
Table Driven Interface (TDI):
Usages and Advantages

Sayan Bandyopadhyay
James Choi

What is TDI (Table Driven Interface) ?
• Table Driven Interface (TDI) is a Target Agnostic Interface.

Present under p4lang/tdi
• A common frontend for TDI exists in open-source which

can be used by control plane applications.
• Targets need to implement their backend for providing

support.
• Every runtime entity is represented as one or multiple

tables whether P4(MatchAction, ActionProfile) or non-P4
(Port configuration)

• tdi.json is a json-based contract between TDI frontend
and control plane on how these tables look like. Similar to
p4info in p4runtime

• Compiler generates a tdi.json for P4 entities.
Target drivers use target-specific handwritten tdi.json files
for fixed features

• TDI json parsing library present in p4lang/tdi is used to
parse all the json files and bringup TDI module for the
target.

P4 extern and non-P4 features to json structure

• A Match-Action Table (MAT) is
converted to a tdi.json table as shown.

• Tdi.json table broadly contains
• Key : Multiple key fields
• Data

• Action-specific data fields
• "Common" data fields like

counter data

• Equivalent C-like struct and union
construct can be realized using key,
actions, data. This is used to translate
a non-P4 feature (fixed feature) like
Ports to a TDI table

TDI json table structure to API mapping

API types and a simple API workflow

1. Infrastructure APIs
1. Device Management
2. Table Metadata

2. Session APIs : Batching,
transaction APIs

3. Table APIs

Device
• A Device object can be

configured with multiple
programs depending upon
pipeline split supported

• Every program has one TdiInfo
object which in turn has
tdi::Table objects.

• Fixed functions can either be
present on the device itself, or
they are all accessible through
each of the program specific
TdiInfo objects.

TDI Frontends

• Different TDI interfaces
1. C++ frontend
2. C frontend
3. Python CLI

• Uses C++ inheritance to achieve abstraction and usage of common
code for any P4 architecture

• Any new P4 architecture doesn't need to add code here in the
p4lang tdi repo but it can be added here to maintain common code
for certain externs of a P4 architecture

• README to TDI :
[https://github.com/p4lang/tdi/blob/main/README.md]

• AA : Architecture (P4) Agnostic
• AS : Architecture (P4) Specific
• TA: Target Agnostic
• TS: Target Specific

https://github.com/p4lang/tdi/blob/main/README.md

Advantages of TDI

1. Control plane code uniformity: Since the frontend is target and P4 arch agnostic, it can be used by control planes
to write applications which are uniform across targets.

2. Target vendor ease of feature addition: The frontend and backend split allows device vendors to provide support
for P4 and non-P4 features easily in a consistent manner.

3. No extensions needed for new features: The C++ frontend interface and the TDI tools (python CLI, C-Frontend)
themselves are all consistent and don't require any change when support for a new P4-extern or Non-P4
feature needs to be added for a target

TDI vs P4Runtime
TDI P4Runtime

• Primarily Native APIs in C++ and C • Primarily gRPC and protobuf based APIs

• TDI APIs are based on an abstract structure called a "table".
API flow to program any table is the same. Match tables,
Counters, Registers are all tables.

• API flow to program different entities are different

• Provides an interface which is P4 Architecture agnostic.
Can potentially be used for non-networking API usage as well
like storage.

• Tightly knit with PSA. There is provision for p4runtime to work
with non-PSA externs but the natively supported externs are
PSA-specific like DirectMeter, DirectCounter etc.

• TDI is extern independent. Any new extern addition in any
P4 architecture, doesn't require frontend changes.

• P4Runtime core APIs and proto do require additional
changes. However, the same could be achieved via "Externs"
in P4Runtime, but since the message structure in it itself is
completely dependent on the vendor, it doesn't have a
generic specification guideline.

In order to add support for extensions in
P4runtime , new target-specific protobuf
messages are required which add compile time
and target-specific dependencies.

P4info
message

P4runtime
message

A TDI table needs to be added to the json (equivalent to the
P4info in p4runtime).
The runtime itself doesn't need any new compilation or new
messaging

What is P4-DPDK-TARGET?

• P4-DPDK-TARGET a p4lang project for the
enabling management of P4 DPDK pipeline
through TDI.
• https://github.com/p4lang/p4-dpdk-target
• Upstreaming of TDI implementation is in

progress. Currently contains code for BFRT
interface, which is predecessor to TDI.

• P4 DPDK pipeline is a DPDK based SW pipeline
that is configurable through P4.
• https://github.com/DPDK/dpdk/tree/main/lib/pi

peline/rte_swx_*.*
• Supports P4 PNA & PSA architectures
• Runtime files generated by P4 compiler with

DPDK backend.
• https://github.com/p4lang/p4c/tree/main/backe

nds/dpdk

• TDI frontend includes:
• TDI base C++ class declarations
• TDI.json parser that support the current TDI.JSON

schema.
• TDI CLI

• P4-DPDK-TARGET backend contains:
• TDI C++ backend for P4 tables for PNA & PSA
• TDI C++ backend for non-P4 table.

• Currently supports port/vport related tables
• P4 DPDK specific resource managers
• Low-level driver (LLD) for P4 DPDK pipeline API
• Sample application (bf_switchd)
• Examples
• https://github.com/p4lang/p4-dpdk-target#readme

for more info.

https://github.com/p4lang/p4-dpdk-target
https://github.com/DPDK/dpdk/tree/main/lib/pipeline/rte_swx_*.*
https://github.com/p4lang/p4c/tree/main/backends/dpdk
https://github.com/p4lang/p4-dpdk-target

How does P4-DPDK-TARGET implement TDI?

TDI implementation layers
• TDI C++ base class frontend

• Referenced through submodule to TDI

• TDI C++ class P4 DPDK backend
• Map TDI table key & data fields to bitarray

based on target specific context.json
• Table specific implementation

• P4 DPDK target-specific resource manager
libraries
• Pipe Manager

• Southbound interface for TDI P4 backend
• Session implementation

• Port Manager
• Southbound interface for Port/Vport

backend

• P4 DPDK LLD
• Simple target access layer for P4-DPDK

target

What device config does P4-DPDK-TARGET support?

TDI Infra Objects Supported by TDI Supported in P4-
DPDK-TARGET

Device Multiple devices per
TDI library

Single device per TDI
library

ProgramConfig
(P4 program &
TDI.JSON)

Multiple
ProgramConfig per
device

Upto 4 ProgramConfig
per device

P4Pipeline
(Target binary &
CONTEXT.JSON)

Multiple P4Pipeline per
ProgramConfig

One P4Pipeline per
ProgramConfig

PipeScope
(Grouping of target
pipelines in device)

Multiple logical pipes
per P4Pipeline

Single logical pipe per
P4Pipeline

Device Configurations Supported # Config file used by bf_switchd application
{

"p4_devices": [
{

"device-id": 0,
"p4_programs": [

{
"program-name": "<P4 program name>",
“tdi-config": "share/dpdk/<P4 program name>/tdi.json",
"port-config": "share/dpdk/<P4 program name>/ports_topology.json",
"p4_pipelines": [

{
"p4_pipeline_name": "pipe",
"context": "share/dpdk/<P4 program name>/pipe/context.json",
"config": "share/dpdk/<P4 program name>/pipe/<P4 program

name>.spec",
"path": "share/dpdk/<P4 program name>“
“pipe_scope”: [0, 1, 2, 3]

}
]

}
],

}
]

How is P4Runtime supported?

• P4 function characteristics:
• Programmable with P4
• TDI JSON files are compiler generated and context.json is used for

mapping to target pipeline.
• P4 function resources are allocated at P4Pipeline level by compiler

and managed by driver .
• P4 function JSON files can be loaded at TDI library initialization time

and at runtime thru setforwardingpipelineconfig

• Implement tdi::Table C++ classes for P4Runtime entities
• Each P4Runtime message handled by specific TDI backend C++ class

for specific table type
• TableType in TDI.JSON can be used to differentiate tables by

applications

• Integrated with ONF Stratum as part of IPDK integration.
• https://github.com/stratum/stratum
• IPDK Container available at: https://github.com/ipdk-

io/ipdk/blob/main/build/networking/README_DOCKER.md

P4Runtime Messages P4C TDI.JSON
TableType

P4-DPDK-TARGET
C++ Backend

• TableEntry w/ Action
• DirectCounterEntry
• DirectMeterEntry

• MatchAction_Direct • MatchActionDirect

• TableEntry w/ action
profile member or group

• MatchAction_Indirect
• MatchAction_Indirect_S

elector

• MatchActionIndirect

• ActionProfileGroup • Selector • Selector

• ActionProfileMember • Action • Action

• CounterEntry • Counter • CounterIndirect

• MeterEntry • Meter • MeterIndirect

• RegisterEntry • Register • RegisterIndirect

https://github.com/stratum/stratum
https://github.com/ipdk-io/ipdk/blob/main/build/networking/README_DOCKER.md

How is OpenConfig supported?

• Fixed function characteristics:
• Not programmable with P4
• TDI fixed function JSON files are hand-written and do not

use context.json for mapping to target pipeline.
• Fixed function resources are managed at device level and

shared by all P4 pipelines.
• Fixed function JSON files are loaded at TDI library

initialization time, not at runtime thru
setforwardingpipelineconfig

• Integrated with ONF Stratum as part of IPDK integration.
• Private OpenConfig YANG model for port/vport is used.

• Set of supported fixed functions
• Port and vport mgmt
• https://github.com/p4lang/p4-dpdk-

target/blob/main/src/bf_rt/bf_rt_port/dpdk/bf_rt_port.jso
n (*TDI port implementation is under development.)

OpenConfig
Model

TDI Table TDI.JSON
TableType

openconfig-
interfaces-
stratum.yang

PortCfgTable PortConfigure

openconfig-
interfaces-
stratum.yang

PortStatTable PortStat

https://github.com/p4lang/p4-dpdk-target/blob/main/src/bf_rt/bf_rt_port/dpdk/bf_rt_port.json

What is the roadmap?

TDI & P4-DPDK-TARGET Roadmap
1. TDI specification document v1.0 out by July’22
2. TDI integrated with P4-DPDK by July’22

1. Currently working on upstreaming TDI P4-DPDK backend
code.

3. TDI WG integration with p4Lang by July’22
(tentative)

Thank You
Additional Resources
1. “Table Driven Interface API Opens P4-Programmable Data Plane Features”, Sunil

Ahlwalia, Intel, blog, https://opennetworking.org/news-and-events/blog/table-
driven-interface-api-opens-p4-programmable-data-plane-features/

2. P4 TDI GitHub: https://github.com/p4lang/tdi

3. Infrastructure Programmer Development Kit (IPDK) website: https://ipdk.io/

https://opennetworking.org/news-and-events/blog/table-driven-interface-api-opens-p4-programmable-data-plane-features/
https://github.com/p4lang/tdi
https://ipdk.io/

How is TDI table implemented?
class tdi::Table {

public:

virtual tdi_status_t entryAdd(const tdi::Session &session,

const tdi::Target &dev_tgt,

const tdi::Flags &flags,

const tdi::TableKey &key,

const tdi::TableData &data) const;

protected:

Table(const TdiInfo *tdi_info, const TableInfo *table_info)

: tdi_info_(tdi_info), table_info_(table_info){};

}

class MatchActionDirect : public tdi::Table {

public:

MatchActionDirect(const tdi::TdiInfo *tdi_info,

const tdi::TableInfo *table_info)

: tdi::Table(tdi_info, table_info) {}

virtual tdi_status_t entryAdd(const tdi::Session &session,

const tdi::Target &dev_tgt,

const tdi::Flags &flags,

const tdi::TableKey &key,

const tdi::TableData &data) const override;

private:

// Table specific private members

std::map<tdi_id_t, bool> act_uses_dir_meter;

std::map<tdi_id_t, bool> act_uses_dir_cntr;

std::map<tdi_id_t, bool> act_uses_dir_reg;

};

