
Confidential │ ©2022 VMware, Inc.

Scaling SDN Policy Distribution
Ben Pfaff

Confidential │ ©2022 VMware, Inc. 2

Network Virtualization Background

VM A

VM B VM C

VM EVM D

server 1

server 2

server 3

Confidential │ ©2022 VMware, Inc. 3

A packet shows up.

What do we do with it?

Confidential │ ©2022 VMware, Inc. 4

Network Policy Arithmetic

 N VMs

 Therefore we have:

 O(N) policy data

 Pack VMs into nodes

 Therefore we have:

 O(N) nodes

 Distribute O(N)
policy to O(N) nodes

 Therefore we distribute:

 O(N2) policy data

Confidential │ ©2022 VMware, Inc. 5

How do we distribute O(N2) policy
data?
(without multicast)

Confidential │ ©2022 VMware, Inc. 6

1: Keep N small

Small N makes O(N2) practical.

● Early versions of OVN were OK for N = 2000.
● Most enterprises have 7 or fewer racks.
● The definition of “large” might be larger than

one expects.

To some extent this is just “hope it works.”

Confidential │ ©2022 VMware, Inc. 7

2: Chew away at constant factors

Uniformity Subsetting Compression Simplicity

Confidential │ ©2022 VMware, Inc. 8

3: Reactive Control

Early SDN controllers set up one microflow at a time
reactively, but:
● Latency
● Load
● Failure
Newer controllers are proactive.
OVS internals were once microflow-based; we invented
megaflows.
Can we invent megaflows for controllers?

Confidential │ ©2022 VMware, Inc. 9

4: Federation

Divide the network into smaller networks.

Use a hierarchy of control.

Networks must be independent or mostly so.

Confidential │ ©2022 VMware, Inc. 10

5: Don’t change

If the network is static, or only changes rarely, it
might not matter that it’s expensive to change.

Confidential │ ©2022 VMware, Inc. 11

6: Don’t centralize

Do we need centralization to accomplish our
goals?

● Can a node do what we want with less than
O(N) communication?

● Is network virtualization really needed?

Confidential │ ©2022 VMware, Inc. 12

7: Predictability

Eliminate the need to distribute per-VM data.

For example, encode VM MAC and IP addresses
to imply the security policy and their node of
residence.

Confidential │ ©2022 VMware, Inc. 13

8: Incremental Control
Can we just compute and transmit
changes?

Confidential │ ©2022 VMware, Inc. 14

Incremental Control: Basics

A. N VMs

B. O(N) computation

C. O(N) logical flows

D. O(N2) bandwidth

E. O(N) logical flows

F. O(N) computation

G. O(N) OpenFlow flows

O(1) VMs change

 O(1) computation

O(1) logical flows changes

 O(N) bandwidth

O(1) logical flows change

 O(1) computation

O(1) OpenFlow flows change

controller

per node

communication

Full Incremental

Confidential │ ©2022 VMware, Inc. 15

Incremental Control: Assumptions

A.

B.

C.

D.

E.

F.

G.

O(1) VMs change

 O(1) computation

O(1) logical flows changes

 O(N) bandwidth

O(1) logical flows change

 O(1) computation

O(1) OpenFlow flows change

controller

per node

communication

“Cold start” is fast enough.

Changes are small.

Efficient delta computation.

|ΔOutput| = O(|ΔInput|).

Efficient distribution of incremental changes.

(Ditto)

Efficient generation of OpenFlow deltas.

OVS handles OpenFlow deltas efficiently.

Confidential │ ©2022 VMware, Inc. 16

Assumption C: |ΔOutput| = O(|ΔInput|)

If a small input change can yield a much bigger output change,
then incremental computation will not be effective.

If such changes happen only rarely, it might still be OK in practice.

OVN load balancers had such a problem: in important cases,
changing one in a simple way could affect a hugely
disproportionate number of logical flows.

(“Load balancer groups” should help.)

Confidential │ ©2022 VMware, Inc. 17

Assumptions B+F: Efficient delta computation

The two computations in our system are complicated and hard to
make incremental. We tried three approaches:

● Ad hoc in C: in the per-node computation (in 2016). This proved
too hard to make reliable and was reverted.

● Disciplined in C: in the per-node computation. Uses an engine
of C callbacks. Still working! Some known issues (based on the
tests).

● Automatic in DDlog: in the controller computation.

Confidential │ ©2022 VMware, Inc. 18

Incremental controller with DDlog: Best case

From empty, add another router 250 times:

step 1 step 250 total runtime
C: .14 s 1.04 s 107 s
DDlog: .13 s .15 s 35 s

[*] https://mail.openvswitch.org/pipermail/ovs-dev/2021-April/381745.html

Confidential │ ©2022 VMware, Inc. 19

Incremental controller with DDlog: Worst case

Cold start with huge load balancers, then delete each of them:

wall time CPU time RAM
C: 1:20 ~87 s 3.8 GB
DDlog: 3:08 187 s 14.2 GB

● DDlog processes each change “twice”.
● DDlog can’t as easily parallelize processing.
● DDlog indexes data to enable incrementality.

Thank You

