&\ o T | o] o o ‘ : | & | N p |4 -
“ / s (.0 : -\ & 3 : > [o
2022 w N1 BN RN |l B = N :
E o B NS ‘ o a " ! NN y J: K &

Workshop 20 TN e B2 8 22—

Moy 2200 w 12| SN N [l N o 3B i DR N B

Scaling SDN Policy Distribution
Ben Pfaff

Network Virtualization Background

VMA | vm

VMB]|] vm \(——»
VMD | vm \(—-»

m VM C

vm \VME

-
=

il
I

mwa re® ©2022 VMware, Inc.

server 1

server 2

server 3

1

A packet shows up.

What do we do with it?

Network Policy Arithmetic

um D D
N VMs Pack VMs into nodes Distribute O(N)
policy to O(N) nodes
Therefore we have: Therefore we have: Therefore we distribute:
O(N) policy data O(N) nodes O(N?) policy data

mwa re® ©2022 VMware, Inc. 4

How do we distribute O(N?) policy
data?

(without multicast)

Vmwa re® ' ©2022 VMware , Inc.

1. Keep N small

Small N makes O(N?) practical.

Early versions of OVN were OK for N = 2000. O
Most enterprises have 7 or fewer racks. O O
The definition of “large” might be larger than O O O

one expects. O O
O

To some extent this is just “hope it works.”

vmware ©2022 VMware e

2: Chew away at constant factors

Uniformity Subsetting Compression Simplicity

mwa re® ©2022 VMware, Inc. 7

3: Reactive Control

Early SDN controllers set up one microflow at a time
reactively, but:

e Latency
e Load
e Failure

Newer controllers are proactive.

OVS internals were once microflow-based; we invented
megaflows.

Can we invent megaflows for controllers?

mwa re® ©2022 VMware, Inc.

4. Federation

Divide the network into smaller networks.

Use a hierarchy of control.

Networks must be independent or mostly so.

vmware ©2022 VMware e

5: Don’t change

If the network is static, or only changes rarely, it
might not matter that it's expensive to change.

vmware ©2022 VMware e

6: Don’t centralize

Do we need centralization to accomplish our
goals?

Can a node do what we want with less than
O(N) communication?

Is network virtualization really needed?

mwa re® ©2022 VMware, Inc.

1

/. Predictability

Eliminate the need to distribute per-VM data.

For example, encode VM MAC and IP addresses

to imply the security policy and their node of
residence. IE IE

vmware ©2022 VMware e

8: Incremental Control

Can we just compute and transmit
changes?

Vmwa re® ' ©2022 VMware , Inc.

Incremental Control: Basics

Full Incremental
A NVMs T 0(1) s change
B. l O(N) computation l 0(1) computation controller
C. OMlogicalflows] 0(1) logical flows changes
D l O(N?) bandwidth l O(N) bandwidth Icommunication
E. O(N)logical flows O(1)Togical flows change ~~ §
F. l O(N) computation l 0(1) computation per node
G. O(N) OpenFlow flows O(1) OpenFlow flows change
vmware ©2022 VMware, Inc. 14

Incremental Control: Assumptions

“Cold start” is fast enough.

A. Changes are small. O(1) VMs change

B. Efficient delta computation. l 0(1) computation controller

C. |AOutput| = O(|Alnput]). '0(1) logical flows changes

D. Efficient distribution of incremental changes. l O(N) bandwidth I communication
E. (Ditto) 0(1) logical flows change 4

F. Efficient generation of OpenFlow deltas. l 0(1) computation per node

G. 0VS handles OpenFlow deltas efficiently. 0(1) OpenFlow flows change

mwa re® ©2022 VMware, Inc.

15

Assumption C: [AOutput| = O(|Alnputl)

If a small input change can yield a much bigger output change,
then incremental computation will not be effective.

If such changes happen only rarely, it might still be OK in practice.

OVN load balancers had such a problem: in important cases,
changing one in a simple way could affect a hugely
disproportionate number of logical flows.

(“Load balancer groups” should help.)

vmware ©2022 VMware e

Assumptions B+F: Efficient delta computation

The two computations in our system are complicated and hard to
make incremental. We tried three approaches:

e Adhocin C:in the per-node computation (in 2016). This proved
too hard to make reliable and was reverted.

e Disciplined in C: in the per-node computation. Uses an engine
of C callbacks. Still working! Some known issues (based on the
tests).

e Automatic in DDlog: in the controller computation.

vmware ©2022 VMware e

Incremental controller with DDlog: Best case

From empty, add another router 250 times:

step1 step 250 total runtime
C: 14 s 1.04s 107 s
DDlog: .13 s 15s 35s

[*] https://mail.openvswitch.org/pipermail/ovs-dev/2021-April/381745.html

mwa re® ©2022 VMware, Inc. 18

Incremental controller with DDlog: Worst case

Cold start with huge load balancers, then delete each of them:

walltime CPUtime RAM
C: 1:20 ~87 s 3.8 GB
DDlog: 3:08 187 s 14.2 GB

e DDlog processes each change “twice”.
e DDlog can't as easily parallelize processing.
e DDlog indexes data to enable incrementality.

2022
Workshop
May 24-26th

4

Thank You

