
TCP-INT: Lightweight INT in TCP Transport
Simon Wass (Intel) & Miao, Mao (Baidu)



Agenda

• Motivations
• TCP-INT High-Level Design
• Example use cases
• Implementation (Intel)
• Demo
• Congestion Control 

Enhancement
• Implementation (Baidu)
• Baidu Vision & Planned Usage
• Roadmap

Intel

Theo Jepsen
Grzegorz Jereczek
Bimmy Pujari
JK Lee
Simon Wass

Baidu

Miao, Mao
Cheng, Gang
Li, Zhaogeng 
Xie, Pan 

Contributors



Motivations
• The separation between storage and computation requires a low latency,

high throughput fabric to realize the benefit

• BaiduRPC over RDMA is used
in the storage cluster

• Congestion & bottleneck exist
between Storage client and
master/block server due to
the use of TCP

Computer Cluster

VM

vhost-user

Storage Client

Storage Cluster

Master server

Block server

Block server Block server

BRPC over TCP/IP

RAFT

BRPC
over RDMA



Motivations (2)

Feedback on INT
1. Flow Scale
2. Telemetry “for Control”
3. Direct mapping to application session/message



§ In-band Network Telemetry (INT) embedded in the TCP header (as TCP Option)

§ Correlates fabric telemetry (Q depth) with TCP states (congestion window)

§ Lightweight: metrics aggregated (max or sum) over switch hops

§ INT enriched with end-host metrics

§ Consumed locally by 
application or exported to
centralized metrics / 
visualization
tools

TCP-INT High-Level Design (3)

Link-2

INT INT

INTINT

Data

ACK

IP TCP Payload

INT

INT Echo

Flow 
Initiator

Flow 
Recipient

Echo



TCP-INT High-Level Design

Sender Receiver

Kernel adds INT option to
TCP header

1

Switches update INT fields: sum latency and max qdepth, util2

Return INT header in ACK3



TCP-INT High Level Design (2)

Option-
kind 
(1B)

Option-
length 

(1B)

INTval (1B)
(Scaled summation of utilization 

or queue depth)

INTecr (1B) ID (1B) IDecr (1B) Lat (3B) LatEcr (3B)

0x72 0x0C if qdepth < qdepth_threshold:
Bit [7]: 0
Bits [0-6]: util >> y
(saturates if above max)

else:
Bit [7]: 1
Bits [0-6]: qdepth >> x
(saturates if above max)

INTval Echo 
Reply

IP.TTL IP.TTL Echo 
Reply

Lat += switchLat Lat Echo 
Reply

Updated by the switches

Used by the end-hosts to echo INTval and ID 
back to the senders, ignored by the switches

New TCP Option – TCP-INT



Example Use Cases 

Extend Host Linux TCP Toolset
with TCP-INT Information
• Quick view into network state
• Compare different congestion control 

algorithms
• Develop new congestion control algorithms
• Debug QoS configuration in the fabric (e.g. 

WRED thresholds)



Implementation

Intel Implementation Overview

End-hosts

Switch



Implementation (2)

Host-side eBPF-based implementation
• eBPF callbacks for TCP options (kernel 5.10). TCP-INT eBPF code is called when: 

• new TCP connection is established -> enabling option callbacks for the lifetime of a flow
• any unknown TCP option is received -> look for and handle TCP-INT
• TCP adds options to a new outgoing segment -> initialize TCP-INT (INTval=0)

• SK buff local storage (kernel 5.2) used to keep TCP-INT state (echo TCP-INT b2s)

• Perf events and histograms for live data monitoring
• Exportable via other user-space applications (E.g. gRPC client)

• Configuration maps for enable, disable, disable echo

• User-space application loads, controls, and polls data from eBPF program



Switch-Side TCP-INT

• Control planes determines the 
mapping between (qdepth, 
txRate) and INTval
• This increases flexibility and 

allows complex mapping 
functions that include division

qdepth

Queueing System

pkt_length
Rate 
LPF

Memo Table

Control-plane

INTval [0,255]

(egress_port, qid)

…

x8

CP logic
BfRt

Data-plane

abytes_index

qdepth_index

MAX(INTval)

Pkt.tcp-int.val

>



Demo: End-to-End Performance Bottleneck Identification

FIO NVMe Storage Benchmark

Intel® Deep Insight Network Analytics Software
Log, Analyze, Replay and Visualize

All links are 100GEvent
streaming

Initiator 1

Initiator 2

Initiator 3 NVMEoTCP
storage target

• As number of initiators increases, 
storage application latency 
increases

• Identifying the root-cause is a big 
problem in large distributed 
systems



Demo: End-to-End Performance Bottleneck 
Identification



Enhancing CC Algorithms with TCP-INT

Goal: Simple implementations to allow customers add their secret sauce

2. Calculate and update INTval + Lat
if sw.INTval > pkt.INTval:

pkt.INTval = sw.INTval
pkt.INTid = sw.INTid

pkt.Lat += sw.Lat

Sender Receiver

1. Initialize TCP-INT option
INTval = 0
Lat = 0

4. TCP-INTsink:
• congestion control

• HPTCP
• DCTCP++
• AI-CC
• …

• state monitoring and debugging
• …

Switches

3. Echo received INTval & Lat 
back to the sender



ECN+INT Congestion Control

Source: https://web.stanford.edu/class/ee384m/Handouts/handout16.pdf

ECN+INT Congestion Control

Switch Side
- INTval conveys absolute qdepth

Sender Side
- Introduce αint:

αint = qdepthsmoothed / qdepthtarget

qdepthsmoothed← (1 - g)*qdepthsmoothed + g*qdepth
g – smoothing factor

- Combine αDCTCP and αint:
α = max(αDCTCP, αint)

This approach ensures interoperability with switches 
that do not support TCP-INT



Bulk receiver

Full-bisection 
bandwidth

RPC server

RPC client

Intel® Deep Insight Network Analytics Software
Log, Analyze, Replay and Visualize

Event
streaming

ECN+INT CC Demo Topology

Intel 
Tofino-
based 
Switches

Congestion

… … Bulk 
senders



Early Performance Data
ECN

-40%

Link util: 100%

157 us average latency
172 us p99 tail latency
6K reqs/s

67 us average latency
126 us p99 tail latency
15K reqs/s

ECN+INT

-43%
-23%
2.5x*

*For workloads and configurations visit www.intel.com/PerformanceIndex. Results may vary.

http://www.intel.com/PerformanceIndex


Baidu Implementation • Congestion window update
• Baidu implements HPTCP Algorithm

• HPTCP is based on HPCC algorithm for RDMA 
networks, ported to TCP

• Uval is calculated from INTVal field in TCP-INT

HPCC:https://dl.acm.org/doi/pdf/10.1145/334130
2.3342085

• Uval calculaction

• If INTval[7]=1, INTval[6:0]=qdepth, then:

𝑈𝑣𝑎𝑙 =
𝑞𝑑𝑒𝑝𝑡ℎ
𝐵 ∗ 𝑅𝑇𝑇

+
𝑡𝑥𝑅𝑎𝑡𝑒
𝐵

=
𝑞𝑑𝑒𝑝𝑡ℎ
𝐵 ∗ 𝑅𝑇𝑇

+ 1
• If INTval[7]=0, INTval[6:0]= Uval << bitshift

• Fast retransmit: snd_cwnd = snd_cwnd / 2
• RTO: snd_cwnd = min(snd_cwnd/2, Winit)

Brpc Event
Poller

Stack Poller

DPDK Poller

User Poller

Thread Init

HPTCP/IP

DPDK

Polling thread1

FlowDirect

NIC

KERNEL

BRPC

https://dl.acm.org/doi/pdf/10.1145/3341302.3342085


Baidu Vision & Planned Usage
• Intend to be used in Storage Client

• Comparison of various technical
solutions is in progress
• SWIFT
• HPTCP
• …

• Aim to compete with the storage
networks from top cloud vendors

Computer Cluster

VM

vhost-user

Storage Client

Storage Cluster

Master server

Block server

Block server Block server

BRPC over HPTCP/IP

RAFT

BRPC
over RDMA



Roadmap (Intel)

• Open-Source TCP-INT host-side code

• Delivering network telemetry directly to applications

• Scale out testing with 100s of nodes

• Continue research into congestion control improvement and network 
mgmt. utilizing TCP-INT telemetry



Baidu Roadmap

• Continue to test HPTCP in Baidu’s testbed

• Keep optimizing HPTCP congestion control algorithm

• Compare the performance of HPTCP with SWIFT and RDMA schemes

• Deploy the new transport stack in Storage client to improve the entire
storage networks



Notices and Disclaimers

§ Performance varies by use, configuration and other factors. Learn more 
at www.Intel.com/PerformanceIndex.

§ Performance results are based on testing as of dates shown in configurations and may 
not reflect all publicly available updates. See backup for configuration details. No 
product or component can be absolutely secure.

§ Your costs and results may vary.
§ Intel technologies may require enabled hardware, software or service activation.
§ Intel does not control or audit third-party data. You should consult other sources to 

evaluate accuracy.
§ © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel 

Corporation or its subsidiaries. Other names and brands may be claimed as the 
property of others.

http://www.intel.com/PerformanceIndex%E2%80%8B


Thank You


