
Portability and Composability
Venkat Pullela - Keysight

Surendra Anubolu - Broadcom
Shyam Kaluve - OpenNets

Madhu Dhavala - OpenNets
Sahil Gupta - RIT

Agenda

Modularity / Portability / Composability

Applets and Proposal

Merge Algorithms:

Insertion Merge

Feature Merge

Field Merge

Modularity

No explicit specification of modularity constructs in P4 or NPL
Implicit use of Control Blocks in P4, functions in NPL
#include files are used to organize code
Control blocks are first choice as they specify Lookups, Logic, Control Flow

P4 Tables are second choice
Mechanism to leverage modularity is missing, a.k.a composability
Not completely adequate for specifying a full fledged features and
interactions

Portability

ASIC pipelines have too many architecture specific implementation details

Packet forwarding, modification, replication

Portable Switch Architecture (PSA), Portable NIC Architecture (PNA) help

Easier to adopt for Fetch-Decode-Execute architectures than ASICs

Programming models of ASICs differ

Ability to modify packet in ingress, egress pipeline vs. at the end

Re-create the packet vs. modify packet

Error checking, checksum, location of state

Composability

Degree to which components can be combined with ease to build a modular
system

Makes it easy, faster to build, deploy and operate large, complex systems

uP4 - Higher level abstraction on top of P4 that is translated into target
specific P4 code

Lyra one-big-pipe - Multi system composability that gets compiled to native
language
DAPIPE, P4 Weaver - Insertion based composability

Applets proposal
Previous work does not address feature interoperability and interactions

Leverages Conventions, Standard Models, Design patterns, Frameworks

Base pipeline - Designed as a solution to portability

Abstract system level services, with well defined interfaces

Modules - A separate Applet for each feature

Merge Policy - Specifies how base pipeline and Applets are combined

Common Intermediate Representation for multilingual support

Different models at different stages of integration

Applets proposal

IDE

Applet

Merging
Policy

Functional Blocks
(Generic and portable)

Integration model

Framework
Programming model
(P4/NPL/Common)

Baseline Functionality
(Data Plane Abstraction

n selected Language)
Composed
Application

Base Pipeline

P4/NPL
Compiler

Libs

Merge Algorithms
Insertion Merge
○ Program/Framework explicitly defines how the applets interact and produce the desired

result
○ Custom merge logic is hard coded in the program in different places (except in Applets)

Feature Merge
○ Describes the features that will be merged to produce a common result
○ Describes the final result for each combination of the results from the Applets
○ Ordered Policy rules (ACL like) describe how features are merged
○ There could be multiple Feature merge sets

Field Merge
○ Each Applet generates multiple result field objects
○ Same result field object may be generated by multiple Applets
○ Overlapping Result fields are combined based on priority or policy

Insertion Merge

Simplest and easiest way to implement modularity and composability
● Merge using, C preprocessor and #includes
● Aspect Oriented Programming (AOP)

locate → label → insert
● Merge policy specifies what Applets are inserted, and where in the

pipeline

Feature Merge

Uses Object Oriented Programming concepts
Feature Object → Input/Output fields

→ Result fields
Features may specify dependencies to enforce ordering
Input, output specify order implicitly
Merge policy specifies feature interactions
Merge policy may specify feature order

Field Merge

● Field Merge is the fine grain merge of Applets into a single program at
individual field level.

● When multiple features are combined, not all fields have a global semantic
scope nor relevance across features.

● Broadcom has implemented a priority scheme in their hardware architectures,
called strength i.e strength constructs in NPL

● Strength is one of the attributes of the Result object of a dis-aggregated
Match Action table, along with name, size, type, scope etc.

● Strength values can be assigned at table level or individual entry level, giving a
fine grain control.

● Example: System ACL rules > VRF-specific routes > PBR > Global Routes

ACM SOSR ‘19: Precedence: Enabling Compact Program Layout By Table Dependency Resolution

https://tinyurl.com/AcmSbr

Thank You
<additional resources>

