ code _- HW target Target
dataplane... P4 defines the R e - implementation is) HW & SW
dataplane API... vendor-specific, may implementations
should pass

Compile P4 Target

Traffic cables
e

or may not use P4.

same func. tests
HW/SW traffic

N
>

SW reference
models use DASH
P4 code

DUT Software
Target

generator
{ Traffic veths >

DASH Testing — AP1/Schema layers, common test cases

Standardized JSON format for DASH
configuration. Can be used as
declarative test-case data. Can be
expressed as literal JSON content or
generated programmatically on the fly
for testing.

\ Script or code-
/ as-config data

Generate

Common

test cases...

DASH Config ™

...drive tests -==» SAl-redis
on multiple

interfaces

transform &
drive API

“ SAl-thrift
Canonical test data can be
transformed into any AP to allow
same test cases to be applied to
every level in the stack.

SDN Controller

SAl-redis
test client

Test the Redis,”

DB API

sai api DASH 8/

asic (vendor) sdk

database container

SAIl Objects

c_address”
ring_bucke

|Example DASH APP DB Database Schema

}
ss}} (OPTIONAL)
}} (OPTIONAL)

g_type
ddress

OUTE_TABLE:eni:ip_address ;

; reference to rouw
address for tl

ner dst mac

; metering and counter

—

YANG DASH/gNMI container
RPC get/set call Schema
gNMI Client g g »(gNMI server gNMI Jsst
Client
— Test the
DASH API northbound
SDN API
Transform gNMI
YANG objects to
APP DBs objects < >
______________________________________ import/export ...y
redis server
SWSS < import/export fgg
A
' [DASH]_APP_DB
Transform APP — 1 L yned container
objs to ASIC objs A R Y
(orchagent) M [—,‘_ ASIC_DB d

SAl-thrift test
client/server

Test the SAI
dataplane API

Scripts scalable to line-rate

using snappi and HW

packet generators

.
,
,

Upon commit:

Any dependency change
triggers a build & test.

Optional (not required
by DASH project)
May be used to verify P4 code

,:4 GitHub Actions
(Cl/CD)

'
'
'
'
'
'
\
'
'
'

v
v
}
‘'
}
'
'
'
v
}
l
[}
[}
'
'
'
}
'
'
'

<-

PART
test scripts

PTF or PyTest
SAl-thrift test scripts

€

=

Traffic generator commands

DASH Testing — P4 Model, multiple SW targets

Intel WIP
P4-DPDK with native =
PNA arch support Sirius P4
PNA Architecture

Interface)
' libsai P4RT
c server
saithrift
server

saithrift commands

P4RT commands

Community WIP
bmv2 modified for V1 model with
added stateful tracking.
Long-term: PNA compliant?

Sirius P4
V1 Architecture

saithrift commands C SAI-PART
saithrift Adaptor/
server P4RT Client
P4RT commands

$TDI (Table-Driven

Second
SW target

P4RT and saithrift are f
alternate & parallel .
RPCs. TDI is the native

Traffic
interface.

generators,
scale to line-
rate

generators

E 2

*snappi + Ixia-c e
docker :

First SW
target

P4RT and saithrift are
alternate RPCs, P4RT is the
native interface and saithrift

is translated into P4ART

DASH Testing Framework:Traffic Generators

** Traditional PTF: Python Framework + Scapy

o/

P ~ . Very popular; a large body of test cases
+ : < SW Traffic generator, great for packet-at-a-time
python - functional tests

. No line-rate support

Each approach has merits and

DASH will embrace both

** Enhancement: Python Framework + snappi O:}% & o
P + . . SW or HW Traffic Generators
| . Agnostic data model & API
python” —* SI_IEDD . Advanced features — latency, flow stats, etc.
. Scale to line rate w/ same scripts
@ Golang https://github.com/open-traffic-generator e https://github.com/open-traffic-generator/snappi

‘ Also available

* See “snappi” video links at end of document

https://github.com/open-traffic-generator
https://github.com/open-traffic-generator/snappi

Conclusions

P4 is being used to model stateful DASH overlay services, as a single source of truth for dataplane
behavior.

DASH P4 can be run in pure SW switches, or HW/SoC-based devices
DASH P4 can model behavior on both non-P4 devices and P4-based devices
DASH P4 code generates APIs, e.g., DASH-SAI header files + SAI-Thrift test harness.

Declarative, data-driven test cases can exercise multiple API layers in the SONIC stack: SAI, SAI-
Redis, gNMI.

Classic SAl-thrift tests are being extended to support new DASH services

Adding snappi-based tests to handle slow or fast traffic testing with same scripts, HW or SW

Call to Action

Join the DASH Project:
® https://github.com/Azure/DASH

https://groups.google.com/g/sonic-dash e https://groups.google.com/g/sonic-dash-test-workgroup

Join the IPDK Project:
® https://ipdk.io

Join the Portable NIC Architecture Working Group:

* https://p4.org/working-groups e https://github.com/p4lang/pna

Contribute to the Open Traffic Generator data models and implementations:

® https://github.com/open-traffic-generator e https://github.com/open-traffic-generator/snappi

https://github.com/Azure/DASH
https://groups.google.com/g/sonic-dash
https://groups.google.com/g/sonic-dash-test-workgroup
https://ipdk.io/
https://p4.org/working-groups
https://github.com/p4lang/pna
https://github.com/open-traffic-generator
https://github.com/open-traffic-generator/snappi

Additional Links

https://qithub.com/Azure/DASH/tree/main/sirius-pipeline
https://qgithub.com/opencomputeproject/SAl/tree/master/test/saithriftv2

Goodbye Scapy hello snappi — YouTube (https://www.youtube.com/watch?v=Db7Cx1hngVY)
Open Traffic Generator snappi Ixia-c — YouTube (https://www.youtube.com/watch?v=3p72YnLFZVQ)

https://www.youtube.com/results?search_query=goodbye+sscapy+hello+snappi
https://www.youtube.com/watch?v=3p72YnLFZVQ
https://www.youtube.com/watch?v=3p72YnLFZVQ

Notices and disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to
evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the

property of others.

intel.

PN VLN & N\ o [6/0 AN
SN A iz 78] A ey
o\ // 9'/0,0 J ° /;’c'; ‘ W
"\ (/ Y) /|
N|[[[= W\ g, NERICEZANL.
\ / \ k / LN i
i g ° L\ D “_"\. o i \\ S NN § o :
&4 ‘ o A\ N < NANN— | o N \? [% °
/| ||° Ne—«—9 /) % °
Workshop 7/ s AN . | % || 8
g'///// o ‘ G M e) 9
May 24-26th (% - \ 62,
— QR
v 4 — 2
A

Thank You

Sudarshan, Reshma reshma.suddarshan@intel.com
Chris Sommers chris.sommers@keysight.com

mailto:reshma.sudarshan@intel.com
mailto:chris.sommers@keysight.com

