

TAPI v2.4.0 Reference
Implementation Agreement

TR-548

TAPI Streaming

Version 2.0 (Dec 2022)

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 2 of 110 © 2022 Open Networking Foundation

ONF Document Type: Technical Recommendation

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY

WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR

SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

1000 El Camino Real, Suite 100, Menlo Park, CA 94025

www.opennetworking.org

©2022 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the Open

Networking Foundation, in the United States and/or in other countries. All other brands, products, or service

names are or may be trademarks or service marks of, and are used to identify, products or services of their

respective owners.

http://www.opennetworking.org/

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 3 of 110 © 2022 Open Networking Foundation

Table of Contents

Disclaimer .. 2

List of Tables ... 7

Document History .. 7

1 Introduction.. 8

1.1 General introduction .. 8

1.2 Introduction to this document .. 8

1.3 Specification .. 8

2 Overview... 9

2.1 Essential feature and benefits .. 9

2.2 TAPI application .. 10

3 Summary of key considerations .. 11

3.1 Overview ... 11

3.2 RESTCONF notification mechanism (described in [ONF TR-547]) .. 11

3.3 TAPI Streaming ... 11

3.4 Stream content .. 12

3.5 TAPI Application in detail .. 12

3.6 Summary of Streaming Characteristics .. 13

3.7 Supported and available streams ... 14

3.7.1 Supported stream type ... 14

3.7.2 Available Streams ... 23

3.8 Streaming approach and log strategy ... 24

3.8.1 Log storage strategy ... 24
3.8.1.1 Compacted log .. 24

3.8.1.2 Truncated log .. 25

3.8.1.3 Full history log ... 25

3.8.1.4 Full history with periodic baseline log ... 26

3.8.2 Log record strategy and record trigger ... 26
3.8.2.1 Whole entity on change .. 26

3.8.2.2 Change only .. 27

3.8.2.3 Whole entity periodic .. 27

3.8.2.4 Change-only periodic .. 27

3.9 Using the stream ... 27

3.9.1 Streaming the context ... 27
3.9.1.1 Effect of streaming approach and compacted log characteristics on alignment 29

3.9.1.2 Preparing to connect... 29

3.9.1.3 Initial connection ... 29

3.9.1.4 Tombstone (Delete) retention passed .. 29

3.9.1.5 Compaction delay passed .. 29

3.9.1.6 (Eventual) Consistency achieved ... 30

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 4 of 110 © 2022 Open Networking Foundation

3.9.1.7 Degraded performance ... 30

3.9.1.8 Need for realignment .. 30

3.9.1.9 Summary .. 30

3.9.2 Future combination considerations (by example) ... 30
3.9.2.1 Many clients .. 30

3.9.2.2 Many views and many clients (with a few clients per view).. 31

3.9.2.3 Many short-lived clients .. 31

3.9.2.4 Live measurements .. 31

3.9.2.5 Threshold Crossing... 31

3.9.2.6 Periodic measurement data .. 31

3.9.2.7 Bulk Performance Monitoring (PM) data .. 32

3.10 Record content .. 32

3.10.1 Log Record Header .. 32

3.10.2 Log Record Body .. 35

3.10.3 Considering parent-address ... 39

3.11 Considering order/sequence and cause/effect ... 42

3.11.1 Time .. 42

3.11.2 Backend stream details .. 43

3.12 The Context .. 43

3.13 Handling changes in the Context .. 43

3.14 Reporting change .. 43

3.15 Model implications .. 44

3.16 System engineering .. 44

3.17 Eventual Consistency and Fidelity .. 44

3.17.1 Eventual Consistency ... 44

3.17.2 Fidelity .. 44

3.17.3 Related stream characteristics ... 45

3.18 Stream Monitor ... 45

3.19 Solution structure – Architecture Options ... 46

3.19.1 Full compacted log .. 46

3.19.2 Emulated compaction ... 47

3.19.3 Comparing the full compacted log and the emulated compacted log .. 49

4 Using the compacted log approach for alarm reporting ... 50

4.1 Specific alarm characteristics - raising/clearing an alarm ... 50

4.2 Key Features of an alarm solution (example usage) .. 50

4.3 Log strategy .. 50

4.4 Alarm behavior .. 51

4.5 Condition detector and alarm structure ... 52

4.5.1 condition-detector from tapi-streaming.yang .. 53

4.5.2 detected-condition from tapi-fm.yang ... 56

4.5.3 alarm-condition-detector-detail from tapi-streaming.yang .. 62

4.6 Alarm Identifier and location ... 63

4.7 Alarm tombstone behavior .. 63

4.8 Time .. 64

4.9 Detected Condition normalization ... 64

4.10 Meaningful detection (device or any other source) ... 64

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 5 of 110 © 2022 Open Networking Foundation

5 Use Cases .. 66

5.1 Use Case General Considerations ... 66

5.1.1 TAPI Context .. 66

5.1.2 Underlying behavior .. 66

5.1.3 Model conformance .. 66

5.1.4 Use Case Overview .. 68

5.2 Streaming infrastructure use cases .. 68

5.2.1 Use Case ST-0.1: Get Auth Token ... 69

5.2.2 Use Case ST-0.2: Discover supported and available streams, then select available streams 70

5.2.3 Use Case ST-0.3: Connect to Stream and align - new client ... 71

5.2.4 Use Case ST-0.4: Client maintains idle connection ... 72

5.2.5 Use Case ST-0.5: Provider delivers event storm (or slow client) – bad day 73

5.2.6 Use Case ST-0.6: Provider delivers extreme event storm (or very slow client) – very bad day 74

5.2.7 Use Case ST-0.7: Short loss of communications ... 75

5.2.8 Use Case ST-0.8: Long loss of communications requiring realignment .. 76

5.2.9 Use Case ST-0.9: Client requires realignment ... 77

5.3 Building and operating a stream on a provider ... 77

5.3.1 Use Case ST-1.1: Provider initializes and operates a stream .. 77

5.3.2 Use Case ST-1.2: Provider recovers a stream after internal loss .. 79

5.3.3 Use Case ST-1.3: Provider recovers a stream after an upgrade ... 80

5.4 Client maintains alignment – Example strategies and approaches .. 81

5.4.1 Use Case ST-2.1: Client aligns with a stream .. 81

5.4.2 Use Case ST-2.2: Client realigns ... 82

5.4.3 Use Case ST-2.3: Client performs a stream audit .. 84

5.5 Gaining and maintaining Alignment with individual network resources .. 85

5.5.1 Use Case ST-3.1: Client maintains alignment with all instances of a class (e.g., Node) in a context 85

5.5.2 Use Case ST-3.2: Client maintains alignment with all alarms in the context 86

5.6 Dealing with the whole context of resources .. 87

5.6.1 Use Case ST-4.1: Client maintains alignment with all resources in the context 87

5.6.2 Use Case ST-4.2: In a resilient solution the Controller the client is connected to becomes unavailable
 87

5.7 Connectivity Service Lifecycle .. 88

5.7.1 Use Case ST-5.1: Provide streams network changes to the client .. 88

5.7.2 Use Case ST-5.2: Client runs a provisioning use case ([ONF TR-547] UC1x etc.) 88

5.7.3 Use Case ST-5.3: Client runs the service deletion use case ([ONF TR-547] UC10) 88

5.8 Message Sequence example ... 89

5.9 Use cases beyond current release ... 93

5.10 Message approach (WebSocket example) ... 94

5.10.1 Basic interaction ... 94

5.10.2 Authorization example – WebSockets .. 94

5.10.3 Connecting to a stream example - WebSockets .. 95

6 Appendix .. 96

6.1 Appendix – Considering compacted logs ... 96

6.1.1 Essential characteristics of a compacted log ... 96

6.1.2 Order of events ... 96

6.1.3 Log segments ... 97

6.1.4 Partitions ... 97

6.1.5 Compaction in a real implementation ... 97

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 6 of 110 © 2022 Open Networking Foundation

6.1.6 The Tombstone ... 97

6.2 Appendix – UML Model ... 98

6.3 Appendix – Stream record example ... 103

6.4 Appendix – Detectors, detected conditions and alarms ... 104

6.4.1 Detect ... 104

6.4.2 Detector .. 104

6.4.3 Condition ... 104

6.4.4 Condition detector ... 105

6.4.5 Detected condition .. 105

6.4.6 Alarm .. 105

6.4.7 Alarm detector .. 105

6.4.8 Traditional alarm reporting and legacy-properties .. 105

7 References ... 106

8 Definitions and Terminology .. 107

9 Individuals engaged .. 109

9.1 Editors ... 109

9.2 Contributors .. 109

10 Appendix: Changes between versions ... 110

10.1 Changes between v1.1 and v2.0 .. 110

List of Figures

Figure 1 Example SDN architecture for WDM/OTN network ... 8

Figure 2 Yang: supported-stream-type .. 15

Figure 3 Yang: object-type (showing some of the identities) ... 16

Figure 4 Yang: log-storage-strategy .. 17

Figure 5 Yang: log-record-strategy ... 18

Figure 6 Yang: record-trigger ... 18

Figure 7 Yang: compacted-log-details ... 20

Figure 8 Yang: connection-protocol-details ... 21

Figure 9 Yang: connection-protocol ... 21

Figure 10 Yang: encoding-formats ... 22

Figure 11 Yang: information-record-strategy ... 22

Figure 12 Yang: available-stream .. 23

Figure 13 Yang: stream-state... 24

Figure 14 Yang: log-record-header .. 33

Figure 15 Yang: log-record-body ... 35

Figure 16 Yang: event-source .. 36

Figure 17 Yang: approx.-date-and-time ... 37

Figure 18 Yang: spread .. 38

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 7 of 110 © 2022 Open Networking Foundation

Figure 19 Yang: source-precision .. 38

Figure 20 Stylized view of example controller offering full compaction. .. 46

Figure 21 Stylized view of example controller offering emulated compaction ... 48

Figure 22 Yang: condition-detector .. 53

Figure 23 Yang: condition-detector .. 55

Figure 24 Yang: detected-condition ... 56

Figure 25 Yang: pm-metric ... 58

Figure 26 Yang: detector-info... 59

Figure 27 Yang: simple-detector .. 61

Figure 28 Yang: alarm-detector and legacy-properties (descriptions omitted) .. 62

Figure 29 Hybrid Message Sequence Diagram for example implementation corresponding to Use Cases 91

Figure 30 Phases of interaction for Use Cases ... 92

Figure 31 Kafka compaction .. 96

Figure 32 Structure of the streaming model ... 99

Figure 33 Structure and content of the streaming model ... 100

Figure 34 Datatypes of the streaming model ... 101

Figure 35 Example of Augmentation of the LogRecordBody with some classes from the model 102

 List of Tables

Table 1: Clarifying parent-address .. 39

Table 2: Parameters per entity type .. 67

Document History

Version Date Description of Change

1.1 December 2021 Initial version of the Reference Implementation Agreement document on streaming for

TAPI v2.1.3

2.0 December 2022 Updated to cover TAPI v2.4.0.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 8 of 110 © 2022 Open Networking Foundation

1 Introduction

1.1 General introduction

This ONF Technical Recommendation (TR) is a supplement to the Reference Implementation for the

TRANSPORT-API (TAPI) [ONF TR-547].

1.2 Introduction to this document

The purpose of this document is to explain TAPI streaming and provide a set of guidelines and

recommendations for use of TAPI streaming.

The target architecture for TAPI is provided in [ONF TR-547]. The figure below is a copy of the figure provided

in that document.

This document focuses on the autonomous flow of information via TAPI from SDN-C1 to OSS/SDTN and

from SDTN to OSS.

Figure 1 Example SDN architecture for WDM/OTN network

1.3 Specification

For TAPI, the Yang model files for a release are normative. All attributes other than those that cover

identification of the entity/structure are essentially conditional. The corresponding UML model highlights

which attributes are mandatory, and which are conditional mandatory2. For conditional mandatory attributes

the UML model highlights the conditions for which the attribute must be present, and this is reflected in the

description statement.

This document focusses on the use of TAPI streaming with compacted logs. The document indicates, for this

usage, whether properties are mandatory, conditional mandatory or optional and in this respect this

document is normative.

Behavioral aspects are not covered by the Yang model. This document covers behavioral aspects in section

5 Use Cases on page 66. Some uses cases are identified as normative and some informative.

Many parts of this document are simply informative and explanatory. Where this document is normative the

words “normative” and/or “shall” will be used.

See section 10 Appendix: Changes between versions on page 110 for changes since the previous version of

this document.

1 See definitions in TR-547.
2 Where mandatory as explained by the conditions stated, the attribute must be present an appropriately populated. Where not

mandatory, the attribute does not need to be represented (and in most cases is not expected to be present).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 9 of 110 © 2022 Open Networking Foundation

2 Overview

2.1 Essential feature and benefits

Streaming is the name for a type of mechanism that handles the providing of information from one system to

another in some form of steady and continuous flow3.

In the context of a Management-Control solution streaming is used primarily for the reporting of ongoing

change of state of the controlled system (and of other events from the controlled system) from one

Management-Control entity to another (usually superior/client) Management-Control entity. In this context,

as much of the information is derived from readings of instruments, the flow is often called telemetry4.

The stream provides engineered flow such that peak load is reduced and spread using some mechanism such

as back-pressure and/or selective pruning of detail.

In the following discussion various terms such as controller, client and provider will be used. For the usage

in this document of these terms see section 8 Definitions and Terminology on page 107.

The definition allows for many alternative stream strategies using the same extensible structure. Streaming

approaches are defined that:

• Focus on conveying TAPI global class instance (see also [ONF TR-547] section on “TAPI Global

and Local objects”), i.e., specific yang sub-trees5 (see 3.5 TAPI Application in detail on page 12).

• Provide an opportunity for event time reporting that is structured to allow for reporting of time

uncertainty (see 4.8 Time on page 64).

• Allow a client6 to achieve and maintain eventual consistency7 with the state of the controlled system

simply by connecting to the stream(s), i.e., with no need to retrieve8 current state prior to processing

log reports.

o Makes it a provider9 responsibility to send information to the client that ensures eventual

consistency is achievable10, removing sequencing complexity.

o Improves provide-side scale as simply based on a time-sequenced log of events as opposed

to a combination of a time-sequenced log and a repository11.

Note: There is still a need for the client to “mark and sweep” to achieve full system realignment on

recovery from major loss of communications.

• Allow for efficient recovery from temporary streaming channel communication failures12.

• Take pressure off of a client when under heavy load, recognizing that loss of some detail when

under extreme pressure is inevitable and tolerable13.

• Remove the need for complex subscription in normal controller-controller interaction.

3 The flow rate and the presence depend upon the need to send information.
4 This term loses relevance once the readings have been processed and abstracted but is often still used.
5For example, an instance of node-edge-point (global class with its uuid) includes all locally identified branches and leaves but

NOT contained instances of connection-end-points, as the connection-end-point is a global class separately identifiable using its

uuid. Note also that the attributes that reference (list) the contained global class instances (e.g., connection-end-point attribute in

the node-edge-point) are NOT included. This information is conveyed by parent-address (see 3.10.3 Considering parent-address

on page 29).
6 See section 8 Definitions and Terminology on page 107 for usage of “client” in this document
7 See 3.17 Eventual Consistency and Fidelity on page 29.
8 For example, using RESTCONF GET.
9 See section 8 Definitions and Terminology on page 107 for usage of “provider” in this document.
10 Clearly the client implementation has to take advantage of this correctly as defined in the relevant use cases.
11 This removes the need to grab a snapshot of the entire repository to service a full-alignment get and removes the need for an

alternative get fragment approach
12 See 5.2.7 Use Case ST-0.7: Short loss of communications on page 48.
13 See 5.2.7 Use Case ST-0.7: Short loss of communications on page 48

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 10 of 110 © 2022 Open Networking Foundation

• Are structured to support, in future versions of this specification14, the:

o Providing of multiple alternative views of the controlled solution15

o Creation of streams for temporary flows of information such as one or more spotlights on

detailed state change or snapshots of current state

The TAPI streaming approach is aligned in principle with the approach taken by the [GNMI] community

with respect to the operation of the STREAM described in the [GNMI-SPEC].

2.2 TAPI application

TAPI Streaming can be used in several different applications. The primary application is one where a

provider is offering an ongoing flow of state updates to a client, as depicted in Figure 1 above.

In this application the following assumptions apply:

• The client has one or more internal representations of the semantics (models) of the controlled

system (network etc.). A representation may:

o Relate to a subset of the TAPI model (e.g., just physical inventory)

o Compress or expand parts of the model (e.g., Topology and Node are combined into a

ForwardingDomain)

o Be enriched with associations (e.g., some or all of the one-way navigations are converted to

two-way navigations)

• The client maintains (stores in some form of repository) an ongoing live view of the state of the

instances of elements in the controlled system so as to populate each of its representational forms

o A mechanism is available that enables the on-going reporting, from the provider to the client,

of change in information known to the provider.

o Note: A view that is constructed from the currently known state will necessarily be

plesiochronous16 with respect to the actual network state because of differential network and

processing delays. After some period, the temporal inaccuracies can mainly be corrected in a

view of a particular past time such that the state that was present at some appropriately past

time is determinable. This is consistent with the concept of “eventual consistency” (see 3.17

Eventual Consistency and Fidelity).

• When connected for the first time, the client must gain knowledge of current state prior to receiving

information on change (changes alone are insufficient to provide a clear view of the system state

especially recognizing that most states change very rarely – waiting for a change to determine

current state is not viable).

o On connection to the provider, the client gains alignment with the current state and then

maintains alignment as the state changes

o Through the on-going process the client populates its repository as appropriate and deals with

the challenges of asynchronous receipt (e.g., the referencing entity arrives before the

referenced entity)

Consequently, the provider aims to optimize the process of maintaining alignment for the client.

Note that TAPI Streaming is not currently intended to directly support:

• A client requiring access to the provider database supporting random queries

• A GUI

See section 5.9 Use cases beyond current release on page 93.

14 See 3.9.2 Future combination considerations (by example) on page 21
15 It is assumed here that this would be performed through control of the scope of the context
16 A plesiochronous system is one where different parts of the system are almost, but not quite, perfectly synchronized.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 11 of 110 © 2022 Open Networking Foundation

3 Summary of key considerations

3.1 Overview

This section examines the TAPI streaming capability in detail. Examples of UML and Yang are provided as

appropriate.

The characteristics of streaming are described in general and are illustrated using example focusing on alarm

reporting.

3.2 RESTCONF notification mechanism (described in [ONF TR-547])

RESTCONF specifies a traditional form of notification where the assumption is that a relatively short17

queue of notifications will be available on the provider to allow the client to receive recent changes18 and

where alignment with current state (in the case of alarms, alignment with current active alarms) will be

achieved by retrieving appropriate information from the TAPI context, e.g., using GET operations via

RESTCONF.

3.3 TAPI Streaming

An Event source/server streaming mechanism is made available as an alternative to traditional notifications.

The streaming capability is distinct from TAPI Notification and is designed to better deal with scale and to

provide an improved operational approach.

The method defined offers a “compacted log” (see 3.8.1.1 Compacted log on page 24) capability that allows

the client to gain and maintain alignment with current state from the stream alone (with no need to get

current state). The client can achieve eventual consistency (see 3.17 Eventual Consistency and Fidelity on

page 44) by simply connecting to the relevant streams. The client will receive an ongoing view of change,

assuming that the client is keeping up reasonably with the stream. The stream is designed to allow for some

client delay with no loss of information fidelity.

When the client has a significant delay, there will be a loss of fidelity, due to compaction (see 3.8.1 Log

storage strategy on page 24), but no impact on eventual consistency. If the client has a very large delay19,

then a resync will be initiated by the provider. Resynchronization will be achieved simply by the client

reconnecting to the stream from offset zero. This will again allow the client to achieve eventual consistency.

The streaming capability provides a reliable pipeline for reporting of change20. This improves the

information flow integrity and reduces the need for recovery and resynchronization.

17 Sufficient to buffer against variable client performance.
18 It will also allow the client to request changes starting from a specified sequence number.
19 The provider controls feeding the stream per client based upon backpressure from the client and is aware where it is reading

from in the log, if the log record read is older than the tombstone retention (see definition/explanation later in this document), then

the client will have potentially lost relevant tombstones and hence has possibly lost “eventual consistency”
20 The capability assumes reliable communications such as TCP.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 12 of 110 © 2022 Open Networking Foundation

3.4 Stream content

The streaming approach is generally applicable to all information available over TAPI from the provider to

client. Different stream and log strategies will apply to different types of information. This document

focusses on the compacted log approach.

The streaming capability also offers an alarm structure definition. In TAPI 2.4 the alarm structure used by

tapi-streaming and that used by tapi-notification have been aligned (as defined in tapi-fm.yang). This

structure is described in section 4 Using the compacted log approach for alarm reporting on page 50.

3.5 TAPI Application in detail

A Management-Control system, such as an Orchestrator, high level controller, OSS etc., has the role of

configuring and adjusting the controlled system (network) to achieve intended capability (intent, service

etc.). By monitoring and processing information (e.g., alarms) from the controlled system, the overall

assembly of Management-Control systems can determine actions necessary to enable ongoing support of

intent/service. The Management-Control systems can also identify repair action prioritization (via analysis

of problems).

Management-Control system components use TAPI to acquire, from the subordinate systems, information

from a fragment of the overall network, e.g., the devices controlled by a controller, where that information is

presented in terms of TAPI entities21 within a TAPI Context.

The client maintains history and live views of the state of the things in the network so as to do the necessary

analysis, hence that Management-Control system uses a mechanism providing autonomous updates and need

NOT query the provider for states.

The overall solution is expected to have the following characteristics for the provider:

• Few (~2) direct clients22

o For example, a single OSS/orchestrator with several separate internal systems (fault,

provisioning, equipment inventory) and potentially some form of resilience

o It is expected that TAPI is used at a point low in the Management-Control hierarchy close to

the controlled devices (see Figure 1):

▪ Interfaces above the OSS are unlikely to use TAPI such as:

▪ Interface to customer management solutions

▪ Interfaces direct to end user

▪ At this point it is likely that the solution is somewhat traditional in nature with an

OSS, or Orchestrator, or potentially an orchestrator and OSS operating in conjunction

▪ It is assumed that the OSS/Orchestrator will be composed of functionally focused

components (e.g., fault analysis, path computation) but that it will provide a relatively

unified interface to the subordinate systems

▪ The OSS/Orchestrator may be operating some form of resilience

o It is allowed for a provider to divide up the information based upon entity type

▪ This allows simple separation of topology from equipment from alarms

▪ This simple split probably matches the normal gross partition of roles in an

OSS/Orchestrator

21 A TAPI entity in this context is a Global Class, i.e., an instance identified by a uuid and hence the corresponding Yang sub-tree.
22 "Few (~2) direct clients" is intended as order of magnitude, i.e. are not expected several tens of clients. In a

future version there will be a broader consideration regarding client multiplicity for other applications

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 13 of 110 © 2022 Open Networking Foundation

o It is assumed that there will be one or two clients for each stream type (perhaps up to 4 if, for

example, there is both a resilient orchestrator and a resilient OSS which are both providing

some alarm capability)

• Long-lived clients:

o Clients remain “connected” for a very long time and if the connection is dropped the same

client will usually try to reconnect

o Because of the point of use of TAPI in the Management-Control hierarchy and the role and

purpose of the clients (OSS/Orchestrator), it is expected that the clients will be permanently

connected.

• Provider maintains alignment with underlying system

o The TAPI realization assumes a reliable input that ensures eventual consistency with current

network state

o As the client is an OSS/Orchestrator, it will have a repository.

▪ The normal mode or operation is to align the repository with the view provided by the

underlying system and to build a broader view of the network by integrating the views

from many underlying systems.

▪ For the OSS/Orchestrator to perform its expected functions it is necessary for it to

maintain alignment.

The primary focus for Streaming is simple and efficient ongoing alignment of a client with a view presented

by a provider.

3.6 Summary of Streaming Characteristics

The key characteristics of the TAPI Streaming solution:

1. Ensures “eventual consistency” of the client with the view presented by the provider

• Essentially, if the controlled system stops changing, once the whole stream has been received

and processed in order by the client, the client view will be aligned with the corresponding

controlled system state (assuming communication with all components in the controlled

system is operating correctly etc.)

2. Is built on a provider log of records detailing change in the controlled system

• The log is designed to enable “eventual consistency”

3. Guarantees delivery of each log record “at least once”

• Clearly, this guarantee applies within a particular operational envelope as defined in this

document

• The provider may deliver some information more than once, but this will be in a pattern that

ensures “eventual consistency”

4. Is highly scalable and available

• Boundless scale (with corresponding system resources)

5. Is highly reliable (network fault tolerant)

• Provides an inherent high availability solution (assuming necessary implementation can be

realized on a resilient server)

• Is tolerant to network communications disruption allowing the client to resume from where it

last successfully received a record.

• Can feed multiple instances of client

6. Has low latency and high throughput on big data scale

• Assuming the appropriate implementation technology

7. Offers flexibility in the division of information across streams

• There can be multiple streams offered by a provider to a client where each stream differs

from the others in terms of information content and/or protocol

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 14 of 110 © 2022 Open Networking Foundation

• In the case where there are multiple streams offered, the client may have to connect to several

streams to get all the information it needs

8. Allows the client to re-consume records from a given stream any time.

9. Supports back-pressure23 from client to enable a reactive producer.

3.7 Supported and available streams

The interface can offer many streams for a context. The client can determine, using calls on the provider,

both the types of stream supported and the available streams that are active for connection and streaming. A

variety of connection protocol, content, record strategy and storage strategy combinations might be offered.

Clearly, some combinations will not be useful.

The next sections provide some fragments of Yang. The formal Yang deliverable shall be used as the

definitive source of information on the encoding. This section indicates where properties are mandatory or

optional for a Compacted Log based stream. Other streaming strategies will be documented in future

releases.

3.7.1 Supported stream type

This structure allows the provider to report the streams that it can support, regardless of whether they are

active or not.

Note that “record-retention” and “segment-size” (see section 6.1 Appendix – Considering compacted logs on

page 96) are both string fields. They both have potential for complex structuring and may require future

formalization. For example, “record-retention” is either time or capacity and also has a key word when the

retention is “FOREVER”. In a future release this may become a complex structure.

23 Applying some control to reduce the flow from the provider such that the client does not lose information.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 15 of 110 © 2022 Open Networking Foundation

Figure 2 Yang: supported-stream-type

For this structure, a solution shall provide the following support:

• Mandatory:

• (inherited) uuid

• Conditional (as per description above):

• stream-type-name

• record-retention

 grouping supported-stream-type {
 leaf stream-type-name {
 type string;
 config false;
 description "Name of the stream type.

 CONDITION: Mandatory where assisted human interpretation is required.";
 }
 leaf record-retention {
 type string;

 default "FOREVER";

 config false;

 description "Time in minutes.

 Statement of retention time and/or retention capacity in bytes.

 Key word 'FOREVER' means that records will never be removed from the log.

 May be overridden for particular cases of specific LogStorageStrategy (via augment).

 Applies to all record types in the stream unless overridden by another parameter (such as tombstone retention for a compacted log).

 CONDITION: Mandatory where not default.";
 }
 leaf segment-size {
 type string;
 config false;
 description "Size of sub-structuring of the log.

 CONDITION: Mandatory where log is segmented and segment size is considered relevant for client application usage.";
 }
 leaf-list stream-type-content {

 type tapi-common:object-type;

 config false;

 description "Identifies the classes that are supported through the stream.

 The list may be a subset of the classes within the context.

 CONDITION: Mandatory if the stream propagates TAPI entities. If not present a separate augment MUST explain stream content.";

 }
 leaf log-storage-strategy {
 type log-storage-strategy;

 default "LOG_STORAGE_STRATEGY_COMPACTED";

 config false;

 description "Indicates the storage characteristics of the log supporting the stream.

 CONDITION: Mandatory where not default.";

 }
 leaf log-record-strategy {
 type log-record-strategy;
 default "LOG_RECORD_STRATEGY_WHOLE_ENTITY";

 config false;

 description "Indicates the type of content of each log record.

 CONDITION: Mandatory where not default.";

 }
 leaf record-trigger {

 type record-trigger;

 default "RECORD_TRIGGER_ON_CHANGE";

 config false;

 description "Defines the trigger to log a record.

 CONDITION: Mandatory where not default.";

 }
 uses tapi-common:global-class;
 description "Definition of a supported stream type.";
 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 16 of 110 © 2022 Open Networking Foundation

• stream-type-content

• segment-size

• log-storage-strategy

• log-record-strategy

• record-trigger

• Optional

• (inherited) name

There are several data types used in the supported-stream-type structure, these are set out below.

Figure 3 Yang: object-type (showing some of the identities)

 typedef object-type {

 type identityref {

 base OBJECT_TYPE;

 }

 description "The list of TAPI Global Object Class types on which Notification signals can be raised.

 This extensible enumeration can be augmented with specific object types/classes in the other modules.";

 }

And in tapi-common.yang

 identity OBJECT_TYPE {

 description "none";

 }

 identity OBJECT_TYPE_SERVICE_INTERFACE_POINT {

 base OBJECT_TYPE;

 description "The ServiceInterfacePoint (SIP) class.";

 }

 identity OBJECT_TYPE_TAPI_CONTEXT {

 base OBJECT_TYPE;

 description "The TapiContext class.";

 }

 identity OBJECT_TYPE_PROFILE {

 base OBJECT_TYPE;

 description "none";

And in tapi-connectivity.yang

 identity CONNECTIVITY_OBJECT_TYPE {

 base tapi-common:OBJECT_TYPE;

 description "none";

 }

 identity CONNECTIVITY_OBJECT_TYPE_CONNECTIVITY_SERVICE {

 base CONNECTIVITY_OBJECT_TYPE;

 description "The ConnectivityService class.";

 }

 identity CONNECTIVITY_OBJECT_TYPE_CONNECTIVITY_SERVICE_END_POINT {

 base CONNECTIVITY_OBJECT_TYPE;

 description "The ConnectivityServiceEndPoint (CSEP) class.";

 }

 identity CONNECTIVITY_OBJECT_TYPE_CONNECTION {

 base CONNECTIVITY_OBJECT_TYPE;

 description "The Connection class.";

 }

 identity CONNECTIVITY_OBJECT_TYPE_CONNECTION_END_POINT {

 base CONNECTIVITY_OBJECT_TYPE;

 description "The ConnectionEndPoint (CEP) class.";

 }

 identity CONNECTIVITY_OBJECT_TYPE_SWITCH_CONTROL {

 base CONNECTIVITY_OBJECT_TYPE;

 description "The SwitchControl class.";

 }

… etc.

Each model, tapi-topology.yang etc., provides identities for each of the entities supported by that model.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 17 of 110 © 2022 Open Networking Foundation

Figure 4 Yang: log-storage-strategy

 typedef log-storage-strategy {

 type identityref {

 base LOG_STORAGE_STRATEGY;

 }

 description "Defines the storage (record retention) approach.";

 }

 identity LOG_STORAGE_STRATEGY {

 description "none";

 }

 identity LOG_STORAGE_STRATEGY_COMPACTED {

 base LOG_STORAGE_STRATEGY;

 description "The log uses some mechanism to remove noisy detail whilst enabling the client to achieve eventual consistency (alignment)

 with current state.";

 }

 identity LOG_STORAGE_STRATEGY_TRUNCATED {

 base LOG_STORAGE_STRATEGY;

 description "The log only maintains recent records and disposes of old records.

 This log does not alone enable the client to achieve alignment with current state.";

 }

 identity LOG_STORAGE_STRATEGY_FULL_HISTORY {

 base LOG_STORAGE_STRATEGY;

 description "Maintains a history from system initiation with no missing records.

 Provides initial state at the beginning of the history";

 }

 identity LOG_STORAGE_STRATEGY_FULL_HISTORY_WITH_PERIODIC_BASELINE {

 base LOG_STORAGE_STRATEGY;

 description "Provides a history with initial state and periodic/occasional statements of current state at a particular point in time.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 18 of 110 © 2022 Open Networking Foundation

Figure 5 Yang: log-record-strategy

Figure 6 Yang: record-trigger

 typedef record-trigger {

 type identityref {

 base RECORD_TRIGGER;

 }

 description "The trigger for logging a record.";

 }

 identity RECORD_TRIGGER {

 description "none";

 }

 identity RECORD_TRIGGER_ON_CHANGE {

 base RECORD_TRIGGER;

 description "A record is logged each time the value of the item to be recorded changes.";

 }

 identity RECORD_TRIGGER_PERIODIC {

 base RECORD_TRIGGER;

 description "A record is logged for the item on a periodic basis (independent of whether the values have changed or

 not).";

 }

 identity RECORD_TRIGGER_DEFINED_TRIGGER {

 base RECORD_TRIGGER;

 description "The trigger will follow a strategy that is complex and specified via additional detail.";

 }

 typedef log-record-strategy {

 type identityref {

 base LOG_RECORD_STRATEGY;

 }

 description "Defines the different approaches for logging information about an event covering the log trigger and the log content.";

 }

 identity LOG_RECORD_STRATEGY {

 description "none";

 }

 identity LOG_RECORD_STRATEGY_CHANGE_ONLY {

 base LOG_RECORD_STRATEGY;

 description "Each record only provides a view of the changes that have occurred (on a per entity change basis).

 E.g., the log only includes the attribute that has changed and not other attributes that have not changed.";

 }

 identity LOG_RECORD_STRATEGY_WHOLE_ENTITY {

 base LOG_RECORD_STRATEGY;

 description "A record provides a snapshot of a whole entity.

 The record includes all properties and values whether they have changed or not.";

 }

And two DEPRECATED strategies
 identity LOG_RECORD_STRATEGY_WHOLE_ENTITY_ON_CHANGE {

 base LOG_RECORD_STRATEGY;

 description "DEPRECATED Replaced by WHOLE_ENTITY with record trigger ON_CHANGE.

 A record provides a snapshot of a whole entity and a snapshot is taken on each change.

 The record includes all properties and values whether they have changed or not.";

 }

 identity LOG_RECORD_STRATEGY_WHOLE_ENTITY_PERIODIC {

 base LOG_RECORD_STRATEGY;

 description "DEPRECATED Replaced by WHOLE_ENTITY with record trigger PERIODIC.

 A snapshot of an entity is recorded periodically regardless of whether there has been change or not.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 19 of 110 © 2022 Open Networking Foundation

Considering the supported-stream-type yang the provider can indicate the entity types, the storage strategy,

record strategy and record trigger supported by a stream type.

The segment-size is a choice made by the provider depending upon system engineering considerations.

Larger segments may interfere with compaction delay where the stream is handling entities with a low rate

of change whereas smaller segments will require additional segment creation activity.

Information may be divided into separate streams. There is no restriction, other than it being at an entity type

granularity, on choice of division of the information into streams. A provider could choose to have a stream

per class or to have streams that aggregate classes together that have similar lifecycles etc. It should be noted

that for ALL instances in the context of any object-class-identifier listed in record-content will be streamed,

i.e., there is (intentionally) no client control of filtering24.

The supported-stream-type can also be augmented with:

• compacted-log-details which provides additional parameters for compacted log applications. This

augmentation shall be applied when the solution is running compacted logs.

• connection-protocol-details which provides a list of allowed-connection-protocols and an encoding-

format. These are formalized enumerations represented as identities as set out below.

• information-record-strategy. This structure is experimental and is not used at this stage.

For a compacted log, record-retention time should be “FOREVER”. For a non-compacted log, record-

retention is a choice made by the provider depending upon system engineering. Clearly, the longer the

retention for a non-compacted log, the larger the log.

The description in this document focusses on Compacted logs (some other log strategies are also

considered). Compacted logs are explained at various points in this document. The key is as noted in the

Yang description below, which is essentially that the log holds only the latest record about each entity. Once

a such entity is deleted a “Tombstone” log record (see section 6.1.6 The Tombstone on page 97) for the

entity is appended to the log (which then becomes the latest record for the thing). The tombstones are only

held for a relatively short period25 of time (the tombstone-retention).

24 It is assumed that the Context has been designed to include all the entities that the client is interested in and hence the process of

Context formation at the provider does all the necessary filtering to ensure that the client gets what it needs.
25 The time is determined by system engineering considerations. For example, in a specific solution, comms failures between the

client and the provider of greater than 4 hours may be considered as extremely unlikely, and general system recovery from a 4

hour log may take 2 hours. In this case a tombstone retention of slightly more than 6 hours is suitable. This is a relatively short

period of time.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 20 of 110 © 2022 Open Networking Foundation

Figure 7 Yang: compacted-log-details

For this structure, a solution shall provide the following support:

• Conditional (as per description above):

• tombstone-retention

• compaction-delay

• max-allowed-segment-roll-delay

• max-compaction-lag

 grouping compacted-log-details {

 leaf tombstone-retention {

 type string;

 default "FOREVER";

 config false;

 description "Time in minutes.

 The time period for which a Tombstone record will be held in the log from when it was logged.

 This provides an adjustment to the essential Compaction strategy such that after the tombstoneRetention period there will be no
 records about a particular thing that existed but no longer exists.

 Tombstone retention overrides recordRetention for Tombstones.

 Key word 'FOREVER' means that Tombstone records will never be removed from the log.

 Can be adjusted by an administrator (via a separate view) through the life of the stream.

 CONDITION: Mandatory where not default.";

 }

 leaf compaction-delay {

 type string;

 default "0";

 config false;

 description "Time in minutes.

 The delay between logging the record and making the record available for compaction.

 This provides an adjustment to the essential Compaction strategy such that there may be several distinct records for the same thing
 in the where those records are not older than the Compaction Delay.

 Can be adjusted by an administrator (via a separate view) through the life of the stream.

 CONDITION: Mandatory where not default.";

 }

 leaf max-allowed-segment-roll-delay {

 type string;

 default "NOT_APPLICABLE";

 config false;

 description "The maximum time the log head segment can be allowed to be not made available for compaction.

 Applicable where the log is segmented, and the head segment is not available for compaction.

 The setting influences the compaction behavior and may cause a delay before compaction that is much greater than the defined
 compaction delay.

 Time in seconds.

 Can be 'FOREVER'.

 Can be 'NOT_APPLICABLE' (which indicates that compaction can act on the head segment).

 CONDITION: Mandatory if log is segmented in such a way that the active head segment is not available for compaction.";

 }

 leaf max-compaction-lag {

 type string;

 default "NOT_APPLICABLE";

 config false;

 description "The maximum delay, in seconds, beyond the defined compaction delay for compaction processing to take place.

 May be 'NOT_APPLICABLE' if compaction is essentially immediate (i.e., there is negligible delay).

 CONDITION: Mandatory where not default.";

 }

 description "Details relevant for a CompactedLog.

 The essential Compacted Log strategy is to remove historic records about a particular thing such that only the latest record about each
 thing exists in the log.

 The essential strategy is refined by the parameters of this structure.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 21 of 110 © 2022 Open Networking Foundation

For the compacted log, the supported-stream-type information is augmented with compacted-log-details that

includes properties related to compacted log behavior such as tombstone-retention26 (essentially retention of

records about deleted events – see 3.8.1 Log storage strategy on page 24) and compaction-delay settings. All

properties are set by the provider depending upon system engineering. The properties provide the client with

information on log behavior so that it can assess whether it is in the compaction zone etc.

Figure 8 Yang: connection-protocol-details

For this structure, a solution shall provide the following support:

• Conditional (as per description above):

• allowed-connection-protocols

• encoding-format

Figure 9 Yang: connection-protocol

26 A Tombstone is a record that provides sufficient to express the delete of an entity, tombstone-retention is the time for which a

Tombstone record will be held in the log.

 grouping connection-protocol-details {

 leaf-list allowed-connection-protocols {

 type connection-protocol;

 default "CONNECTION_PROTOCOL_WEBSOCKETS";

 config false;

 description "Name of the allowed protocol(s).

 Where there is a list:

 - all protocols must use the same encoding format

 - there will be one or more available streams per connection protocol

 CONDITION: Mandatory where not default.";

 }

 leaf encoding-format {

 type encoding-format;

 default "ENCODING_FORMAT_JSON";

 config false;

 description "The encoding format of the streamed records.

 CONDITION: Mandatory where not default.";

 }

 description "Details of the connection protocols available for the specific stream.";

 }

 typedef connection-protocol {

 type identityref {

 base CONNECTION_PROTOCOL;

 }

 description "The connection protocols.";

 }

…

 identity CONNECTION_PROTOCOL {

 description "none";

 }

 identity CONNECTION_PROTOCOL_WEBSOCKETS {

 base CONNECTION_PROTOCOL;

 description "WebSockets as defined at https://datatracker.ietf.org/doc/html/rfc6455.";

 }

 identity CONNECTION_PROTOCOL_SSE {

 base CONNECTION_PROTOCOL;

 description "Server Sent Events as defined at https://www.w3.org/TR/2015/REC-eventsource-20150203/.";

 }

 identity CONNECTION_PROTOCOL_GNMI {

 base CONNECTION_PROTOCOL;

 description "Google network Management Interface as specified at https://github.com/openconfig/reference/tree/master/rpc/gnmi.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 22 of 110 © 2022 Open Networking Foundation

Figure 10 Yang: encoding-formats

Figure 11 Yang: information-record-strategy

This information-record-strategy structure is experimental, provided in preparation for future cases on

information record streaming. This structure does not need to be supported at this stage.

For this structure, a solution shall provide the following support:

• Conditional (as per description above):

• record-suppression

 grouping information-record-strategy {

 leaf record-suppression {

 type record-suppression;

 default "RECORD_SUPPRESSION_NO_SUPPRESSION";

 config false;

 description "Indicates whether records are suppressed and if so, what the suppression strategy is.

 CONDITION: Mandatory where not default.";

 }

 leaf value-expectation {

 type value-expectation;

 default "VALUE_EXPECTATION_NO_EXPECTATION";

 config false;

 description "Where there is record suppression this indicates what the relevant expected value is.

 If the value is as expected the record will be suppressed.

 CONDITION: Mandatory where not default.";

 }

 leaf allowed-dither-from-value-expectation {

 type value-expectation-dither;

 default "VALUE_EXPECTATION_DITHER_NO_DITHER";

 config false;

 description "Defines the dither in an expected value that is allowed for the value to still be considered as expected.

 CONDITION: Mandatory where not default.";

 }

 description "Properties relevant for a stream that may convey records of INFORMATION record type.";

 }

 typedef encoding-format {

 type identityref {

 base ENCODING_FORMAT;

 }

 description "The list of possible encoding formats.";

 }

…

 identity ENCODING_FORMAT {

 description "none";

 }

 identity ENCODING_FORMAT_JSON {

 base ENCODING_FORMAT;

 description "JavaScript Object Notation as defined at https://www.json.org/json-en.html.";

 }

 identity ENCODING_FORMAT_PROTOBUF {

 base ENCODING_FORMAT;

 description "Protocol Buffers as defined at github.com/protocolbuffers/protobuf.";

 }

 identity ENCODING_FORMAT_XML {

 base ENCODING_FORMAT;

 description "eXtensible Markup Language as defined at https://www.w3.org/standards/xml/.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 23 of 110 © 2022 Open Networking Foundation

• value-expectation

• allowed-dither-from-value-expectation

3.7.2 Available Streams

This structure allows the provider to report the streams that are currently available for connection.

Figure 12 Yang: available-stream

For this structure, a solution shall provide the following support:

• Mandatory:

• (inherited) uuid

• connection-address: the location of the stream

▪ The address structure and connection method will depend upon the connection-

protocol

• supported-stream-type: references the description of a stream supported by the provider

• Conditional (as per description above):

• stream-state: indicates whether the stream will deliver records to the client or not

• stream-id: id of the stream

 grouping available-stream {

 leaf-list connection-address {

 type string;

 config false;

 description "Provides the address for the connection.

 The format of the address and attachment mechanism will depend on the connection protocol defined in another attribute of this
 class.

 There may be a sequence of operations required, in which case, these should be listed as separate strings.

 A string may include wildcard sub-statements.

 A single string may list alternatives separated by an appropriate delimiter.";

 }

 leaf stream-state {

 type stream-state;

 default "STREAM_STATE_ACTIVE";

 config false;

 description "The state of the stream.

 CONDITION: Mandatory where stream state is not ALWAYS default.";

 }

 container supported-stream-type {

 uses supported-stream-type-ref;

 config false;

 description "Identifies the type of stream that is available for connection.";

 }

 leaf stream-id {

 type string;

 config false;

 description "The id of the stream (alternative to the uuid).

 CONDITION: Mandatory where an alternative id to the uuid is available.";

 }

 leaf connection-protocol {

 type connection-protocol;

 default "CONNECTION_PROTOCOL_WEBSOCKETS";

 config false;

 description "Names the connection protocol for this particular available stream.

 The connection protocol is chosen from the list of connection protocols identified in the referenced SupportedStreamType.

 CONDITION: Mandatory where not default and multiple options offered in the supported stream type.";

 }

 uses tapi-common:global-class;

 description "Details of a stream that can be connected to by a client application.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 24 of 110 © 2022 Open Networking Foundation

• connection-protocol: the protocol for this particular stream instance chosen from the list of

available protocols for the stream type. This enables interpretation of the connection-address.

• Optional

• (inherited) name

Figure 13 Yang: stream-state

3.8 Streaming approach and log strategy

The streaming solution assumes that the provider is delivering information in sequence from a log. In TAPI

2.4 a log approach oriented towards maintaining alignment is provided. The stream mechanism defined

allows for different log strategies27 along with corresponding augmentation.

3.8.1 Log storage strategy

There are four log-storage-strategy provided (LOG_STORAGE_STRATEGY_): COMPACTED,

TRUNCATED, FULL-HISTORY and FULL_HISTORY_WITH_PERIODIC_BASELINE, these are

described in the subsections below.

3.8.1.1 Compacted log

An implementation conforming to this specification MUST support the COMPACTED log-storage-strategy

(the characteristics of this mechanism are described in 6.1.1 Essential characteristics of a compacted log on

27 These are described in the Yang/UML.

 typedef stream-state {

 type identityref {

 base STREAM_STATE;

 }

 description "The state of the available stream.";

 }

…

 identity STREAM_STATE {

 description "none";

 }

 identity STREAM_STATE_ALIGNING {

 base STREAM_STATE;

 description "The log that underpins the stream is aligning with other backend services and hence may not be providing full service.

 If events are provided, they will be completely valid.";

 }

 identity STREAM_STATE_ACTIVE {

 base STREAM_STATE;

 description "The stream is operating such that if a client connects records will be provided as per back pressure etc.";

 }

 identity STREAM_STATE_PAUSED {

 base STREAM_STATE;

 description "Although the stream is available it has been paused by the administrator such that the records are being appended to the log
 but a new client will not receive any events whilst the stream is paused.";

 }

 identity STREAM_STATE_TERMINATED {

 base STREAM_STATE;

 description "The stream is essentially no longer available. It will be removed from the AvailableStreams list shortly.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 25 of 110 © 2022 Open Networking Foundation

page 96). This log-storage-strategy enables the client to achieve and maintain eventual consistency without

the need to get current state.

Not all change statements (LOG_RECORD_STRATEGY_WHOLE_ENTITY,

RECORD_TRIGGER_ON_CHANGE statements (see 3.8.2 Log record strategy on page 26)) related to an

entity are retained. Older changes are intentionally pruned out of the log in favor of newer changes.

• The log will have the latest record related to each entity that exists in the controlled system.

o This enables achievement of eventual consistency.

• Some additional recent changes will also be present in the log as compaction is intentionally delayed.

o This enables a delayed client to catch back up with no loss of fidelity.

• Records that are not the latest for an entity and that are older than the compaction delay time (i.e., the

“Cleaner Point” as shown in Figure 31 Kafka compaction on page 96) will be removed.

o This allows an overloaded client to maintain a view of non-fleeting changes whilst suffering

an acceptable loss of fidelity where there is high intermittency.

o This allows a new client to align without having to receive large volumes of uninteresting

history.

When an entity is deleted, a Tombstone record is added to the log for that entity. The Tombstones are held

for Tombstone retention:

• Compaction, after the compaction delay, will remove all but that tombstone record.

• Tombstones are removed once they have persisted for the tombstone retention period (i.e., the

“Deletion Retention Point” as shown in Figure 31 Kafka compaction on page 96)

o Note that without this special tombstone retention behavior, the log growth would be

unbounded.

3.8.1.2 Truncated log

The log holds records about all recent changes relevant to the target content for the log as defined by record-

content in the supported-stream-type definition. Truncation will occur as a result of volume of records, age

of records or some other criteria. Hence, the log content is limited either by log size or by content age.

• For a size bounded log, once the log has reached its content limit, as each new record arrives, space

is cleared, to allow the new record to be added, by deleting the oldest records.

• For an age bounded log, records older than the age limit are deleted.

This can be considered as a traditional notification queue where recent records have been retained. This log-

storage-strategy does not allow the client to achieve eventual consistency without getting the current state.

See 3.9.2 Future combination considerations (by example) on page 30 for potential uses. Some uses may

require augmentation of the supported-stream-type structure to allow full definition. Possible augments will

be defined in a future version.

3.8.1.3 Full history log

The log holds all records about changes relevant to the target content for the log as defined by record-

content in the supported-stream-type definition since the context was created. Unlike the compacted and

truncated cases, this is essentially a boundless log holding the entire history.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 26 of 110 © 2022 Open Networking Foundation

See 3.9.2 Future combination considerations (by example) on page 30 for potential uses. Some uses may

require augmentation of the supported-stream-type structure to allow full definition. Possible augments will

be defined in a future version.

3.8.1.4 Full history with periodic baseline log

The log holds all records about changes relevant to the target content for the log as defined by record-

content in the supported-stream-type definition since the context was created and also provides periodic

baselines28 within the stream that allow the client to interpret recent changes without needing to review the

entire history. The form of the baseline records and settings for the log have not been defined in TAPI 2.4.

The application of this type of log is for further study.

See 3.9.2 Future combination considerations (by example) on page 30 for potential uses. Some uses may

require augmentation of the supported-stream-type structure to allow full definition. Possible augments will

be defined in a future version.

3.8.2 Log record strategy and record trigger

There are two log-record-strategy options: LOG_RECORD_STRATEGY_CHANGE_ONLY and

LOG_RECORD_STRATEGY_WHOLE_ENTITY and two specific record-trigger options:

RECORD_TRIGGER_ON_CHANGE and RECORD_TRIGGER_PERIODIC29, these are described in the

subsections below. The values will be abbreviated to CHANGE_ONLY, WHOLE_ENTITY,

ON_CHANGE and PERIODIC.

3.8.2.1 Whole entity on change

The log-record-strategy fully described in 2.4 is WHOLE_ENTITY with a record-trigger of ON_CHANGE.

The combination of this log-record-strategy used in conjunction with log-storage-strategy of COMPACTED

is described in detail in this document to enable the client to achieve eventual consistency.

In this case, each record in the log holds a full copy of the entity. A full copy of the entity is stored when the

entity is created and when any state changes, i.e., the solution logs (stores) a full representation of the entity

with current values after each change, not just the changed property. Hence, the whole entity that has the

changed property is streamed. The specific changes can be identified by comparing the current record with

the previous record. Note that the entity could have more than one changed property.

The model is such that:

• Each property that changes regularly is isolated in its own dedicated small class30

o E.g., The alarm (detector) is considered as a class. Alarms are isolated from configuration

data for the related entity and from each other.

• Large data structures that are invariant or change rarely can be grouped in composite classes.

o E.g., The CEP where Configuration data (both intent and actual) is collected into a single

class. The data in an instance changes rarely.

28 A baseline is a statement of absolute state (in this case of all resources relevant to the stream). Updates alone cannot be

meaningfully interpreted as they are updates against some state. A full history will have all state changes, but starting from the

first moment in the history to determine the current state, running through all changes would be extremely expensive. Hence

providing a baseline from time to time can speed up alignment when a system connects for the first time.
29 Note that the RECORD_TRIGGER_DEFINED_TRIGGER is not covered here as it is for future use and has not been fully

developed.
30 Currently Operational State is part of the main entity where there is a large volume of slow changing data. Operational State

actually has an alarm like behaviour and should be reported as an alarm.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 27 of 110 © 2022 Open Networking Foundation

• For optimum support of change of properties, the small property class reference the configuration

items that they relate to and NOT the reverse (i.e., be a decoration, e.g., an alarm references the CEP

or MEP)

This record strategy can be used with any of the storage strategies.

3.8.2.2 Change only

A record that is CHANGE_ONLY (where the record-trigger is ON_CHANGE) provides a skeleton of the

instance of the class (identifiers and basic structure) with only the changed property (or properties) present.

IMPORTANT NOTE: This approach has not been fully developed.

It is anticipated that this record strategy can be used with any of the storage strategies, but it requires specific

behaviour for the COMPACTED log storage strategy.

Mechanism and approached are under development to deal with:

• compaction of records that are a combination of whole entity statements and change statements

• removal of properties in a tree

• repositioning of elements in an ordered list

• etc.

See 3.9.2 Future combination considerations (by example) on page 30 for potential uses. Some uses may

require augmentation of the supported-stream-type structure to allow full definition. Possible augments will

be defined in a future version.

3.8.2.3 Whole entity periodic

Using this strategy (defined by a combination of WHOLE_ENTITY and PERIODIC), the information is

streamed on some periodic basis even if it has not changed. This approach has not been fully developed. See

3.9.2 Future combination considerations (by example) on page 30 for potential uses. Some uses may require

augmentation of the supported-stream-type structure to allow full definition. Possible augments will be

defined in a future version. This log-record-strategy could be used to enable the client to achieve eventual

consistency.

3.8.2.4 Change-only periodic

Using this strategy (defined by a combination of CHANGE_ONLY and PERIODIC), the information is

streamed on some periodic basis where a record is sent detailing only the change and is sent only when there

has been a change. This approach has not been fully developed. See 3.9.2 Future combination considerations

(by example) on page 30 for potential uses. Some uses may require augmentation of the supported-stream-

type structure to allow full definition. Possible augments will be defined in a future version. This log-record-

strategy could be used to enable the client to achieve eventual consistency.

3.9 Using the stream

Further details are provided in the use cases in section 5 Use Cases on page 66.

3.9.1 Streaming the context

The primary application of streaming in TAPI 2.4 is in a solution where a client needs to gain and maintain

alignment with a context presented by a provider:

• The provider presents a view in terms of a context and all of its contained instances.

• The client maintains alignment with that view.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 28 of 110 © 2022 Open Networking Foundation

• The stream is used for gaining and maintaining alignment with a view, i.e., a TAPI context.

The next subsections consider the client connection to and receiving from a stream. The approach is

described for the case where the provider offers COMPACTED, WHOLE_ENTITY and ON_CHANGE.

The description assumes that the client is capable of consuming the stream at a far greater rate than the

stream is being filled. The following provides a brief sketch of alignment. The process is discussed in far

greater detail later in the document (see 0

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 29 of 110 © 2022 Open Networking Foundation

Use Cases on page 66).

3.9.1.1 Effect of streaming approach and compacted log characteristics on alignment

There are two distinct aspects of alignment:

• Absolute State:

o Eventual Consistency: Ensures that the client view of state of controlled system aligns with

the state of the view of the actual controlled system as presented by the provider.

▪ If the controlled system stops changing, once the stream (all changes) has been

absorbed by the controller, its view of the current state of the system will be aligned

with the actual state of the system.

o Context Detail: The information agreed to be conveyed from the provider to the client.

▪ Note that some clients will choose to selectively prune out information that is not

relevant to them.

▪ Note that in future, information conveyed in a context may be temporarily increased

as a result of a recognized short-term need (see spotlighting in section 5.9 Use cases

beyond current release on page 93)

• Change of state:

o Detail will necessarily be lost (loss of fidelity) when there are long communications failures,

but the loss will initially be such that less relevant information is lost first.

▪ Removal of noise (such as rapid clearing and then re-raising alarms) will be generally

beneficial.

3.9.1.2 Preparing to connect

Once the client has identified the available streams to connect to, the client simply acquires the necessary

authorization (see 5.10 Message approach (WebSocket example) on page 94 and 5.8 Message Sequence on

page 89) and connects.

3.9.1.3 Initial connection

On initial connection, the client provides a null token. This causes the provider to stream from the oldest

record. The client can continue to consume records from the stream ongoing.

The initial records received by the client will be for the entities that have not changed for the “longest”

time31.

3.9.1.4 Tombstone (Delete) retention passed

As the client continues to consume the stream it progresses past the Tombstone (delete) retention point, i.e.,

is receiving records that have a timestamp that is less than the Tombstone retention (delay) from the current

time (see 3.8.1 Log storage strategy on page 24 and 6.1.1 Essential characteristics of a compacted log on

page 96 for a brief explanation of the log structure), and recent tombstones will be received along with

newer changes32.

Compaction will have removed multiple reports about the same entity, but as the stream progresses further it

is possible that an update is received that overwrites previously received entity state or a tombstone is

received that deletes an entity that was read earlier. This is where compaction had not yet removed the entity

when the stream was started (potentially because the event causing the newer record had not yet occurred).

3.9.1.5 Compaction delay passed

After some time, the client consumes past the compaction delay point (i.e., is receiving records that have a

timestamp that is less than the compaction delay from the current time). From this point onwards the client

31 For example, if the system has been running for three years and a thing was created when the system started. If that thing has

never changed since creation, then the record of its creation from three years ago will still be in the log.
32 Tombstones (deletes) are only retained for a limited time. Tombstone records older than the Tombstone retention are removed

from the log.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 30 of 110 © 2022 Open Networking Foundation

is receiving all recent changes and is aligned with network state as it was perceived by the provider at some

recent point in time. Whilst receiving records that are newer than the compaction delay point the client will

receive all event reports for the context (see 3.8.1 Log storage strategy on page 24 and 6.1.1 Essential

characteristics of a compacted log on page 96 for a brief explanation of the log structure).

3.9.1.6 (Eventual) Consistency achieved

If the controlled system stopped changing, then the client would eventually reach the newest record and

would be aligned with the provider view of the state of the controlled system33.

3.9.1.7 Degraded performance

Information fidelity is reduced if the client slips back by more than the compaction delay as compaction will

remove some change detail.

3.9.1.8 Need for realignment

If the client processing of a stream is delayed by more than the tombstone retention34 such that the

backpressure on the stream takes the provider log read point to a record older than the tombstone retention

time, the provider will cause the connection to drop.

When the client detects this, it will reconnect, normally with the token for the most recently processed

record from the stream. The provider will recognize this as for a record older than the tombstone retention

and will stream from offset zero (i.e., the oldest record in the log). This will cause the client to enter into full

realignment.

The behavior of the provider at this point is equivalent to that when there is an initial connection. The client

may use a “mark and sweep” strategy to minimize the disruption to its view of current state.

3.9.1.9 Summary

The above detail can be summarized:

1. The client will connect for the first time and the provider will stream from the oldest record in the

log.

2. Where the client loses communications or loses a record for some other reason, it can reconnect to

the provider indicating the last record that it successfully received. Missed records are then streamed

as appropriate where tombstone retention has not been exceeded.

3. Where the client has crashed it connects to the stream as if for the first time in (1) above

4. Where tombstone retention has been exceeded the provider takes the client back to the start of the

stream

o Compaction removes noisy history and allows rapid alignment with current state through a

“replay” of the compacted history.

3.9.2 Future combination considerations (by example)

The choice of the protocol for streaming is in principle independent from the stream characteristics, although

the protocol chosen must match the stream reliability needs. There are several potential applications beyond

those documented this first release.

3.9.2.1 Many clients

Although, at this stage, all TAPI applications appear to have a small number of clients, it is possible that

applications will emerge with many clients for a single type of information. stream of information.

For some “many clients” application a combination of TRUNCATED, WHOLE_ENTITY and PERIODIC

would appear to be suitable. In this case the TAPI provider may supply the clients directly or via an

33 Because the provider logs the whole entity on each change then the most recent record for an entity, retained after compaction

has removed earlier records, will include all of its properties.
34 The TCP buffering will provide some additional time for a client beyond the tombstone retention.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 31 of 110 © 2022 Open Networking Foundation

intermediate solution to deal with load. It is also possible that the TAPI provider might stream full content

and then the intermediate solution might support a subscription method.

3.9.2.2 Many views and many clients (with a few clients per view)

In this case, the solution would appear to be one with multiple contexts, one per view. Here any relevant log-

record-strategy and log-storage-strategy could be supported. Multiple contexts would benefit from support

of further features such as building context (discussed briefly in section 5.9 Use cases beyond current release

on page 93).

It is assumed that:

• Each context will appear as a separate independent instance of a TAPI sever.

o Each context will have its own dedicated streams.

• A context will expose a subset/subgraph of the overall network where that subset/subgraph/ may be

a small compared to the overall network.

• The identifiers in each context

o May be different for the same underlying entity, to improve security of access where views

are being offered to distinct and independent clients.

o May be the same for a related entity across two or more contexts, to allow for partitioned

views between related clients. In this case it is expected that the clients will be sharing data.

In a basic example, one client may deal with equipment whist another deals with network

topology. The model the equipment client supports has references to the model the network

client supports.

3.9.2.3 Many short-lived clients

In this case, where each client samples the information from some combination of streams for a very short

period. This appears to be some combination of many views and many clients.

3.9.2.4 Live measurements

Where there is a low number of clients, each requiring a reasonably up-to-date view including values related

to measurements (e.g., delay, temperature, power) which may:

• tend to dither around a value or tends to increase (or decrease) on an ongoing basis, a combination

of COMPACTED, WHOLE_ENTITY and PERIODIC would appear to be suitable.

• tend to change rarely, a combination of COMPACTED, WHOLE_ENTITY and ON_CHANGE

would appear to be suitable.

Other strategy combinations will be developed in future to deal with various information-record-strategies

supporting suppression of same value and of dither.

3.9.2.5 Threshold Crossing

This depends upon the behavior of the threshold source. For a source that reports threshold crossing:

• at some point within a period of measurement, at the end of the measurement period resets the

threshold crossing without a clear and then potentially reports the threshold crossing in the next

period etc., the solution would best use log-storge-strategy = TRUNCATED.

• and recovery over a continuous measurement, the solution would best be the same as the alarm

solution, i.e., COMPACTED, WHOLE_ENTITY and ON_CHANGE

3.9.2.6 Periodic measurement data

Where a measurement is taken over a period of time and where the measurement is repeated regularly

(potentially over adjacent periods of time). An example of this is the 15-minute Performance measurement.

• At the end of the measurement period the result of measurement is streamed

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 32 of 110 © 2022 Open Networking Foundation

• The natural approach would be to use TRUNCATED, WHOLE_ENTITY and PERIODIC

o This provides a short history to handle communications problems.

Some periodic measurements have predictable normal characteristics.

• Consider an error measurement on a photonic system.

o This is normally zero and hence the errored second count in a 15-minute period is normally

zero as is the severely errored second count. On that basis an appropriate information-record-

strategy (e.g., RECORD_SUPPRESSION_SUPPRESS_EXPECTED and

VALUE_EXPECTATION_VALUE_IS_ZERO) could be used to reduce report volume.

o In this case the measurements use a log with TRUNCATED, WHOLE_ENTITY and

PERIODIC where the record-type is RECORD_TYPE_INFORMATION

o Note that further formalization of this approach is required.

• Consider a power measurement on a photonic system averaged over a 15-minute period.

o This normally changes slowly such that a sequence of measurements will have the same

value. On this basis reporting an initial value and subsequently only changes lead to

significant efficiency gain. On that basis an appropriate information-record-strategy (e.g.,

RECORD_SUPPRESSION_SUPPRESS_EXPECTED and

VALUE_EXPECTATION_VALUE_IS_SAME_AS_LAST) could be used to reduce report

volume.

o In this case the measurements use a log with TRUNCATED and WHOLE_ENTITY along

with either ON_CHANGE or PERIODIC depending upon the measurement approach where

the change is considered from one measurement period completion to the next.

o Note that further formalization of this approach is required.

3.9.2.7 Bulk Performance Monitoring (PM) data

Essentially covered using multiple periodic measurement response where the current-data instance is

streamed once the granularity period ends and the current-data is rolled to history-data (i.e., streaming of

history-data creation)35.

It is expected that PM data may most appropriately be streamed using one of the suppression techniques

available and be best encoded in a binary format such as ProtoBuf (ENCODING_FORMAT_PROTOBUF)

potentially with a GNMI protocol (CONNECTION_PROTOCOL_GNMI).

Note that further formalization of this approach is required.

3.10 Record content

The stream-record allows for multiple log-records each of which includes conditionally a log-record-header

(for all records formalized in this document) and conditionally a log-record-body (conditions identified later

in this document).

3.10.1 Log Record Header

The log-record-header provides information common to all records.

The Tombstone record may have only a header.

35 Further work is required in the area of PM collection and PM streaming.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 33 of 110 © 2022 Open Networking Foundation

The log-record-header is as below.

Figure 14 Yang: log-record-header

 grouping log-record-header {

 leaf tapi-context {

 type tapi-common:uuid;

 config false;

 description "The identifier of the context.

 CONDITION: Mandatory where there is information related to more than one tapi context in the stream.";

 }

 leaf token {

 type string;

 config false;

 description "A coded (and compact) form of the fullLogRecordOffsetId.

 This property is used to request streaming from a particular point (e.g., the last correctly handled record).

 For a basic log solution this may simply be the sequence number.

 CONDITION: Mandatory where the stream type is from a compacted log OR it offers an opportunity to recover from a particular
 record using the token.";

 }

 list full-log-record-offset-id {

 key 'value-name';

 config false;

 min-elements 1;

 uses tapi-common:name-and-value;

 description "This property must minimally provide a logging sequence number.

 Note that when compaction is active, the streamed sequence may not have sequence numbers that simply increment by one.

 In a complex log solution there may be various parts to the log.

 The record token is a compressed form of log record reference.

 This property provides the verbose form

 For example, it may include:

 - stream id

 - topic

 - partition

 - partition offset

 - sequence number (the offset is essentially the sequence number associated with the partition)";

 }

 leaf log-append-time-stamp {

 type tapi-common:date-and-time;

 config false;

 description "The time when the record was appended to the log.

 CONDITION: Mandatory where the log is compacted.";

 }

 leaf entity-key {

 type string;

 config false;

 description "The identifier of the entity that is used in a Compacted log as the compaction key.

 The entityKey value, where appropriate, may be based upon the identifiers from the event source.

 It can be built from some specific detail combination that meets the necessary uniqueness and durability requirements.

 entityKey is the value used during compaction.

 Ideally it is a UUID format, if this can be formed from the source identifier.

 CONDITION: Mandatory where the log is compacted.";

 }

 leaf record-type {

 type record-type;

 default "RECORD_TYPE_INFORMATION";

 config false;

 description "The type of the record.

 Can be used to understand which elements of the record will be present.

 CONDITION: Mandatory where not default.";

 }

 leaf record-authenticity-token {

 type string;

 config false;

 description "A token generated using a method that allows the client to validate that the record came from the expected provider.

 CONDITION: Mandatory where authenticity method providing a token is required.";

 }

 description "The header of the log record providing general parameters of the record common to all records.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 34 of 110 © 2022 Open Networking Foundation

For this structure, a solution shall provide the following support for a compacted log capability with

explanation provided in the YANG above:

• Mandatory:

• token

• full-log-record-offset-id36

• log-append-time-stamp

• entity-key: The entity-key could reasonably be the uuid of the entity concatenated with the

appropriate sequence of local ids for the substructure (i.e., the tree). See also 3.10.3

Considering parent-address on page 39).

• record-type (as the default record type is INFORMATION)

• Conditional Mandatory:

• record-authenticity-token: allows the provider to supply a value with each record, that is

usually different from record to record (e.g., a digital signature where the value of which is

set by combining some shared secret with the record content37), that the client has a

mechanism for confirming so as to validate that the record came from the expected originator

and hence to protect against records being inserted in the stream from some unauthorized

source.

• Optional

• tapi-context: This field can be omitted for TAPI 2.4 as focus is a single context.

▪ This uuid identifies the applicable TAPI context. For TAPI 2.4 the mapping between

the context and its uuid is unspecified.

▪ In future this will enable systems that support more than one context to ensure the

context of the stream is present in the record.

36 Kafka, described very briefly in 6.1 Appendix – Considering compacted logs on page 38, supports partitioning of logs to

improve scale and performance.
37 The mechanism for generation of the value and validation of the value has not be set at this stage, it is intended that in a later

TAPI version a formal approach to setting the value will be specified.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 35 of 110 © 2022 Open Networking Foundation

3.10.2 Log Record Body

The log record body includes generalized content and is augmented with specific content depending upon

the value of a control property, record-content.

Figure 15 Yang: log-record-body

For this structure, a solution shall provide the following support for a compacted log capability with

explanation provided in the YANG above:

• Mandatory:

• event-time-stamp

• Conditional Mandatory

• event-source

• additional-event-info

• parent-address (see more details in section 3.10.3 Considering parent-address on page 39):

 grouping log-record-body {

 container event-time-stamp {

 config false;

 uses approx-date-and-time;

 description "Time of the event at the origin of the event that triggered the generation of the record.

 The structure allows for time uncertainty.

 CONDITION: Mandatory where event time is not conveyed via another property.";

 }

 leaf event-source {

 type event-source;

 default "UNKNOWN";

 config false;

 description "Indicates whether the source is controlled (under management control) or potentially chaotic (under resource control).

 The time characteristic of the source may be determined from the metadata describing the resource (e.g., a detector).

 Where there is an alternative (and probably more detailed) source of information on time characteristic this attribute can be omitted.

 CONDITION: Mandatory where not default.";

 }

 list additional-event-info {

 key 'value-name';

 config false;

 uses tapi-common:name-and-value;

 description "Addition information related to the event such as change reason where changeReason would be the name and the value
 text would provide information on the reason for change.

 CONDITION: Mandatory where there is additional info to convey.";

 }

 leaf-list parent-address {

 type string;

 config false;

 description "Where the entity is a local class this provides the ordered list of ids from the closest global class (a UUID cast as a string)
 to the direct parent (which may be the global class).

 The field can include all entities back to the Context and hence can be used for global classes where the tree is being represented in
 full.

 Gives the position of the entity in the address tree (usually containment) that is raising the event by providing the name/id values in
 the address of the parent.

 Is the sequence of named levels in the tree up to but excluding the entity of the notification.

 It includes the device id where relevant.

 CONDITION: Mandatory where the class has a parent, and the parent is not context.";

 }

 leaf record-content {

 type tapi-common:object-type;

 config false;

 description "The identifier of the object class in the record body detail.

 This property is used to control the conditional augmentation of the body with detail.

 CONDITION: Mandatory where the record content is (the whole of or part of) a standard TAPI object.";

 }

 description "The specific details of the Record.";

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 36 of 110 © 2022 Open Networking Foundation

▪ Note that the parent-address may be omitted:

▪ For record-type DELETE and TOMBSTONE

• record-content: Note that for a DELETE, there is no need for content and hence this field

may be omitted.

The log-record-body is augmented with an instance of a class. This allows for any class from the model to

be reported. Hence, when using the Compacted Log approach, the streaming mechanism can be used to gain

and maintain alignment with all entities in a context.

The following tables provide details on the types used in the structure above.

Figure 16 Yang: event-source

 typedef event-source {

 type enumeration {

 enum RESOURCE_OPERATION {

 description "The event is from the operation of the network resources.

 The event source has a relatively fast time characteristic.";

 }

 enum MANAGEMENT_OPERATION {

 description "Event is from a Management operation (slow control).

 The event source has a relatively slow time characteristic.";

 }

 enum UNKNOWN {

 description "The origin of the event is not known.";

 }

 }

 description "Source of the event.

 Use to give some idea of the time characteristics of the event source.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 37 of 110 © 2022 Open Networking Foundation

Figure 17 Yang: approx.-date-and-time

For this structure, a solution shall provide the following support:

• Mandatory:

• primary-time-stamp

• Conditional Mandatory

• start-time-stamp

• spread

• source-precision

 grouping approx-date-and-time {

 leaf primary-time-stamp {

 type tapi-common:date-and-time;

 config false;

 description "Time of the event at the origin where known precisely.

 Where the event is known to be before particular time, this field records that time.

 Where the event is known to be after a particular time, this field records that time (this is an unusual case where there is no
 proposed before time).

 Where the event is known to have occurred in a time window, this field records the end time (the time before which the event must
 have occurred).";

 }

 leaf start-time-stamp {

 type tapi-common:date-and-time;

 config false;

 description "The time after which the event is known to have occurred when the event is known to have occurred between two times.

 The primaryTimeStamp provides the end time.

 CONDITION: Mandatory where the time is only approximately known and where the event is known to have occurred after a
 particular time.";

 }

 leaf spread {

 type spread;

 default "SPREAD_AT";

 config false;

 description "Indicates the knowledge of the time of occurrence of the event.

 CONDITION: Mandatory where not default.";

 }

 leaf source-precision {

 type source-precision;

 default "SOURCE_PRECISION_UNKNOWN";

 config false;

 description "Indicates how well the source time is synchronized with network time.

 CONDITION: Mandatory where not default.";

 }

 description "Allows for recording of an aspect of imprecise time.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 38 of 110 © 2022 Open Networking Foundation

The following tables provide details on the types used in the structure above.

Figure 18 Yang: spread

Figure 19 Yang: source-precision

 typedef spread {

 type identityref {

 base SPREAD;

 }

 description "The alternative time of occurrence statements.";

 }

…

 identity SPREAD {

 description "none";

 }

 identity SPREAD_AT {

 base SPREAD;

 description "The event occurred at a particular time.";

 }

 identity SPREAD_BEFORE {

 base SPREAD;

 description "The event occurred before a particular time.";

 }

 identity SPREAD_AFTER {

 base SPREAD;

 description "The event occurred after a particular time.";

 }

 identity SPREAD_BETWEEN {

 base SPREAD;

 description "The event occurred between two stated times.";

 }

 typedef source-precision {

 type identityref {

 base SOURCE_PRECISION;

 }

 description "Alternative statements about timing precision at the event source.";

 }

…

 identity SOURCE_PRECISION {

 description "none";

 }

 identity SOURCE_PRECISION_UNKNOWN {

 base SOURCE_PRECISION;

 description "The state of the clock at the event source is not known.

 The view of time of day at the source is suspect.";

 }

 identity SOURCE_PRECISION_FREE_RUNNING {

 base SOURCE_PRECISION;

 description "The clock at the event source is free-running.

 The view of time of day at the source may be significantly different from that at other sources.";

 }

 identity SOURCE_PRECISION_SYNCHRONIZED {

 base SOURCE_PRECISION;

 description "The clock at the event source is appropriately synchronized to the timing master.

 The view of time of day at the source should be essentially the same as that at other time-synchronized sources.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 39 of 110 © 2022 Open Networking Foundation

3.10.3 Considering parent-address

The parent-address enables a client to position an entity in the Yang tree.

• Where the entity is a Global class and hence has a UUID38, the parent address shall provide the

position of the entity in the yang tree.

• Where the entity is a local class and hence has a local id relative to the UUID of its containing

Global class, the parent address shall provide any necessary levels of nesting of local-id, the UUID

of its Global class and then the yang tree.

• For alarms and events that are reported as independent entities, the parent-address may include

address of the indirect parent (i.e., the entity against which the alarm is raised).39

Note that in a solution with a single context, the context should be omitted from the parent address and

where the parent address is solely context (topology-context, connectivity-context etc.), the parent address

can be left empty (and hence not provided).

The table below covers each of the cases.

Table 1: Clarifying parent-address

Global classes Direct parent class Property in parent covered by

parent-address behavior (red

highlights where the property

name is not the class name)

context None None

service-interface-point context service-interface-point

profile context profile

topology topology-context / context topology

node topology node

node-edge-point node owned-node-edge-point

node-rule-group node node-rule-group

inter-rule-group node inter-rule-group

link topology link

connectivity-service connectivity-context / context connectivity-service

connection connectivity-context / context connection

connection-end-point cep-list / node-edge-point connection-end-point

switch-control connection switch-control

equipment device equipment

holder equipment contained-holder

device physical-context / context device

access-port device access-port

physical-span physical-context / context physical-span

38 Can be considered as a Domain Driven Design [DDD] Aggregate.
39 Note that TAPI 2.1.3 proposed this approach. This is no longer recommended.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 40 of 110 © 2022 Open Networking Foundation

Global classes Direct parent class Property in parent covered by

parent-address behavior (red

highlights where the property

name is not the class name)

path-computation-service path-computation-context / context path-comp-service

path path-computation-context / context path

oam-service oam-context / context oam-service

meg oam-context / context meg

oam-job oam-context / context oam-job

oam-profile oam-context / context oam-profile

available-stream stream-context / context available-stream

supported-stream-type stream-context / context supported-stream-type

stream-monitor stream-context / context stream-monitor

In the table above the parent address is formed by chaining the direct parent of the direct parent etc. where

only the direct parents listed in bold black are considered (see example structure later in this section).

Parent address can also be used when streaming an instance of local class in the context of the instance of

the containing global class. The table below provides a list of local classes. As is the case for the global

classes, the referencing property in the parent need not be updated via the stream as the client can determine

the necessary update using the parent address.

Local Class Direct parent (and parent global

class)

Property in parent covered by

parent-address behavior (red

highlights where the property name

is not the class name)

rule node-rule-group,

inter-rule-group

rule

connectivity-service-end-point connectivity-service end-point

route connection route

path-service-end-point path-computation-service end-point

abstract-strand physical-span abstract-strand

strand-joint abstract-strand (physical-span) strand-joint

physical-route connection physical-route

physical-route-element physical-route (connection) physical-route-element

topology-constraint connectivity-service topology-constraint

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 41 of 110 © 2022 Open Networking Foundation

Local Class Direct parent (and parent global

class)

Property in parent covered by

parent-address behavior (red

highlights where the property name

is not the class name)

resilience-constraint connectivity-service,

switch-control

resilience-constraint40 (connectivity-

service), control-parameters (switch-

control)

resilience-route route (connection) resilience-route

resiliency-route-constraint resilience-constraint resiliency-route-constraint

layer-protocol-constraint resilience-route (connection/route) layer-protocol-constraint

routing-constraint connectivity-service,

resiliency-route-constraint

routing-constraint41

switch switch-control switch

path-objective-function path-computation-service objective-function

path-optimization-constraint path-computation-service optimization-constraint

oam-service-point oam-service oam-service-point

mep connection-end-point,

meg,

node-edge-point

oam-service-point (oam-service) 42,

current-data (oam-job)

mep

mip connection-end-point,

meg,

node-edge-point,

oam-service-point (oam-service)43,

current-data (oam-job)

mip

current-data oam-job current-data

history-data current-data (oam-job) history-data

pm-data oam-profile pm-data

40 Note that there is only a single instance of resilience-constraint so there is no local id and the field is not a list. This applies to

other properties in the list.
41 Note that there is only a single instance of routing-constraint so there is no local id and the field is not a list. This applies to

other properties in the list.
42 Using the parent-address format highlighted in this section.
43 Using the parent-address format highlighted in this section.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 42 of 110 © 2022 Open Networking Foundation

The parent-address is expected to follow the structure set out in the example for a connection-end-point

below.

"parent-address" : [

 "topology-uuid:4e537278-79f8-39ad-804b-f0b553cb2ffb",

 "node-uuid:7f65a8c1-4e0d-3296-b06a-460b2367ca76",

 "node-edge-point-uuid:e35a31b2-1096-38f9-8e3e-dca010e2f191"

],

As parent address is provided, it is not necessary for the provider to update the list reference attribute in the

parent (in the example above, the connection-end-point list attribute in the node-edge-point e35a31b2-1096-

38f9-8e3e-dca010e2f191). Indeed, it is recommended that the provider does not update this attribute with the

changes to the containment list property corresponding to the streamed entity. It is expected that the provider

does NOT provide any containment list property that reference entities identified by a uuid44.

Instead, the client system can determine the necessary update from the parent-address data and the relevant

structure in the tree can be created and updated by the client. This approach removes the need to send two

records for the creation of an entity and hence removes race condition and atomicity challenges.

For the example above the connection-end-point list of the node-edge-point identified in the parent-address

would be updated with the uuid of the connection-end-point.

Considering condition-detector (see 4.5 Condition detector and alarm structure on page 52), as it does not

have a parent the parent-address should be omitted. The measured-entity-uuid of the condition-detector is

sufficient to identify the affected entity.

Where the entity-key is a uuid, the uuid alone is sufficient to identify an entity that is to be deleted, hence

the parent-address for a DELETE record can be omitted. The onus is on the client to update the

corresponding containment tree references, so in the example above a connection-end-point delete would

require the client to remove the connection-end-point from the cep-list of the appropriate node-edge-point.

When the connection-end-point is deleted, the event will provide the connection-end-point uuid. The client

will locate the connection-end-point by uuid, remove it and clean up any references as appropriate.

3.11 Considering order/sequence and cause/effect

3.11.1 Time

When determining the cause and effect of any behavior in the controlled system it is necessary to have

visibility of relevant state and to know the time of each change of state. The time units must be sufficiently

fine to allow all relevant event sequencing to be determined45.

The time of change at the source of change needs to be propagated as data in the stream and hence needs to

be in the report of each instance of the changed entity (and in any stored form that exists between the source

and the stream). This is recorded in event-time-stamp.

The time the record was logged is log-append-time-stamp.

44 For example, an instance of node-edge-point (global class with its uuid) includes all locally identified branches and leaves but

NOT contained instances of connection-end-points, as the connection-end-point is a global class separately identifiable using its

uuid. Note also that the attributes that reference (list) the contained global class instances (e.g., connection-end-point attribute in

the node-edge-point) are NOT included. This information is conveyed by parent-address.
45 It may be beneficial to add an indication of time granularity to assist in cause/effect evaluation. For this to be fully beneficial the

accuracy of synchronization of time would also need to be determined).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 43 of 110 © 2022 Open Networking Foundation

3.11.2 Backend stream details

The implementation solution may partition the log supporting a stream (see section 6.1.4 Partitions on page

97). This may cause stream content reordering. Clearly, event reordering across different sources is a

fundamental behavior due to relativity and differential delay. It is expected that the order for events from

each single state machine will be maintained.

Regardless, the timestamp granularity must be sufficient to ensure relevant chronological order can be

recovered. This also assumes that robust time synchronization mechanism is present at each event source

and hence in the controller/controlled system as a whole.

3.12 The Context

TAPI is a machine-machine interface. As noted earlier, the client maintains a local repository representation

of the information from the provider. The information is defined in terms of the context. As the context will

have been “agreed” (currently, up front during system design), the context is what the client wants/needs to

see.

Where the client needs less detail than is provided by a specific context the client can:

• Locally filter out information that is not of interest.

• Change the context.

o The context can be modified46 as necessary so long as other clients (and the provider) agree

with the change.

• Request construction of a specific context

o Several contexts can be provided.

On this basis:

• Individual specific queries on the provider are not necessary.

• Notification filters, that are not simply the realization of the view, are not necessary. The context

defines the filtering for the client.

Any changes in the required information are handled by changes in the context. See later discussion on

changing the context and spotlighting in section 5.9 Use cases beyond current release on page 93.

3.13 Handling changes in the Context

The stream relates to the entities in the context. Changes include:

• An instance of a thing being added/removed to/from context within the current definition of the

context.

o E.g., the creation of a connection

• The context definition being changed such that an instance of a thing appears/disappears.

• An instance of a thing in the context changing such that an element is added/removed from the thing.

• The value of a property of an instance of a thing already in the context changing.

See later discussion on changing the context in section 5.9 Use cases beyond current release on page 93.

3.14 Reporting change

For the compacted log solution, if the log-storage-strategy is WHOLE_ENTITY_ON_CHANGE, whole

entities are streamed on creation, deletion and change of a property. Hence, for example, if a single property

46 Context adjustment is not available via TAPI in the current version

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 44 of 110 © 2022 Open Networking Foundation

in a CEP changes, the whole CEP is logged and streamed. The parent-address indicates where the CEP is in

the tree and hence which NEP and node have changed (in CEP detail)47.

3.15 Model implications

Separation of properties that have a slow rate of change (intent-driven config) from properties that have a

high rate of change (network-derived state) and isolating the high rate of change properties in independent

separate state entities is advisable. The alarm and state model provided for streaming allows a separation of

small per-state entities from large slow changing config entities. The current TAPI OAM model also isolates

properties related to monitoring results from properties related to configuration.

3.16 System engineering

For the solution to operate reliably:

• System engineering must be such that under normal and “normal bad day” circumstances the client is

able to keep up well with the provider (otherwise the client will suffer ongoing alignment issues in

terms of lag and potentially in terms of fidelity).

o Eventual consistency is acceptable in a control solution if there is only a “short” delay to

alignment with any specific state.

• For realignment to be successful, the client must be engineered to be able to read all records in the

tail of the log (starting from the oldest) up to the Tombstone retention point in under the Tombstone

retention time. On this basis

o The tombstone retention time may differ for different cases and different streams.

o For a stream with only limited volumes of long term records the tombstone retention could be

quite short

▪ Under these circumstances, tombstone retention is probably determined by likely

communication failure duration.

o For the case where alignment takes days, tombstone retention would need to be in terms of

days.

The solution can be tuned to balance pace to achieve consistency (eventual consistency) with the fidelity of

information when under stress48.

3.17 Eventual Consistency and Fidelity

3.17.1 Eventual Consistency

A simple way to understand eventual consistency is to imagine a network that is changing such that there is

a stream of changes and where the client has not absorbed the stream. If suddenly the network were to stop

changing, then, once the client has absorbed the entire stream, the client will be aligned with network state.

3.17.2 Fidelity

In this document, fidelity is the degree of exactness with which the controlled system behavior is

represented via TAPI streaming.

Loss of fidelity is the loss of some details of change (without losing eventual consistency). For example, the

operational-state property of a CEP may initially be ENABLED, then become DISABLED and then

47 Only the CEP needs to be notified as this identifies where the NEP and the node have changed.
48 Compaction is used intelligently to reduce realignment time whilst minimizing probability of loss of detail.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 45 of 110 © 2022 Open Networking Foundation

ENABLED again. Loss of fidelity may lead to the operational-state being observed as continuously

ENABLED.

3.17.3 Related stream characteristics

Considering the supported-stream-type structure discussed in 3.7.1 Supported stream type on page 14, there

are two key time settings for the compacted log solution “tombstone-retention”49 and “compaction-delay”50.

• Client read delay is less than compaction delay.

o Client is behind on absolute state but is losing no detail.

o The client can potentially catch back up if:

▪ Rate of append (i.e., the rate of arrival of information relevant to the stream) reduces

due to conditions in the monitored environment changing.

▪ The client gains additional resources that allow it to deal with greater than the current

rate of append.

• Client read delay is greater than the compaction delay but less than the tombstone retention time.

o Client is behind on absolute state and is losing fidelity as some changes are being compacted

out of the log (if the client is less interested in short lived things than long lived things this

may not be a significant problem)

▪ A rapid intermittency may become completely invisible (e.g., an active – clear alarm

pair)

▪ All changes that happen at a rate slower than read delay will be visible.

o The client can potentially catch back up if:

▪ The delay was due to a long comms down issue that has now recovered, and the client

capacity can readily deal with the current append rate.

▪ Rate of append reduces due to conditions in the monitored environment changing.

▪ The client gains additional resources that allow it to deal with greater than the current

rate of append.

• Client read delay is greater than the tombstone retention time.

o Client has now potentially lost eventual consistency and must realign by streaming from the

“oldest” record (offset zero)

3.18 Stream Monitor

TAPI 2.4 also offers a rudimentary capability for monitoring the streams. This allows an external stream

administration client that has the appropriate capability and authorization to monitor which clients are

connected and how their stream is performing.

Where this capability is supported for each client, streaming connection is monitored for the id of the last

record written to and read from the log. This allows an administrator to get a view of how delayed a client is.

In TAPI 2.4 this is for PoC (Proof of Concept) analysis. It is expected that the feature will advance

significantly in future releases as a result of experience gained from PoC activity.

49 This is the duration that “tombstone” records are retained for. This prevents the log size being unbounded.
50 This is the duration that all records are guaranteed to be persisted for (after they are logged) before compaction will consider

removal based upon more recent logging for the same entity.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 46 of 110 © 2022 Open Networking Foundation

3.19 Solution structure – Architecture Options

Two options are explored, one provides full compaction support, the other uses a more traditional structure

to feed a stream and provides a restricted emulation of compaction. Either can be used to support the current

TAPI streaming solution sufficiently.

There may be other approaches that provide a suitable capability, i.e., reporting current state and change via

whole entity reporting through the same single stream, so as to achieve eventual consistency with current

state, cost-optimized for potential loss of fidelity.

The key consideration is the external behavior and not the specific mechanism used to support it.

3.19.1 Full compacted log

The figure below shows a stylized view of a controller controlling a network (the controlled system) and

providing a stream to a client.

Controller

Analyse

Network

TAPI Provider

TAPI Client

Impact and repair etc.
Client

Stream
server

Stream
Client

Align/
Store

Configure
Stream

Delay
Monitor

Stream
Policy

Control
Decide/Act

Sense/Discern

Infer

Provides current state
and change events

Client store

0
X

Force
Disconnect

Adjust Log
properties

Pipeline extends to client
(one instance per client)

0
X

Key

Function related to TAPI
stream provider

Function giving further
context

Pipeline monitor function

Stream behaviour analyser
and policy evaluator

Stream behaviour redesigner

Grey text

Storage (DB, log etc.)

Compacted Log

Flow

Future consideration

Pipeline

Future consideration

Source &
ProcessLog and

Stream
Control

Offset delay

Cached Navigable Structure

TAPI
Context

Controller Core

Figure 20 Stylized view of example controller offering full compaction.

The key features highlighted in the diagram are:

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 47 of 110 © 2022 Open Networking Foundation

• Compacted log providing current state, recent Tombstones and recent changes.

o The compacted log records whole entity instances on change

o See Appendix – Considering compacted logs

• Pipeline providing guaranteed delivery (at least once) whilst connection in place along with

provider-initiated connection force drop control when realignment is necessary.

o To align the client does not need to do anything other than connect to the appropriate stream

and receive from the stream.

o It is assumed that the client will extend the integrity of the stream to include the process of

storage (as shown) so as to enable the client to maintain alignment with current state

(eventual consistency) and to build and maintain history.

• A stream monitor (depicted as a control loop on the pipeline as an aspect of control of control) that

ensures achievement of eventual consistency.

o Delay Monitor senses the age of the records being streamed (delay)

o Stream Policy Control infers whether the current delay is acceptable. This depends upon what

state the stream is in (e.g., start-up) etc. It provides input to Configure Stream.

o Configure Stream decides what action to take and then takes that action. This may include

forcing a disconnect to cause a client-reconnect and subsequent realignment and/or

adjustment of Log properties.

Note that the assumption is that other pipelines are in place (not shown here) throughout the overall flow

from controlled device through Controller Core to the client to ensure no relevant loss of information from

the controlled device and to ensure that the solution is always in a state of eventual consistency with current

network state.

3.19.2 Emulated compaction

This approach uses the same pipeline mechanism but feeds the pipeline from a composite store. This does

not offer the full compacted log capability. The behavior is as if the tombstone retention and the compaction

delay are set to the same value (simplistically, the end of the log, but strictly any point in the log).

On client connection the provider would:

• Start the “time-truncated” log to collect all changes that occur from the point of connection51

• These changes would be recorded as whole entity snapshots.

• Start to stream “current state”.

• Current state should include time of occurrence of last change.

• To achieve this the provider may need to page through a large store of data such that the state

is skewed over some, potentially long, period of time.

Monitored System (e.g., Network) state may change during streaming of current state such that a change

statement (whole entity snapshot) is appended to the truncated log. It is quite likely that the change log will

have logged both changes that are ahead of the “current state” being provided as well as changes that have

already been covered as part of the “current state”.

Once the provider has sent “current state” (which will include all states that have not changed since

connection of the client), it would then begin to stream from the truncated log. As noted, the truncated log

may include some states that have already been streamed. As the client is necessarily designed to be able to

deal with repeated statements this will not be an issue.

51 It should be feasible for a single truncated log to be used for multiple clients; however, the current state will need to be dealt

with on a per client basis.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 48 of 110 © 2022 Open Networking Foundation

If the connection to the client is dropped, the client will reconnect providing the token of the last record it

fully processed. The provider can code into the token any information that helps it determine what to stream

next.

Clearly, the client must be able to retrieve current state in a shorter period than the log truncation time so

that changes are not lost. If the log wraps during streaming of current state, the provider will have to restart

the alignment (by dropping the connection and by ignoring the client token).

It would not be unreasonable for the provider to shorten the truncated log once alignment has been achieved.

The provider is expected to add a Tombstone record for every delete record. The emulated compacted log

could avoid using the specific tombstone record as there is no log size benefit of retaining only a compressed

record (as offered by the Tombstone).

It should be possible for the provider to use one single truncated log for all clients, however on initial

connection of a client it will be necessary for the provider to construct a specific current state snapshot to

feed the stream to that client.

Controller

Analyse

Network

Client

Stream
server

Stream
Client

Align/
Store

TAPI
Context

Configure
Stream

Delay
Monitor

Stream
Policy

Control
Decide/Act

Sense/Discern

Infer

Force
Disconnect

Adjust Log
properties

Source &
ProcessLog and

Stream
Control

Offset delay

Controller Core

t

Current
state

Compact
Stream

Emulator

TAPI Provider

TAPI Client

Impact and repair etc.

Provides current state
and change events

Client store

Pipeline extends to client
(one instance per client)

Key

Function related to TAPI
stream provider

Function giving further
context

Pipeline monitor function

Stream behaviour analyser
and policy evaluator

Stream behaviour redesigner

Grey text

Storage (DB, log etc.)

Flow

Future consideration

Pipeline

Future consideration

Cached Navigable Structure

t

Short history Log
(time truncated log)

Figure 21 Stylized view of example controller offering emulated compaction

The behavior of the provider feeding the stream is very similar to a traditional behavior (essentially the same

as send current state in response to get then notify of change, other than the log is of whole entities).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 49 of 110 © 2022 Open Networking Foundation

In this realization the provider side does not carry out active compaction and hence does not provide the

elegant, degraded performance of the full compacted log approach when the client is under pressure and

significantly delayed.

3.19.3 Comparing the full compacted log and the emulated compacted log

From the client perspective the emulated compacted log appears to be a compacted log with the compaction

delay equal to the tombstone retention.

The emulated compacted log is also more likely to have a tombstone retention determined by record count

as opposed to time.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 50 of 110 © 2022 Open Networking Foundation

4 Using the compacted log approach for alarm reporting

This section provides both informative and normative statements on the alarm solution.

4.1 Specific alarm characteristics - raising/clearing an alarm

A controlled device raises an alarm once specific criteria have been met and clears the alarm once other

specific criteria have been met. The criteria could involve, for example:

• Counting traffic related events where the count is within some window (often sliding and sometimes

complex)

• The alarm will be raised when the count exceeds some threshold and will be cleared when it

drops below some threshold.

▪ The two thresholds provide hysteresis that brings some stability to the alarm.

• The windows are often very short and can cause extreme intermittency under particular

network scenarios.

• Measuring an analogue property with several options

• The alarm may be raised when the measurement exceeds some threshold and be cleared when

it drops below another threshold with hysteresis.

• The alarm may be raised when the measurement drops below some threshold and be cleared

when it exceeds another threshold with hysteresis.

The counts can be of the occurrence of other threshold crossing and hence the alarm definition at origin may

be very complex.

4.2 Key Features of an alarm solution (example usage)

The following sections work through the key features of an alarm solution as an example of usage of

streaming.

The alarm streaming solution has a particular delete/tombstone behavior to provide the best performance.

This is highlighted in 4.7 Alarm tombstone behavior on page 63.

4.3 Log strategy

This section identifies the key characteristics of the alarm log and stream and summarizes the implications.

1. The TAPI alarm stream shall be fed from a compacted log.

2. There should be a dedicated connection through which only alarm records are propagated.

3. The log compaction delay shall be set to allow for normal operation with a client to enable the

system to deal with temporary communications failure with no loss of fidelity.

o When compaction is applied fidelity will be lost, although only rapidly changing and fleeting

alarms will be lost.

o In any solution, the client may be a little behind or may suffer a short communication

disruption without significant impact on operational quality.

o The proposed compaction delay setting is 10 minutes52 for a system with reasonably well

engineered platform capacity and communications.

52 Assuming that an acceptable system will be engineered to not be any more than 10 minutes behind under bad-day conditions.

Note that this parameter can be tuned to suit system engineering and also desire to achieve full fidelity. A longer compaction delay

will cause there to be more recent history in the initial alignment and hence may slow initial alignment. A similar behavior occurs

for a traditional notification queue. It is possible to dynamically tune the stream to reduce this impact.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 51 of 110 © 2022 Open Networking Foundation

▪ Clearly having an alarm system that is greater than 10 minutes behind the provider

will degrade location performance, however experience may show that this time is too

short.

o The solution may allow for this property to be adjustable in the running system, through a

mechanism suitable for expert access.

▪ Dynamic compaction delay might be beneficial in cases where local control can be

applied, and an unusually long comms down is being experienced.

▪ Under these circumstances the compaction delay could be increased such that

the clients lose no fidelity (although they are clearly behind whilst the comms

is down)

o Note that:

▪ ideally, during the normal operation, the client would be at most a few minutes behind

the current append time.

▪ the volume of information within the compaction delay time depends upon the rate of

change of things in the monitored environment.

▪ in a sophisticated solution it will be possible to allocate more resources to the client

application, when it is under pressure, to enable it to process faster.

4. The log tombstone retention shall be set to allow for reasonable communication failure/recovery

where there may be significant failures and to allow for client reboot.

o The proposed tombstone retention setting is 4 hours for a system with reasonably well

engineered platform capacity and communications.

▪ This solution may allow for this property to be adjustable in the running system,

through a mechanism suitable for expert access.

▪ Tombstone retention will always be greater than or equal to the compaction delay.

5. The normal record (non-tombstone) retention shall be infinite.

o This property is not adjustable as it is fundamental to the correct operation of the mechanism

6. If compaction operates on a segment by segment53 basis such that the segment with the most recent

alarms is never compacted (see section 6.1.3 Log segments on page 97), then the segment size shall

be such as to not hold significantly more records than would occur during the compaction delay time

when operating under normal conditions (ideally a segment would hold significantly less records)54.

Also see section 3.16 System engineering on page 44.

4.4 Alarm behavior

The following highlights key design decisions (in the context of justifying/explanatory information) and

should be read in conjunction with the background provided in section 6.4 Appendix – Detectors, detected

conditions and alarms on page 104:

1. An alarm detector shall have an ACTIVE and a CLEAR state

o Explanatory Information:

▪ An active is considered as more important than the clear (hence the states are

asymmetric in importance)

▪ Most detectors in the network will be clear under normal circumstances (hence the

normal state can be considered as clear and the off-normal state as active)

o The alarms shall be reported as ACTIVE or CLEAR.

53 The log (on disc) saves records in a live area, a segment, that has a defined size. Once the size is reached a new segment is

started for saving new records and the old segment is moved to a historic state. This old segment is available for compaction.
54 The max-allowed-segment-roll-delay parameter forces a partially filled segment to roll over if the delay is exceeded. The alarm

stream may become quiet and compaction behavior may benefit from this parameter setting.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 52 of 110 © 2022 Open Networking Foundation

▪ An ACTIVE will be followed at some point by a CLEAR (the basic state machine is

simple with only Clear → Active and Active → Clear transitions)

o An alarm CLEAR shall be followed immediately by a Tombstone.

▪ A Tombstone alone shall be considered as equivalent to a clear

▪ The tombstone causes the alarm to be removed from the log. This then has a similar

characteristic to a traditional alarm reporting mechanism where there is a store of

currently active alarms.

2. If an entity upon which the detector is lifecycle dependent is deleted and just prior to the deletion the

alarm was active, then the alarm (and hence its detector) shall be tombstoned.

o If the alarm was not active, then there shall be no Tombstone as there is nothing in the log to

remove.

3. The output of a particular detector may be processed and stabilized such that it gains the state

INTERMITTENT, indicating that the detector is intermittently rapidly cycling through active and

clear states.

o The alarms will be reported as ACTIVE, INTERMMITTENT or CLEAR

o All transitions are legal (i.e., Clear → Active, Clear → Intermittent, Active → Clear,

Active → Intermittent, Intermittent → Active, Intermittent → Clear)

o The trigger for moving to/from Intermittent state will be defined by policy. Ideally the policy

is configurable55.

Note: It would be reasonable to also propagate other processed network property types through the same

stream as alarms if the network property has similar characteristics to an alarm. For example, operational

state is asymmetric in importance with a normal state and off-normal state where the normal state could be

considered as equivalent to a clear.

4.5 Condition detector and alarm structure

The condition-detector and related alarm structures are described in detail in this section.

There have been advancements made in this area from TAPI 2.1.3. The condition-detector (see section 4.5.1

condition-detector from tapi-streaming.yang on page 53) augments the log-record-body as was the case for

TAPI 2.1.3. However, the use of this structure has been reduced and a new augment from tapi-fm.yang,

detected-condition (see 4.5.2 detected-condition from tapi-fm.yang on page 56) is now to be used to convey

alarm and pm details (as it is also now used for tapi-notification). The TAPI 2.1.3 augment of alarm-

condition-detector-detail (see section 4.5.3 alarm-condition-detector-detail from tapi-streaming.yang on

page 62) is still available, but this has been deprecated and is not recommended.

A TAPI 2.4 conformant solution can either use the approach defined in TAPI 2.1.3 (in tapi-streaming.yang,

see section 4.5.3) or use the new approach define here using that structures specific in tapi-fm.yang (see

section 4.5.2).

55 Configuration of the policy is outside the scope of this specification.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 53 of 110 © 2022 Open Networking Foundation

4.5.1 condition-detector from tapi-streaming.yang

Figure 22 Yang: condition-detector

For this structure a solution shall provide the following support:

 grouping condition-detector {

 leaf condition-native-name {

 type string;

 config false;

 description "The name used for the Condition by the source of the information.";

 }

 leaf measured-entity-uuid {

 type tapi-common:uuid;

 config false;

 description "The uuid of the TAPI entity that represents the entity measured at source.

 If the TAPI entity cannot be identified as it cannot be mapped, then this property can be omitted.

 If the TAPI entity is a local class, then this is the UUID of the GlobalClass parent of the entity of which this is part.

 CONDITION: Mandatory where there is a standard TAPI entity (normally the case).";

 }

 leaf measured-entity-native-id {

 type string;

 config false;

 description "The identifier (invariant over the life) of the instance of the measured entity at the source.";

 }

 leaf measured-entity-device-native-name {

 type string;

 config false;

 description "The name of the device (as used by the device) that includes the measured entity.

 CONDITION: Mandatory where the device name is necessary to interpret the detector native id.";

 }

 leaf condition-normalized-name {

 type string;

 config false;

 description "It is often the case that there is a Condition Name that is commonly used or even standardized that has not been used by the source of the condition.

 If this is the case, then that common/standard name is provided in via this property.

 CONDITION: Mandatory where the condition has a normalized name.";

 }

 leaf measured-entity-class {

 type tapi-common:object-type;

 config false;

 description "The TAPI class of the measured entity.

 If the class cannot be identified as it cannot be mapped, then this property can be omitted.

 CONDITION: Mandatory where the measured entity class is known.";

 }

 leaf detector-uuid {

 type tapi-common:uuid;

 config false;

 description "The uuid of the TAPI entity that represents the detector.

 If the TAPI entity cannot be identified as it cannot be mapped, then this property can be omitted.

 Where the detector is not modelled independently, but instead is a part of the measured entity such that it is identified by a 'local id' built from the UUID of the measured entity and
 the condition name, then this property may be omitted.

 CONDITION: Mandatory where the detector has a normalized form with a uuid.";

 }

 leaf detector-native-id {

 type string;

 config false;

 description "The identifier (invariant over the life) of the instance of the detector at the source (e.g. a device).

 The string reported in this field must include the:

 - device identifier

 - one or more resource identifiers including that of the measured entity

 It need not include the condition name.";

 }

 leaf condition-detector-type {

 type condition-detector-type;

 config false;

 description "Identifies the type of detector.

 This drives the conditional augmentation.

 Some types of detector may not need specific augmentation.";

 }

 leaf-list measured-entity-local-id {

 type string;

 config false;

 description "Where the measured entity is a local class and hence does not have a UUID the local ID is provided in conjunction with the parents ID.

 The parent may also be a local class in which case its ID is a a local ID along with its parent ID.

 There will be a parent which is a global class which then supplies a UUID.

 The ID of the entity that is being measured is the combination of the UUID and the ordered list of local IDs.

 The local ID may not be provided where:

 - the report about a global class

 - the report is relying on the detectorNativeId.

 CONDITION: Mandatory where the measured entity is a local class and hence needs local id as well as parent uuid.";

 }

 description "ConditionDetector represents any monitoring component that assesses properties of something and determines from those properties what conditions are associated with
 the thing.

 For example, a thing might be 'too hot' or might be 'unreliable'.

 The monitor may a multi-state output.

 The ConditionDetector lifecycle depends upon the lifecycle of the thing it is monitoring (this is a general OAM model consideration).

 The entityKey in the AppendLogRecordHeader for a ConditionDetector record is the nativeDetector Id which may be derived from other ids (most robustly, nativeOwningEntityName
 (to which the detector is associated) +
 natveConditionName).";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 54 of 110 © 2022 Open Networking Foundation

• Mandatory:

• measured-entity-native-id

• detector-native-id

• condition-detector-type

• Conditional Mandatory:

• measured-entity-device-native-name

• condition-native-name56:

▪ This is a Mandatory attribute if the TAPI 2.1.3 approach (augmenting with alarm-

condition-detector-detail) is being used.

▪ This is optional if the detected-condition augment is being used as it duplicates the

mandatory property detected-condition-native-name of that augment

• condition-normalized-name:

▪ This is a Mandatory attribute if the TAPI 2.1.3 approach (augmenting with alarm-

condition-detector-detail) is being used and if there is a normalized name available for

the condition

▪ This should not be used if detected-condition augment is being used as it duplicates

the mandatory property detected-condition-native-name of that augment

• measured-entity-class57

• measured-entity-uuid

• measured-entity-local-id

• detector-uuid58

56 It is vital that the alarms stated on TAPI reflect what would be seen at the device regardless of the mappings etc. such that the

operator can reference the vendor definitions etc.
57 Some devices report alarms related to entities external to the device. In these cases, there is no TAPI entity to report against.
58 The detector may have a distinct UUID or may simply have a UUID constructed from that of the entity for which detection is

being performed (e.g., a CEP) along with the detector name.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 55 of 110 © 2022 Open Networking Foundation

The following table provide details on the types used in the structure above.

Figure 23 Yang: condition-detector

 typedef condition-detector-type {

 type identityref {

 base CONDITION_DETECTOR_TYPE;

 }

 description "The type of condition detector.

 The type relates to the characteristics of the detection and reporting strategies.

 This drives the conditional augment.";

 }

….

 identity CONDITION_DETECTOR_TYPE {

 description "none";

 }

 identity CONDITION_DETECTOR_TYPE_ALARM_DETECTOR {

 base CONDITION_DETECTOR_TYPE;

 description "A type of detector used for reporting problems.

 The underlying raw detector is two state from the perspective of the monitored condition.

 The detector is asymmetric in nature.

 One state indicates that there is a problem and the other state indicates that there is no problem.";

 }

 identity CONDITION_DETECTOR_TYPE_EVENT_DETECTOR {

 base CONDITION_DETECTOR_TYPE;

 description "A type of detector used for reporting events.";

 }

 identity CONDITION_DETECTOR_TYPE_PM_THRESHOLD_DETECTOR {

 base CONDITION_DETECTOR_TYPE;

 description "A type of detector used for reporting threshold crossing events related to performance monitoring.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 56 of 110 © 2022 Open Networking Foundation

4.5.2 detected-condition from tapi-fm.yang

TAPI 2.4 provides alarm and performance monitoring structures that are common for both tapi-notification

and tapi-streaming ensuring that the two use a common approach.

The detected-condition replaces the alarm-condition-detector from TAPI 2.1.3.

Figure 24 Yang: detected-condition

 grouping detected-condition {

 leaf detected-condition-name {

 type tapi-common:detected;

 description "The name of the Condition, e.g. an alarm probable cause or the PM metric name which threshold crossing alert refers to.

 ITU-T probable cause of the failure (detected fault).

 G.806:

 - fault: A fault is the inability of a function to perform a required action. This does not include an inability due to preventive maintenance, lack of external
 resources or planned actions.

 - fault cause: A single disturbance or fault may lead to the detection of multiple defects.

 - defect: The density of anomalies has reached a level where the ability to perform a required function has been interrupted.

 Defects are used as input for performance monitoring, the control of consequent actions and for the determination of fault causes.

 A fault cause is the result of a correlation process which is intended to identify the defect that is representative of the disturbance or fault that is causing
 the problem.

 - failure: The fault cause persisted long enough to consider the ability of an item to perform a required function to be terminated. The item may be
 considered as failed; a fault has now been detected.

 - alarm: A human-observable indication that draws attention to a failure (detected fault) usually giving an indication of the severity of the fault.";

 }

 leaf detected-condition-native-name {

 type string;

 description "The name used for the Condition by the source of the information.";

 }

 leaf detected-condition-native-info {

 type string;

 description "Additional info of the Condition provided by the source of the information.";

 }

 leaf detected-condition-qualifier {

 type string;

 description "Further information necessary to precisely/uniquely/unambiguously identify the Condition Detector.

 For Equipment and Processing Alarm Category, e.g. the local id of the ActualNonFieldReplaceableModule which identifies exact alarm source.

 For Environment Alarm Category, e.g. on the same Device instance may appear more Environmental alarm notifications with same Alarn Name.

 For Connectivity Alarm Category in case that same CEP instance includes e.g. both OTS and OMS monitoring layers.";

 }

 leaf oam-job {

 type tapi-common:uuid;

 description "Reference to the OamJob instance for which the Condition detection has been configured, e.g. configuration of PM metrics and threshold
 values and/or of the (alarm) Conditions.

 The reference is defined as simple UUID because TapiFm does not import TapiOam.

 MEF 35.1: Identification of the PM Session for which the TCA Function was configured.";

 }

 container pm-metric-info {

 uses pm-metric-info;

 description "The PM metric information.";

 }

 container detector-info {

 uses detector-info;

 description "The detector info for alarm and TCA.";

 }

 container simple-detector {

 uses simple-detector;

 description "The simple detector state.";

 }

 description "A record of the state of a Detector where that Detector has two underling states that are of asymmetric importance.

 For example, an alarm or a threshold crossing alert detected on a given resource.

 A Condition Detector represents any monitoring component that assesses properties of something and determines from those properties what conditions
 are associated with the thing.

 For example, a thing might be 'too hot' or might be 'unreliable'.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 57 of 110 © 2022 Open Networking Foundation

For this structure a solution shall provide the following support:

• Mandatory:

• detected-condition-name

▪ Note that the enumerated string “ALARM_NAME_NATIVE” may be used where

there is no standard name available.

• detected-condition-native-name59

• Conditional Mandatory:

• detected-condition-native-info: Mandatory where there is additional information to convey.

• detected-condition-qualifier: Mandatory where the condition requires further qualification (as

for the examples provided in the YANG description)

• oam-job: Mandatory where there is an associated oam-job

• pm-metric-info: Mandatory where the information relates to a pm-metric

▪ Note that performance monitoring threshold crossing alerts are not covered in detail in

this document.

• detector-info: Mandatory where detector-category is to be provided along with other legacy

properties.

• simple-detector: Mandatory where the detector has state (e.g., for an alarm)

The following tables provide details on the types used in the structure above.

59 It is vital that the alarms stated on TAPI reflect what would be seen at the device regardless of the mappings etc. such that the

operator can reference the vendor definitions etc.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 58 of 110 © 2022 Open Networking Foundation

Figure 25 Yang: pm-metric

For this structure a solution shall provide the following support:

• Conditional Mandatory:

• pm-metric-info: Mandatory where the specific value is available and relevant.

• threshold-configured-value: Mandatory where the threshold is configurable.

• granularity-period: Mandatory where there is no oam-job related and the period is not

obvious from the property name.

 grouping pm-metric-info {

 container threshold-observed-value {

 uses tapi-common:pm-parameter-value;

 description "The observed value of PM metric to which TCA refers to.";

 }

 container threshold-configured-value {

 uses tapi-common:pm-parameter-value;

 description "The configured threshold value of PM metric to which TCA refers to.";

 }

 container granularity-period {

 uses tapi-common:time-period;

 description "The granularity period or measurement interval time.

 This parameter may be necessary when the reference to the OAM Job is not included, e.g. in case the OAM job is not visible at the
 management interface.";

 }

 description "Information associated to a Threshold Crossing Alert.";

 }

…

 grouping pm-parameter-value {

 leaf pm-parameter-value {

 type decimal64 {

 fraction-digits 7;

 }

 description "The PM Parameter value. The type Real allows the representation of e.g. either gauges or counters.";

 }

 leaf pm-parameter-unit {

 type string;

 description "The PM Parameter unit.";

 }

 description "PM metric value.";

 }

…

 grouping time-period {

 leaf value {

 type uint64;

 description "The specific value of the time period.";

 }

 leaf unit {

 type time-unit;

 description "The unit of measurement of the time period.";

 }

 description "Period of time.";

 }

 typedef time-unit {

 type enumeration {

 enum YEARS {

 description "none";

 }

 enum MONTHS {

 description "none";

 }

 enum DAYS {

 description "none";

 }

 enum HOURS {

 description "none";

 }

 enum MINUTES {

 description "none";

 }

 enum SECONDS {

 description "none";

 }

 enum MILLISECONDS {

 description "none";

 }

 enum MICROSECONDS {

 description "none";

 }

 enum NANOSECONDS {

 description "none";

 }

 enum PICOSECONDS {

 description "none";

 }

 }

 description "Units of measurement of the time.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 59 of 110 © 2022 Open Networking Foundation

Figure 26 Yang: detector-info

 grouping detector-info {

 leaf perceived-severity {

 type perceived-severity-type;

 description "The severity of the detected Condition.";

 }

 leaf service-affecting {

 type service-affecting;

 description "The impact on the service.";

 }

 leaf is-acknowledge {

 type boolean;

 description "Information on operator acknowledgement.";

 }

 leaf detector-category {

 type detector-category;

 description "The Detector (alarm) category, based on ITU-T X.733.";

 }

 description "(Legacy) information associated to a Condition (alarm).";

 }

…

 typedef perceived-severity-type {

 type enumeration {

 enum CRITICAL {

 description "ITU-T G.7710/X.733/M.3100: Indication for a service-affecting condition. Immediate corrective action is required.";

 }

 enum MAJOR {

 description "ITU-T G.7710/X.733/M.3100: Indication for a service-affecting condition. Urgent corrective action is required.";

 }

 enum MINOR {

 description "ITU-T G.7710/X.733/M.3100: Indication for a non-service-affecting condition. Corrective action should be taken in order
 to prevent more serious fault.";

 }

 enum WARNING {

 description "ITU-T G.7710/X.733/M.3100: Indication for a potential or impending service-affecting fault. Further diagnosis should be
 made.";

 }

 enum CLEARED {

 description "Included only for some possible backward compatibility purpose. It should not be used to assign a severity to a failure.

 ITU-T G.7710: The severities 'cleared' and 'indeterminate' defined by [ITU-T X.733] are not included in Table 2, as it is assumed
 that these are not to be used to assign a failure.";

 }

 }

…

 typedef service-affecting {

 type enumeration {

 enum SERVICE_AFFECTING {

 description "The service is affected by the detected Condition.";

 }

 enum NOT_SERVICE_AFFECTING {

 description "The service is not affected by the detected Condition.";

 }

 enum UNKNOWN {

 description "The impact on the service is unknown.";

 }

 }

 description "The possible impact on the service.";

 }

…

 typedef detector-category {

 type identityref {

 base DETECTOR_CATEGORY;

 }

 description "The Detector (alarm) category, based on ITU-T X.733.";

 }

…

 identity DETECTOR_CATEGORY {

 description "none";

 }

 identity DETECTOR_CATEGORY_EQUIPMENT {

 base DETECTOR_CATEGORY;

 description "none";

 }

 identity DETECTOR_CATEGORY_ENVIRONMENT {

 base DETECTOR_CATEGORY;

 description "none";

 }

 identity DETECTOR_CATEGORY_CONNECTIVITY {

 base DETECTOR_CATEGORY;

 description "none";

 }

 identity DETECTOR_CATEGORY_PROCESSING {

 base DETECTOR_CATEGORY;

 description "none";

 }

 identity DETECTOR_CATEGORY_SECURITY {

 base DETECTOR_CATEGORY;

 description "none";

 }

 identity DETECTOR_CATEGORY_UNDEFINED {

 base DETECTOR_CATEGORY;

 description "none";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 60 of 110 © 2022 Open Networking Foundation

For this structure a solution shall provide the following support:

• Conditional Mandatory:

• perceived-severity: Mandatory where a client system requires this

▪ CLEARED should not be used. A cleared alarm is a DELETE/TOMBSTONE.

▪ Perceived-severity provides a simplistic valuation of the alarm. The relevance of this

property is expected to reduce over time.

• service-affecting: Mandatory where service impact is known. Default assumed to be

UNKNOWN.

▪ service-affecting provides a simplistic valuation of the alarm. The actual impact is

determined by detailed assessment of resource topology and usage. The relevance of

this property is expected to reduce over time.

• is-acknowledged: Mandatory where there is acknowledgement information related to the

alarm and this is required by the client.

▪ Is-acknowledged relates to traditional per alarm manual operation. The relevance of

this property is expected to reduce over time.

• detector-category: Mandatory where category is required by the client.

▪ detector-category is a relatively blunt categorization of an alarm where the alarm and

its source dictate category (this property is derivable). The relevance of this property

is expected to reduce over time.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 61 of 110 © 2022 Open Networking Foundation

Figure 27 Yang: simple-detector

For this structure a solution shall provide the following support:

• Mandatory:

• simple-detector-state: Where state depends upon underlying system capability

▪ For alarms

▪ ACTIVE and CLEAR (used in the DELETE event) are mandatory

▪ INTERMITTENT and FLEETING depend upon underlying alarm processing

▪ For PM thresholds

▪ ACTIVE and CLEAR used where there is an explicit clear

▪ ACTIVE_NO_EXPLICIT_CLEAR used where there is no explicit clear.

 grouping simple-detector {

 leaf simple-detector-state {

 type simple-detector-state;

 description "The (simple) state of the Detector.

 The Detector state accounts for the time characteristics of the detected Condition.";

 }

 description "Information regarding the (simple) state of the Detector.";

 }

…

 typedef simple-detector-state {

 type identityref {

 base SIMPLE_DETECTOR_STATE;

 }

 description "The states of the detector.";

 }

…

 identity SIMPLE_DETECTOR_STATE {

 description "none";

 }

 identity SIMPLE_DETECTOR_STATE_ACTIVE {

 base SIMPLE_DETECTOR_STATE;

 description "The detector is indicating the operation of the monitored entity is not within acceptable bounds with respect to the specific
 condition measured.

 If INTERMITTENT is supported there may be a requirement for persisted unacceptable operation after a problem occurs before
 ACTIVE is declared. An alternative may be to declare INTERMITTENT.

 Where INTERMITTENT is supported, ACTIVE indicates the stable presence of a problem.";

 }

 identity SIMPLE_DETECTOR_STATE_CLEAR {

 base SIMPLE_DETECTOR_STATE;

 description "The detector is indicating the operation of the monitored entity is within acceptable bounds with respect to the specific
 condition measured.";

 }

 identity SIMPLE_DETECTOR_STATE_INTERMITTENT {

 base SIMPLE_DETECTOR_STATE;

 description "The detector is indicating the operation of the monitored entity is intermittently not within acceptable bounds with respect to
 the specific condition measured.

 INTERMITTENT support is optional. Where it is supported there may be a requirement for persisted unacceptable operation after a
 problem occurs before ACTIVE or INTERMITTENT is declared.";

 }

 identity SIMPLE_DETECTOR_STATE_FLEETING {

 base SIMPLE_DETECTOR_STATE;

 description "Event has a very short life (Active-Clear), hence is notified/streamed after its occurrence.";

 }

 identity SIMPLE_DETECTOR_STATE_ACTIVE_NO_EXPLICIT_CLEAR {

 base SIMPLE_DETECTOR_STATE;

 description "Same as Active, but an explicit transition to Clear is not foreseen.

 This e.g. applies to PM metrics which can only increase (counters), hence the 'clear' criteria is conventionally the end of a
 measurement period.";

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 62 of 110 © 2022 Open Networking Foundation

Note that simple-detector provides a broader range of options than that provided by detector-state in TAPI

2.1.3.

4.5.3 alarm-condition-detector-detail from tapi-streaming.yang

In TAPI 2.1.3 alarm reporting was supported by an augmentation of detected-condition with alarm-

condition-detector detail. This approach has been deprecated in TAPI 2.4 in favor of the approach detailed in

tapi-fm in section 4.5.2 detected-condition from tapi-fm.yang on page 56. The TAPI 2.1.3 approach

described in this section is still available for use but is not recommended.

The condition-detector can be augmented with properties related to alarms as follows:

Figure 28 Yang: alarm-detector and legacy-properties (descriptions omitted)

For this structure, a solution shall provide the following support:

• Mandatory:

o alarm-detector-state: indicates whether the alarm is ACTIVE, INTERMITTENT or CLEAR.

This is the essential state of the alarm.

• Optional (see following text):

o perceived-severity

o service-affect

o is-acknowledged

Many solutions and operational practices continue to use the historic schemes (see section 6.4.8 Traditional

alarm reporting and legacy-properties on page 105). On that basis, the schemes are supported but relegated

to optional. At this point in the evolution of control solutions legacy-properties are probably mandatory,

however, it is anticipated that as control solutions advance the legacy-properties will become irrelevant.

The legacy-properties are:

grouping alarm-condition-detector-detail {

 leaf alarm-detector-state {

 type alarm-detector-state;

 config false;

 }

 container legacy-properties {

 config false;

 uses legacy-properties;

 }

}

…

grouping legacy-properties {

 leaf perceived-severity {

 type perceived-severity;

 }

 leaf service-affect {

 type service-affect;

 }

 leaf is-acknowledged {

 type boolean;

 }

 leaf-list additional-alarm-info {

 type string;

 }

 }

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 63 of 110 © 2022 Open Networking Foundation

• perceived-severity: A network device will provide an indication of importance for each alarm. This

property indicates the importance. In some cases, the severity may change through the life of an

active alarm.

• service-affect: Some network devices will indicate, from its very narrow viewpoint, whether service

has been affected.

• is-acknowledged: Network devices offer a capability to acknowledge alarms (to stop the bells

ringing). Often an EMS will offer a similar capability. This property reflects the current acknowledge

state.

• additional-alarm-info: Often, alarms raised by network devices have additional information. This

property can be used to convey this.

Although originating from network device control, the above properties may be supported by other device

types.

4.6 Alarm Identifier and location

This section further clarifies the rationale for the choices of mandatory and optional identifiers and provides

further requirements.

• The identifier of the alarm is essentially the identifier of the detector (detector-native-id). This shall

be based upon native device values to ensure consistency over time and across resilient systems etc.

• The detector is at a functional location in the solution and detects a particular condition at that

location. It shall be identified by these two key properties. i.e., functional location and

condition.

• The detector is long lived and may emit many active and clear events through its life.

• The alarm will normally be reported via TAPI against a valid TAPI entity and hence the overall

location of the detector will include the identifier of the TAPI entity.

• The report shall also include information in the location from the device in device

terminology to enable the relating of information acquired directly at the device with

information acquired at a higher system.

• The TAPI model allows for alarms without a full TAPI resource id, although this should be a

rare case.

• Where the detector relates to a thing that is not fully modeled in TAPI, e.g., a power supply, then:

• The alarm shall be reported against a containing TAPI entity.

• The identifier of that detector shall include a meaningful index that include interpretable sub-

structuring to describe the position of the detector (again based upon device values)

4.7 Alarm tombstone behavior

As noted earlier, the alarm clear shall be followed immediately by a Tombstone record. As also noted, the

deletion of an alarm detector, where the alarm was active prior to the deletion, shall cause at least the

logging of a Tombstone record. Allowing for compaction delay:

1. The Tombstone/clear shall cause the compaction process to remove the corresponding active alarm.

2. The Tombstone shall also cause the compaction process to remove the clear (that immediately

precedes it)

3. The Tombstone shall eventually be removed as a result of tombstone retention duration being

reached.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 64 of 110 © 2022 Open Networking Foundation

4.8 Time

Whilst the timestamp for the alarm is not a provider responsibility (other than for provider generated alarms,

e.g., disc full), there is an expectation of correct behavior.

A versatile approximate-data-and-time structure has been used for the event-time-stamp to allow

representation of inaccuracies.

The time stamp for an alarm shall be as follows:

• The timestamp from the ultimate source, representing the time of occurrence of the event that

triggered the raising or clearing of the alarm, shall be preserved through the entire passage of the

alarm information through the source device, and any chain of controllers, and presented in the

appropriate field in the TAPI log-record-body.

• Where the source does not provide a time stamp, a timestamp shall be added by a provider as

the alarm progresses through the solution. This timestamp shall be marked with a spread

value BEFORE

• In general, it is extremely important to accurately capture the leading edge of a problem. Hence, for

each detector, the time of first occurrence of an active alarm after a "long" period of clear is the most

significant time.

• The time of clearing can be less precise.

• The log record also has a log-append-time-stamp.

• Ideally, the time of occurrence of an alarm should be the time of the entry into the confirmed

assessment as to whether an alarm has occurred (and not the time of exit from that assessment).

• Likewise, the time of clearing of the alarm should be the time of entry into the confirmed

assessment as to whether an alarm has cleared.

4.9 Detected Condition normalization

The alarm detected condition shall be presented:

• Minimally: In native form, i.e., as provided by the Device

• Additionally: In normalized form, i.e., complying with the list of standard alarm/TCA types in the

normative [RIA AT]

An alternative is to provide translation metadata to enable normalization from the native form at the client.

This metadata can be provided separately from the alarm stream and related to each detector with a relevant

mapping. There is not standard expression for translation metadata.

4.10 Meaningful detection (device or any other source)

Under certain circumstances a detected condition may:

• Become meaningless, e.g., when a remote function is disabled, in which case the alarm shall be

tombstoned.

• This may require function disable action to be taken on the local system.

• Have inverted meaning, e.g., when signal should not be present on a port, in which case, if there is a

"signal not present" alarm active, then it should be tombstoned and if there is a signal present a

"signal present" alarm should be raised.

• This may result from some local action on the entities supporting signal flow

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 65 of 110 © 2022 Open Networking Foundation

• Essentially, the "signal not present" condition detection becomes meaningless, and a "signal

present" condition detection becomes meaningful.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 66 of 110 © 2022 Open Networking Foundation

5 Use Cases

5.1 Use Case General Considerations

5.1.1 TAPI Context

Initial TAPI deployments using TAPI 2.4 are applied to solutions where a provider is feeding a client from a

single context that is taking a view of the entire controlled network for all layers.

5.1.2 Underlying behavior

It is assumed that at start up the provider will form the necessary full context and will initialize various

streams. It is also assumed that the provider will recover from any internal problems to ensure that the

streams allow the client to achieve eventual consistency.

There are a number of critical behaviors assumed from the underlying system (essentially use cases for other

components):

• TAPI is fed from a reliable source that has necessary notifications and access to current state etc.

(e.g., has alarm notifications).

o I.e., the underlying system through the provider to the network device is reliable

(appropriate pipelines, etc.) so that the provider cannot lose eventual consistency with the

Devices.

o The solution may use compacted stream in which case the compaction delay and tombstone

retention are compatible with TAPI needs.

• The notifications are well behaved both at the network device level and within the provider, e.g., for

alarms such that:

o An alarm will have a defined active and a defined clear.

o Only legal transitions (clear to active and active to clear etc.) are represented.

• If the resource is deconfigured60/deleted a Tombstone will be logged for each dependent resource

(e.g., alarm detector) related to the resource that was indicating active just prior to the

deconfiguration/deletion.

• If a circuit pack is configured the states of any dependent resources will be reported appropriately,

e.g., if an alarm detector indicates active an active alarm record will be logged.

• If a circuit pack is deconfigured any dependent resource will be tombstoned, e.g., any dependent

alarm detectors that are active will have Tombstones logged.

5.1.3 Model conformance

Where a compacted log stream is used for gaining and maintaining alignment (see ST-0.3), the entities

should comply with TAPI Yang and with the “Relevant parameters” definitions in the specific use case set

out in [ONF TR-547] as explained in the following table. This table is for guidance only. Where the table

does not reflect [ONF TR-547], clearly, [ONF TR-547] takes precedence. All properties and structures

usage specified in [ONF TR-547] should be supported.

Note that some entity types:

• vary in parameters depending upon the layer-protocol (as described in [ONF TR-547] use cases).

• have additional NVP properties defined in [ONF TR-547].

60 Most, but not all deconfiguration actions will result in removal of entities, hence some deconfiguration actions will not cause

tombstones.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 67 of 110 © 2022 Open Networking Foundation

Table 2: Parameters per entity type

Entity Type (class/data-type) Required Parameters stated in

TR-547 Use Case/Section

Comments

context Use Case 0a

service-interface-point Use Case 0a Depends upon layer protocol choice.

profile

topology Use Case 0b

node Use Case 0b

node-edge-point Use Case 0b, 0d Depends upon layer protocol choice.

node-rule-group Use Case 0b

rule Use Case 0b

inter-rule-group

link Use Case 0b

physical-route Use Case 0c.1

physical-route-element Use Case 0c.1

connectivity-service Use Case 1.0, 1a, 3a, 3b, 3c, 3d, 3e,

3f, 5b, 5c, 6a, 6b, 7a, 7b, 8, 9, 12c

and Section 6.4

connectivity-service-end-point Use Case 1.0, 1a, 1c, 1e, 1f, 1g, 2a,

2b, 2c, 5b, 17b

Depends upon layer protocol choice.

connection Use Case 1.0, 5b Including switch control and switch

connection-end-point Use Case 1.0, 1c, 17b, 17e Depends upon layer protocol choice.

route Use Case 1.0

switch-control Use Case 5b

switch Use Case 5b

equipment Use Case 4b

holder Use Case 4b

device Use Case 4b

physical-span Use Case 4b

path-computation-context Use Case 12a

path-computation-service Use Case 12a

path-service-end-point Use Case 12a

topology-constraint Use Case 12a

routing-constraint Use Case 12a

objective-function Use Case 12a

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 68 of 110 © 2022 Open Networking Foundation

Entity Type (class/data-type) Required Parameters stated in

TR-547 Use Case/Section

Comments

optimization-constraint Use Case 12a

oam-service Use Case 17a, 17e

oam-service-point Use Case 17a, 17e

meg Use Case 17a

mep Use Case 17a

mip Use Case 17a

current-data Use Case 17a

history-data Use Case 17a

otu-fec-performance-data Use Case 17a

odu-error-performance-data Use Case 17a

pm-threshold-data Use Case 17a

oam-job Use Case 17a, 17d

oam-profile Section 6.8.2 and Use Case 17a, 17c

pm-parameter Section 6.8.2 and Use Case 17b

threshold-config Section 6.8.2 and Use Case 17b

connectivity-oam-job Use Case 17b

connectivity-oam-service Use Case 17b

connectivity-oam-service-point Use Case 17b

pm-data Use Case 17c

5.1.4 Use Case Overview

The use cases are divided into 6 groups. Use Case group:

• ST-0.n deal with streaming infrastructure

• ST-1.n deal with building and operation a stream on a provider

• ST-2.n deal with strategies for the client to maintain alignment with the provider

• ST-3.n detail the approach for the client to maintain alignment with resources and with alarms

• ST-4.n deal with whole context considerations

• ST-5.n deal with streaming through the lifecycle of a service

5.2 Streaming infrastructure use cases

The following use cases are described briefly here and then illustrated in the sequence diagram (see Figure

29 and Figure 30). The use cases assume that Websockets over TCP is the chosen connection/protocol

method.

The following uses cases are initiated roughly in the order set out below. The interdependence between the

use cases is illustrated by the sequence diagram. The use cases in this section are normative.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 69 of 110 © 2022 Open Networking Foundation

5.2.1 Use Case ST-0.1: Get Auth Token

Number ST-0.1

Name Get Auth Token

Process/Area Authorization and Authentication

Brief

description
This use case describes how the client acquires the Auth Token.

Preconditions The client knows the provider address and where to get the Auth Token

Type Acquiring information

Description

and workflow

The client acquires the Auth Token, for example, using method described in 5.10.2.

See sequence diagram “Prepare” phase (Figure 29 and Figure 30).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 70 of 110 © 2022 Open Networking Foundation

5.2.2 Use Case ST-0.2: Discover supported and available streams, then select available streams

This use case deals with retrieval of data conformant with 3.7.

Number ST-0.2

Name Discover supported and available streams, then select available streams

Process/Area Streaming infrastructure

Brief

description
This use case describes how the client acquires information on supported and available streams.

Preconditions UC ST-0.1 has run successfully

Type Acquiring information

Description

and workflow

The client gets all supported-stream-type structures from the context.

The client examines record-content for streams that support entities or combinations of entities of interest.

For each stream type that supports the appropriate entity/entity combination, the client examines:

1. log-storage-strategy: to identify a stream that has the right characteristics (e.g., COMPACTED)
2. log-record-strategy: to identify a stream that has the right record characteristics (e.g., WHOLE_ENTITY)
3. record-trigger: to identify a stream that has the right record generation characteristic (e.g., ON_CHANGE)
4. Other log parameters to tune its operation to suit timer settings etc.

The client examines available-streams to find running streams that reference the stream-types identified in supported-
stream-type-ref.

For each available-stream that is of a relevant stream-type, the client examines:

1. stream-state: to determine if the stream is operating.
2. connection-protocol: to identify a stream that offers a compatible protocol for connection (e.g., WEBSOCKETS)
3. connection-address: to determine where to connect

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 71 of 110 © 2022 Open Networking Foundation

5.2.3 Use Case ST-0.3: Connect to Stream and align - new client

This use case deals with use of the stream which is explained further in 3.9 with content as in 3.10 and

behavior as described in 3.11, 3.12, 3.13, 3.14, 3.16 and 3.17.

Number ST-0.3

Name Connect to Stream and align - new client

Process/Area Streaming Infrastructure

Brief

description
This use case describes the connection of a client to a stream and the client acquiring stream records.

Preconditions
UC ST-0.1 has run successfully. The client has gained knowledge of the available streams via some

mechanism (such as UC ST-0.2)

Type Gaining and maintaining alignment

Description

and workflow

The client uses the results from UC ST-0.1:

1. Use the provided endpoint address and method to connect.

• The client will connect with the null token61 to cause the provider to stream from the oldest

record in the stream (offset zero)

2. On connection both the client and provider stream processes are started, and the necessary

communication is setup between client and provider.

• As a result, the pipeline is started.

• The provider reads the appropriate log from offset zero filling the pipeline and responding

to ongoing demand.

3. The client demands from the provider and buffers as appropriate.

4. The client stores in a repository (e.g., Log, database etc.)

5. The client maintains a record of last commit (see also ST-2.1)

Through the above activities the client works through the stream from initial record towards the most recent

record

6. Passing the tombstone retention "point"

• It must take less than the tombstone retention period to reach the tombstone retention

"point" in the log.

• If it takes longer than the tombstone retention the connection will be dropped as

Tombstones for records already read may have been missed.

7. Passing the compaction "point"

• From this point onward the client will be getting a full view of changes.

8. Getting close to the head of the stream

• The client is well aligned with little lag.

Assuming that the client is engineered to match the provider stream rate, the client should achieve a steady

state and continue to be reading records close to the head of the stream, i.e., close to the most recent record

logged by the provider.

See sequence diagram “Connect” and “Streaming” phases where the stream starts from “offset 0” (Figure 29

and Figure 30).

As changes occur in the network etc. records of the changes are appended to the appropriate logs and then

streamed to the client.

61 The token referred to here is the token from the log-record-header (see 3.10 Record content on page 23)

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 72 of 110 © 2022 Open Networking Foundation

5.2.4 Use Case ST-0.4: Client maintains idle connection

Number ST-0.4

Name Client maintains idle connection

Process/Area Streaming Infrastructure

Brief

description
This use case describes how the client will maintain an idle connection

Preconditions UC ST-0.3 has run successfully

Type Maintaining Connection

Description

and workflow

1. The client uses protocol specific mechanisms to ensure that an idle connection is maintained open.

• E.g., the client periodically sends a uni-directional "Pong" frame on the connection

(https://tools.ietf.org/html/rfc6455#section-5.5.3) in order to keep an idle WebSocket

connection open.

• No response expected from the server.

• The server should expect a pong frame with appropriate timing.

As shown in Figure 29.

https://tools.ietf.org/html/rfc6455#section-5.5.3

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 73 of 110 © 2022 Open Networking Foundation

5.2.5 Use Case ST-0.5: Provider delivers event storm (or slow client) – bad day

The client takes advantage of log behavior as described in 3.17.

Number ST-0.5

Name Provider delivers event storm (or slow client) – bad day scenario

Process/Area Streaming Infrastructure

Brief

description
The provider(s) record events at a higher rate than the client can handle

Preconditions UC ST-0.3 has run successfully

Type Gaining and maintaining alignment

Description

and workflow

Note that the use case is written as a general description. A relatively common network example related to

alarms can be used. This example includes major intermittent failure in the network, for example, several

micro-bends with active mechanical vibration interference, overloaded client with reduce compute power

available.

1. The pipeline continues but the client is absorbing events at a rate slower than the production and

hence is slipping back down the log.

2. Eventually the client will slip back beyond compaction point.

3. If the problem resulted from excessive intermittent network activity the client will then benefit from

compaction as much of the intermittent noise will be eliminated by compaction

• The client will lose fidelity and will be sub-Nyquist sampling62 so may completely lose

some repeated fleeting events but regardless of the scheme used, the client would not be

able to maintain full alignment with history anyway because it has hit an engineering limit.

4. The client may hover in the compaction zone until its performance improves (via some mechanism

for compute power enhancement) or the network stabilizes.

• Note that the intention in future is to support sophisticated backpressure interaction

controlling intelligent filtering in the devices and network63. This would be coordinated by

the provider as client load problems are detected.

See sequence diagram “Streaming” phase (Figure 29 and Figure 30).

62 See https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
63 Note that this will be client induced server behavior. This assumes a single client scenario for TAPI… there is a single alarm

system etc. (perhaps resilient). It can work for multiple clients so long as there is a reasonable balance of engineering and some

priority scheme etc.

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 74 of 110 © 2022 Open Networking Foundation

5.2.6 Use Case ST-0.6: Provider delivers extreme event storm (or very slow client) – very bad day

The client takes advantage of log behavior as described in 3.17.

Number ST-0.6

Name Provider delivers extreme event storm (or very slow client) – very bad day scenario

Process/Area Streaming Infrastructure

Brief

description
The provider(s) record events at an extremely high rate, much higher than the client can handle

Preconditions UC ST-0.3 has run successfully

Type Gaining and maintaining alignment

Description

and workflow

Note that the use case is written in general. A relatively common network example related to alarms can be

used. This example includes extreme intermittent failure in the network, for example, timing faults and micro-

bends with active mechanical vibration interference, and a massively overloaded client with reduce compute

power available.

Streaming continues:

1. The pipeline continues as before, but the client rapidly slips back past the compaction point toward

the tombstone retention point.

• If the client passes tombstone retention, then there is a possibility of loss of eventual

consistency as deletes will be lost.

Failure occurs:

2. On passing the tombstone retention point the provider forces a disconnect by dropping the

connection

• The client and the provider kill the pipeline.

Realign: See UC ST-0.9

See sequence diagram “Streaming” and “Drop Connection” phases (Figure 29 and Figure 30).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 75 of 110 © 2022 Open Networking Foundation

5.2.7 Use Case ST-0.7: Short loss of communications

The client takes advantage of log behavior as described in 3.17.

Number ST-0.7

Name Short loss of communications

Process/Area Streaming Infrastructure

Brief

description

The communications between the client and provider fails briefly (less than tombstone retention time) then

recovers

Preconditions UC ST-0.3 has run successfully

Type Gaining and maintaining alignment

Description

and workflow

1. The client is consuming the stream with some delay.

2. On loss of comms the client and the provider kill the pipeline.

3. The log continues to progress on the provider side.

4. The client attempts to reconnect with the token of the most recently processed record.

• This will be successful assuming the comms has recovered and the time that the client has

been disconnected from the provider is no longer than the tombstone retention time.

5. The stream is filled by the provider from record with the next valid token after the token provided.

• In a short comms loss case, this token will be for the next record logged by the provider.

• The record with the provided token will still exist in the log.

• In a longer comms loss, compaction may have taken place such that the next valid token is

for a record that was not logged adjacently to the record with the token provided.

• The record with the provided token may no longer exist in the log as a result of

compaction.

6. Assuming that the client was near the most recent record of the log there should be no loss of fidelity

(and clearly eventual consistency will be maintained)

• If the client was in the compaction zone, then there will be some loss of fidelity (see UC

ST-0.6)

• If the client was close to tombstone retention, then the short comms loss may have the

behavior of a long comms loss (see UC ST- 0.8)

See sequence diagram “Streaming”, “Loss”, “Connect” (with specific token) and “Streaming” phases (Figure

29 and Figure 30).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 76 of 110 © 2022 Open Networking Foundation

5.2.8 Use Case ST-0.8: Long loss of communications requiring realignment

The client takes advantage of log behavior as described in 3.17.

Number ST-0.8

Name Long loss of communications

Process/Area Streaming Infrastructure

Brief

description
The communications between the client and provider fails then recovers

Preconditions UC ST-0.3 has run successfully

Type Gaining and maintaining alignment

Description

and workflow

1. The client is consuming the stream with some delay.

2. On loss of comms the client and the provider kill the pipeline.

3. The log continues to progress on the provider side.

4. The client/comms is down for longer than the tombstone retention.

5. The client attempts to reconnect with the token of the record that it previously successfully

processed.

6. The provider recognizes that this is outside tombstone retention and streams from the oldest record

etc.

• The client could take action to revert to the oldest record by not providing the token,

however, it will certainly take longer to align on average than relying on the provider

knowledge regarding whether alignment is required or not.

7. See UC ST-0.9

See sequence diagram “Streaming”, “Loss”, “Connect” (with specific token but forced to offset = 0) and

“Streaming” phases (Figure 29 and Figure 30).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 77 of 110 © 2022 Open Networking Foundation

5.2.9 Use Case ST-0.9: Client requires realignment

Number ST-0.9

Name Client requires realignment

Process/Area Streaming Infrastructure

Brief

description

For some reason, the provider determines that the client needs to be aligned/realigned or the client chooses to

realign

Preconditions UC ST-0.3 has run successfully

Type Gaining and maintaining alignment

Description

and workflow

1. The client reconnects with the previous token.

• Or connects with no token.

2. On connection both the client and provider stream processes are started, and the necessary

connection is made between client and provider.

• As a result, the pipeline is started.

3. The provider recognizes the token is outside tombstone retention and restarts the stream from the

oldest record.

4. The provider informs the client, via the stream, that it is back at oldest record (offset zero)

5. The client consumes the stream to regain alignment.

• If the provider is logging records at a significantly higher rate than the client can handle, the

client will stay beyond the tombstone retention and will get forced to realign.

• The client may utilize some efficient realignment strategies (see ST-2.2)

• The client is expected to use some form of “garbage collection” mechanism (such as “mark

and sweep”) to ensure that instances that are stored by the client but that are no longer

present in the provider stream are eliminated.

Assuming that the reason for the stream restart have gone, then the client will regain alignment (eventual

consistency) and will return to the state achieved in UC ST-0.3

See sequence diagram “Connect” (with specific token but forced to offset = 0) and “Streaming” phases

(Figure 29 and Figure 30).

5.3 Building and operating a stream on a provider

The following use cases describe how the provider should populate the stream. The details of storage and

internal mechanism sketched are for informative example, however, the data in the log is essentially

normative.

The use cases in this section are normative, except use case ST-1.3.

5.3.1 Use Case ST-1.1: Provider initializes and operates a stream

Number ST-1.1

Name Provider initializes and operates a stream

Process/Area Streaming operation

Brief

description
The provider initializes the streams from internal sources of current state and change

Preconditions

The provider is running, the streaming infrastructure is running and there is a defined stream to populate.

Note: As the activities associated with achieving the preconditions will vary significantly from solution to

solution and are internal detail, no use cases have been provided for this area.

Type Preparing and maintaining a stream

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 78 of 110 © 2022 Open Networking Foundation

Description

and workflow

1. The stream type is added to the supported-stream-type structure if not already listed.

• The data shall comply with the structure set out in section 3.7.1

2. The provider creates a stream for a specific information source.

3. The stream is added to the available-stream structure with a stream-state of “ALIGNING”.

• The data shall comply with the structure set out in section 3.7.2

• A client may connect to the stream from this moment on

• In this state no records will be streamed to a connected client

4. The provider populates the stream from internal stores of current state and change.

• The data shall comply with the structure set out in section 3.10

• [example] If the provider uses compacted-log-based streams internally, this may simply be

connecting to the appropriate internal streams from the oldest record and performing

necessary transformations to form the TAPI stream content.

• [example] If the provider, internally, uses a current state repository with a truncated stream

of changes, then it will populate the stream with appropriately transformed current state

followed by recent changes.

• It is possible that the current state repository does not record event time. If this is

the case, the event-time-stamp should take advantage of the approx-date-and-time

structure. The event-time-stamp should be the same as the log-append-time-stamp

with the spread set to “BEFORE”.

• Assuming the log has settings as per the example set out in 5.2.2 Use Case ST-0.2:

Discover supported and available streams, then select available streams on

page 70 (COMPACTED, WHOLE_ENTITY and ON_CHANGE), for current state and for

change notifications the provider appends a record of the whole entity instance using the

appropriate structure for the class with:

• record-type set to CREATE_UPDATE.

• record-content set to the appropriate object-class-identifier.

• entity-key set to a value appropriate for identifying instances of the object class

which may be a relative address for a local class, a uuid for a global class, or any

value that is unique/invariant for the entity instance in the stream such that a

CREATE_UPDATE, DELETE, TOMBSTONE etc. events all have the same

entity-key.

• For delete notifications the provider appends a record for the delete of the entity followed

by a Tombstone record for the entity-key of the delete

5. Once stream population is sufficient, the provider changes the stream-state to “ACTIVE”.

• The provider may be capable of making the stream “ACTIVE” prior to complete population

of the stream.

• In this state records will be streamed to any connected clients

• New create/change/delete events will be appended to the log as defined in step (4) above.

6. When the stream-state is “ACTIVE”, the provider may set the stream-state to “PAUSED” at any

point.

• In the “PAUSED” state no records will be streamed to connected clients. If the stream had

changed to “PAUSED” from “ACTIVE”, a client may continue to receive records from the

comms buffers for some time.

7. When the stream-state is “PAUSED”, the provider may set the stream-state to “ACTIVE” at any

point.

• At the transition from “PAUSED” to “ACTIVE” records will be streamed from the next

record after the one streamed just before the stream entered the “PAUSED” state.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 79 of 110 © 2022 Open Networking Foundation

5.3.2 Use Case ST-1.2: Provider recovers a stream after internal loss

Number ST-1.2

Name Provider recovers a stream after potential loss of data

Process/Area Streaming operation

Brief

description
The provider suffers some loss of data from a source feeding a stream

Preconditions The stream is in the available-stream list.

Type Preparing and maintaining a stream

Description

and workflow

1. The provider detects a potential loss of data from some area of the solution (the “area of concern”)

that provides data to a stream.

• This may be an internal component, perhaps where the provider solution is distributed, or

an external feed.

2. The provider may set the stream-state to “PAUSED” or “ALIGNING”.

• In “PAUSED” or ”ALIGNING” state no records will be streamed to connected clients. If

the stream had changed to “PAUSED”/”ALIGNING” from “ACTIVE”, a client may

continue to receive records from the comms buffers for some time.

3. The provider will ensure that the stream is populated with the correct state for the “area of concern”.

To do this it may fully rebuild the stream or may run an internal audit on the stream that ensures that

the stream is populated with the correct state for the area of concern. If any cases of misalignment

are detected the provider may set the stream-state to “ALIGNING”. The provider may realign the

stream using various methods, for example:

• For records of an entity that are found in the log feeding the stream where that entity is no

longer at the source and most recent record is not of record-type “TOMBSTONE” the

provider will append a Tombstone for the entity

• For an entity that is found at the source but where there are no records in the log that is

feeding the stream or there are only “DELETE” or “TOMBSTONE” records the Provider

will append the details of the current state of the entity (taking advantage of approx.-date-

and-time as necessary)

• The provider will validate as appropriate that the latest record in the log for each entity that

exist in the area of concern is aligned with the current state of that entity. If the entity in the

log is not aligned the provider will append a record that reflects the current state (taking

advantage of approx-date-and-time as necessary).

4. Once stream population is sufficient, the Controller changes the stream-state to “ACTIVE”.

• The stream may have remained “ACTIVE” throughout the process.

• In this state records will be streamed to any connected clients.

• New create/change/delete events will be appended to the log.

5. As a result of the above process the client should be returned to a state of “eventually consistent”

with the state of presented context with no need to take any specific action.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 80 of 110 © 2022 Open Networking Foundation

5.3.3 Use Case ST-1.3: Provider recovers a stream after an upgrade

Note that this use case is informative.

Number ST-1.3

Name Provider recovers a stream after an upgrade

Process/Area Streaming operation

Brief

description
The provider is upgraded

Preconditions The stream is in the available-stream list.

Type Preparing and maintaining a stream

Description

and workflow

There are two distinct sub-cases:

1. The stream log persists through the upgrade: An approach similar to UC ST-1.2 could be taken

where the stream log is updated with changes that occurred during the upgrade where an approach

similar to UC ST-2.2 (“mark and sweep”) is used to clean up the stream. Again, approx-date-and-

time could be used.

2. The stream log is lost during the upgrade: An approach similar to UC ST-1.1 could be taken. When

the client connects with the previous token UC ST-0.3 will be run.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 81 of 110 © 2022 Open Networking Foundation

5.4 Client maintains alignment – Example strategies and approaches

This section provides further clarification of earlier use cases. The use cases in this section are informative.

5.4.1 Use Case ST-2.1: Client aligns with a stream

The client prepares for realignment during the initial alignment phase. This use case embellishes ST-0.3 and

is provided as an example of a client solution.

Number ST-2.1

Name Client aligns with a stream

Process/Area Streaming Infrastructure

Brief

description
The client connects to provider and aligns

Preconditions
UC ST-0.1 has run successfully. The client has gained knowledge of the available streams via some

mechanism (such as UC ST-0.2)

Type Gaining and maintaining alignment

Description

and workflow

1. Client prepares to connect to a stream for the first time by

• Setting current-stream-alignment-attempt-counter to 1 for the stream (stream-id)

• Setting the alignment-attempt-start-time to current time.

2. Client connects to the stream and receives records (“simple update”) as per UC ST-0.3.

3. Client identifies the entity instance to add/update/delete using the entity-key (and potentially other

data) and attempts to locate the entity using the entity key as well as parent-address where provided

(see 3.10.3).

• If record-type = CREATE_UPDATE

1. If entity exists, then update the entity and set stream-alignment-attempt-counter in

the stored entity to current-stream-alignment-attempt-counter (stream id)

1. Update can be a simple overwrite, but client may want to mark changes or

notify changes.

2. If entity instance does not exist, then create entity instance (with the alignment

attempt counter value etc.)

• If record-type = DELETE or TOMBSTONE (may be two records, both should be

processed, may be able to make this efficient by expecting the TOMBSTONE if there is a

DELETE)

1. If entity exists, then delete the entity.

2. If entity instance does not exist, then take no action.

4. Note:

• The parent-address provides the positioning in the tree for the entity.

• The UUID uniquely identifies an entity and should be sufficient to locate the entity.

• In such a solution the parent-address is still necessary in a CREATE_UPDATE to provide

the association to the grouping entities (such as Node grouping NEPs).

• The entities identified in the parent address may not yet be present due to asynchronous

arrival of stream information. Where this is the case, it is expected that a skeleton tree

would be constructed to be subsequently filled in as the entities arrive.

5. Each time a record is successfully processed, the client records the token in the token-from-latest-

record-successfully-process-for-stream (stream-id) and the log-append-time-stamp for this alignment

attempt

• This assumes the client processes the stream records in the sequence received, if a more

complex process is used, a more complex recording of tokens will be required.

See also UC ST-4.2.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 82 of 110 © 2022 Open Networking Foundation

5.4.2 Use Case ST-2.2: Client realigns

Number ST-2.2

Name Client realigns

Process/Area Streaming Infrastructure

Brief

description
The client realigns after reconnecting to the stream.

Preconditions UC ST-2.1 has run successfully

Type Gaining and maintaining alignment

Description

and workflow

1. Connection is dropped (triggered by client, by provider or by comms failure).

2. Client reconnects to the stream. This use case assumes that there is a resync triggered:

• Provider driven resync (and very long comms failure)

1. Client provides the value (token) from token-from-latest-record-successfully-

process-for-stream (stream-id)) in the connection request.

• Client driven resync.

1. Client provides no token.

3. Provider streams from first record (offset 0).

4. Client detects realignment in first record received from the stream.

• Client increments current-stream-alignment-attempt-counter for the stream (stream-id) and

stores, for this alignment attempt, the alignment-attempt-start-time (set to current time), the

token-from-latest-record-successfully-process-for-stream (stream-id) and the log-append-

time-stamp from the first record just received

5. Client identifies the entity instance to update using the entity-key and parent-address (along with

potentially other data) and attempts to locate the entity (“alignment update”)

• If record-type = CREATE_UPDATE

1. If entity exists and has:

1. Newer log-append-time-stamp in the currently stored entity compared to

the newly received record, then ignore record just received

2. Same log-append-time-stamp (and token) in the currently stored entity

and the new record, then store the newly received entity values and set

stream-alignment-attempt-counter in the stored entity to current-stream-

alignment-attempt-counter (stream-id)

3. Older log-append-time-stamp in the currently stored entity compared to

the new record, then update (overwrite) the entity and set stream-

alignment-attempt-counter in the stored entity to current-stream-

alignment-attempt-counter (stream id)

2. If entity instance does not exist, then create entity instance as usual (with the

alignment attempt counter value etc.)

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 83 of 110 © 2022 Open Networking Foundation

• If record-type = DELETE or TOMBSTONE (may be two records, both should be

processed, may be able to make this efficient by expecting the TOMBSTONE if there is a

DELETE)

1. If entity exists and has

1. Newer log-append-time-stamp in the currently stored entity compared to

the newly received record, then ignore record just received

2. Same log-append-time-stamp in the currently stored entity and the new

record, then delete the entity

3. Older log-append-time-stamp in the currently stored entity compared to

the new record, then delete the entity

2. If entity instance does not exist, then take no action

6. Client receives further records.

7. Alignment has progressed sufficiently:

• If log-append-time-stamp from the received record is (both of)

1. More recent than the log-append-time-stamp-from-latest-record-successfully-

process-for-stream (stream-id) for the previous alignment attempt (i.e., the client

has passed the time of the last record successfully received before the realignment)

2. Less than the compaction delay from current time (compaction will not remove old

records due to records that are newer than the compaction delay)

• Then the client can sweep through the repository removing any entities still marked with

previous alignment attempt counter value

• Stream processing can continue uninterrupted as the sweep takes place (the client can revert

to “simple update” processing as the sweep starts)

8. Once the sweep is complete the client has achieved “eventual consistency” with the provider

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 84 of 110 © 2022 Open Networking Foundation

5.4.3 Use Case ST-2.3: Client performs a stream audit

Number ST-2.3

Name Client performs a stream audit

Process/Area Streaming Infrastructure

Brief

description
The client considers that there may be an alignment issue and decides to audit the stream.

Preconditions UC ST-0.3 has run successfully

Type Gaining and maintaining alignment

Description

and workflow

Notes:

1. Whilst maintaining an existing connection to a stream, the client makes a second connection as

described in UC ST-0.3 (1-3).

2. The client runs the second stream as if realigning and marks valid current state

3. When it passes the time of a current state, the entity is marked as suspect. Once sufficient

progression has been achieved, the client will remove proved bogus records

4. When thing appears in the stream that is not in the repository, it is retained. Once sufficient

progression has been achieved, the client will add the entity to the repository (avoiding race

conditions with the main stream receiver).

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 85 of 110 © 2022 Open Networking Foundation

5.5 Gaining and maintaining Alignment with individual network resources

A vast majority of the TAPI entities can be dealt with in the same way. The provider can offer streams that

each include one or more classes. A stream will send records of all instances of all of the classes identified

in its definition.

The use cases in this section are informative.

5.5.1 Use Case ST-3.1: Client maintains alignment with all instances of a class (e.g., Node) in a context

This use case considers a COMPACTED log solution.

Number ST-3.1

Name Client maintains alignment with all instances of a class (e.g., NODE) in a context

Process/Area Streaming Operation

Brief

description

The client discovers the availability of a stream for a class, connects to the stream aligns and maintains

alignment ongoing.

Preconditions Client knows which classes it needs to monitor and has rum UC ST-0.1

Type Gaining and maintaining alignment

Description

and workflow

The client runs:

1. UC ST-0.2: From this the client has the address and connection method for an appropriate

COMPACTED stream for the class(es) of interest (in this example NODE).

2. UC ST-0.3: From this the client achieves “eventual consistency” with the state of the class(es) of

interest (e.g., NODE) including dealing with ongoing change.

3. UC ST-0.4: To ensure that the connection remains open.

It is possible, during operation, that conditions in the network are such that any one of the following may

occur.

4. UC ST-0.5: Where the client may lose some information fidelity but will maintain “eventual

consistency” without any special action.

5. UC ST-0.6: Where the client and provider may need to deal with UC ST-0.9

6. UC ST-0.7: Where the client will simply suffer a short delay in receipt of information but will lose

no fidelity or integrity.

7. UC ST-0.8: Where the client and provider may need to deal with UC ST-0.9

8. UC ST-0.9: Where the client will clean up its repository as it aligns with the provider

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 86 of 110 © 2022 Open Networking Foundation

5.5.2 Use Case ST-3.2: Client maintains alignment with all alarms in the context

This use case deals with alarms that are processed, logged and streamed as described in sections 4.1, 4.2, 4.3

and 4.4. The alarm records abide by the model as described in 4.5 (further explained in 4.6). The alarm clear

will be reported as described in 4.7. It is assumed that the event-time-stamp will be as described in 4.8 and

that the optional normalization will perform as described in 4.9. The provider is also expected to deal with

ensuring meaningful detection as described in 4.10.

Number ST-3.2

Name Client maintains alignment with all alarms in the context

Process/Area Streaming Operation

Brief

description

The client discovers the availability of a stream for Alarms, connects to the stream, aligns and maintains

alignment ongoing.

Preconditions Client knows which classes it needs to monitor and has run UC ST-0.1

Type Gaining and maintaining alignment

Description

and workflow

This is essentially UC ST-3.1 but where the specific class is CONDITION_DETECTOR

1. The client and provider cover UC ST-3.1.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 87 of 110 © 2022 Open Networking Foundation

5.6 Dealing with the whole context of resources

This section provides an overview of how the client would be expected to deal with all resources in a

context. The use cases in this section are informative.

The associated normative document [RIA SS] provides a view of stream events expected (Mandatory) and

possible (Conditional) for particular identified network scenarios.

5.6.1 Use Case ST-4.1: Client maintains alignment with all resources in the context

Number ST-4.1

Name Client maintains alignment with all resources in the context

Process/Area Solution Operation

Brief

description
The client listens to a number of streams and assembles a view of the network

Preconditions Client is running

Type A Client building and maintaining the context

Description

and workflow

1. The client runs UC ST-0.1

2. The client runs UC ST-2.x for all relevant classes and information

• The client starts various streams in a sequence compatible with its alignment strategy

1. The streams guarantee order within any instance of a class but do not guarantee

any ordering between instances of classes

2. For example, the client may decide to align nodes first

• As entity information is received the client resolves references on-the-fly.

1. Where references do not resolve immediately, due to differential propagation delay

etc., the client uses an appropriate method to defer the reference mapping until the

relevant entity is received

2. As noted in UC ST-2.1 the tree referenced by the parent-address may not yet be

fully present and hence a skeleton of the tree will need to be constructed and

subsequently populated.

• The client builds a view of interrelated network resources

5.6.2 Use Case ST-4.2: In a resilient solution the Controller the client is connected to becomes unavailable

Number ST-4.2

Name In a resilient solution the Controller the client is connected to becomes unavailable

Process/Area Solution Operation

Brief

description

The client detects the Controller to which it was connected is no longer available and connects to an

alternative Controller instance for the streams of interest

Preconditions Client is running UC ST-4.1

Type A Client building and maintaining the context

Description

and workflow

1. The client runs UC ST-0.1 for the new Controller instance

2. The client runs UC ST-2.1 for the new Controller instance

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 88 of 110 © 2022 Open Networking Foundation

5.7 Connectivity Service Lifecycle

The use cases in this section are informative.

5.7.1 Use Case ST-5.1: Provide streams network changes to the client

Number ST-5.1

Name Provider streams network changes to the client

Process/Area Solution Operation

Brief

description

Changes in the network are detected by the provider and interpreted into changes to entities in the TAPI

context.

Preconditions Client is running UC ST-4.1

Type Provider is monitoring the network for change

Description

and workflow

1. The provider detected a change in network state and makes the appropriate adjustments to the TAPI

context to reflect the change (e.g., creation of connections etc.)

2. The provider streams the changed entities via the appropriate streams to the client.

3. The attached client absorbs the stream maintaining eventual consistency with the network state.

Note that the maintenance of eventual consistency is dependent upon UC ST-0.n.

5.7.2 Use Case ST-5.2: Client runs a provisioning use case ([ONF TR-547] UC1x etc.)

Number ST-5.2

Name Client runs a provisioning use case ([ONF TR-547] UC1x etc.)

Process/Area Solution Operation

Brief

description
Client provides connectivity-service details, and the provider takes action to satisfy the request.

Preconditions Client is running UC ST-4.1

Type A Client adjusting connectivity-services

Description

and workflow

1. The client provides the connectivity-service details including routing constraints etc.

2. The provider assesses the request etc. as per [ONF TR-547] UC1x etc.

3. The provider runs UC ST-5.1 and streams changes as they occur.

5.7.3 Use Case ST-5.3: Client runs the service deletion use case ([ONF TR-547] UC10)

Number ST-5.3

Name Client runs the service deletion use case ([ONF TR-547] UC10)

Process/Area Solution Operation

Brief

description
Client requests a delete of a connectivity-service

Preconditions Client is running UC ST-4.1

Type A Client adjusting connectivity-services

Description

and workflow

1. The client requests the delete of a connectivity-service.

2. The provider assesses the request etc. as per ([ONF TR-547] UC10)

3. The provider runs UC ST-5.1

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 89 of 110 © 2022 Open Networking Foundation

5.8 Message Sequence example

The hybrid message sequence diagram, in Figure 29 below, captures all relevant flows for the listed use

cases. The diagram includes several special symbols that are highlighted in the key below the diagram. The

diagram essentially lays out a sketch of a solution that would support the normative aspects of streaming.

This section is informative.

It is assumed that the client has already used Restconf to get supported-streams and to get available-streams

so as to have the connection method. In this example the connection method is assumed to be WebSockets.

In the diagram the behavior of the Device Source and TAPI Context are summarized. The diagram only

shows presence and fundamental flow for these elements.

Two pipelines, the TAPI Context Pipeline and the Extended Pipeline, are shown in the diagram as yellow

background rectangles. The TAPI context pipeline intentionally shows no detail as that is outside the scope

of the interface definition.

The diagram shows coupled asynchronous parallel/concurrent repeating activities and independent

asynchronous repeating activities each in a dashed box. Where the asynchronous activities are coupled there

is a dashed line arrow showing the relationship as a ratio of activity, n:1, which indicates that there are

potentially more trigger activities than result activities, or as a 1, which indicates that "eventually" there will

be the same number of activities in both asynchronous elements (as a result of a flow through both). Some

activities are shown as nested. Where nested there is an indication where there are n repeats of the inner

asynchronous activity for each of the outer activities. Buffers/logs are shown to emphasize the asynchronous

coupling. The compacted log is shown with a buffer/log symbol annotated with an "X" indicating

compaction (the deletion of records in the log) and "0" indicating that the record is for all system time, i.e.,

for the time the system has been logging, (where compaction will remove duplicates and hence contain the

log size).

The logs marked with “r” are limited to “r” records (size or number) and will block when that size is reached

applying back pressure to the feed (via “fill”). Hence, in combination, there is a pipeline with backpressure

from the client store to the provider log. This includes all sequences and flows in the “Extended Pipeline”

shown as a large yellow rectangle.

To the left of the figure (i.e., to the left of the “underlying external comms” (brown vertical bar)) is the client

side (which initiates the connections etc.), shown as a stylized example. The client is shown with both a

database option and a compacted log option for storage. The critical features are the "Pong" and "Last

commit". The majority of the client depiction is to explain last commit. Last commit is used by the client on

reconnection to continue where it left off (“token~x”).

The external comms between client and provider is shown as a brown bar and is not considered in any detail.

It is assumed that it is reliable (e.g., TCP) and is playing an active part in maintenance of the pipeline.

The client token is opaque so the client has no knowledge of sequence through the token, although there is

also exposure of the sequence number, this is primarily intended for stream analysis (note that it may be

beneficial as part of normal behavior to validate communication).

The middle of the diagram shows the provider and explains the basic flows related to initial connection, loss

of connection and forced connection drop.

To the extreme right of the figure are vertical progression bars that highlight phases of interaction between

the client and provider.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 90 of 110 © 2022 Open Networking Foundation

The example functions (at the head of each timeline) can best be explained in terms of the phases of

interaction in which they participate.

The “Prepare” phase involves an authentication service, here shown within the provider system, which

supplies Authentication Token on request to a Web Sockets (WS) client connection control function in the

client. The Authentication Token (“Auth Token”) provided is used in a connection request in the “Connect

phase”. Along with a null stream token (absence of a stream token). These exchanges are described in

section 5.10 Message approach (WebSocket example) on page 94. This causes the stream to start from the

oldest record (offset 0).

In the “Streaming” phase the provider continues to take records from the Compacted Log to the left and feed

them into the communications system via appropriate queues that blocks on fill64. In the example, the

“Source and Process” function collects records from the log and ‘publishes’ them to “WS Endpoint Stream

Server Source Actor” that fills a blocking queue feeding the “WS Endpoint Stream Server”. The

“Websockets Endpoint Stream Server” feeding the underlying comms system (which is assumed to be

reliable and blocking when full). On the client side, the stream client takes from the comms system and

places on a queue. This results in there being an effective demand back to the Stream Server (stylized in the

figure).

As noted above, the yellow background shows the whole (Extended) Pipeline. The intention is that this

pipeline guarantees delivery to the client repository (shown as a compacted log “AND/OR” DB, but any

repository relevant to the client is appropriate). The repository to the left of the diagram and associated

functions are a simple sketch of the sort of operations that may take place. The key consideration on the left

side is the “Last commit” token which records the last successfully stored in the persistent repository. The

client benefits from recording this token as without it a full resync on comms fail would be required. The

client need not record every token (as suggested by the “n:1” relationship).

The remaining phases, “Loss”, “Drop Connection” (two variants) and “Kill” pipeline are all related to

failure modes. Assuming the client still exists and requires the stream information, in all failure cases, the

client will reconnect using the stream token.

When a token is provided during the “Connect” phase the provider assesses the token to determine which

record to start the stream from. If the token relates to a record:

• Newer than the compaction delay, then next record that was appended to the log is streamed.

• Between the compaction delay and the tombstone retention, then next record in the log, which is not

necessary the next record that was appended due to compaction, is streamed

• Older than the compaction delay, then the provider forces a resync by streaming from the oldest

record in the stream (Offset 0)

“Log and stream Control” monitors the state of each stream in the provider and drops the client connection

when any problem is detected (e.g., it is blocked on a record older than tombstone retention).

Pong frames are required to maintain the stream when there is no activity, and a frame is required every 30

seconds (default time).

64 For the pipeline to maintain integrity it is vital that back pressure prevents the queue from overflowing. The “blocking” is

essentially through “demand”. If there is a queue overflow event, the pipeline must be restarted.

U
n

d
erlyin

g
Extern

al C
o

m
m

s

DB Align

WS Client
Stream Client

WS Endpoint
Stream Server

WS Endpoint
Connection

Handler

Source and
Process

Log and Stream
Control

Device
Source

TAPI
Context

Commit
to Store

WS Client
Pong Source

WS Client
Connection

Control

||||

||||

1

||||1

1

WS Endpoint
Stream Server
Source Actor

Last commit (token ~x)

ΔStore

Demand
||||

Demand

fill

fill

Compacted
Log

1

X 0

r

r

r

delay

~x

(token=next)

delay > Tombstone retention

drop

discon

discon

Authorization

Auth Tokens

Publish (next)
poll

(offset=0)

Get/Connect(token)

Connection Opened

Pong

Start (offset)

discon

(token=null)

shutdown
kill

kill

(token=~x)

Stream Server

IF offset>Tombstone retention
THEN offset = 0

IF token = null
THEN offset = 0

(1)

Until

(2)

xx
kill

shutdown

kill

kill

x xx

Then

Repeat every 30 seconds

Repeat

Repeat

n Repeat

n Repeat

RepeatRepeat

Repeat

Repeat

Stream Client

Repeat

drop

discon

(3)

IF missing pong
Then drop

poll

poll

poll

||||
X 0

n:1

AND/OR

Start

Detailed alignment functionality
intentionally not shown

Extended
Pipeline

Co
n

n
e

ct
Pre

p
a

re
Stre

a
m

in
g

Kill p
ip

eline
Lo

ss
D

ro
p

 Co
n

n
e

ctio
n

Client persistent
repository

e.g., Compacted
Log (as shown)

TAPI
Context
Pipeline

||||

P
h

ase o
f In

teractio
n

||||
X 0

fillTruncated buffer/log Compacted log Function (e.g., fill detection) Pipeline Repeating/optional block Block related to failure

Key Provider function

Client function

Figure 29 Hybrid Message Sequence Diagram for example implementation corresponding to Use Cases

The provider shall support:

• Authentication as described.

• A pipeline using backpressure from the communications system to ensure reliable delivery from the

internal compacted log (full or emulated).

• Start streaming from:

o The oldest record.

o The record after the one with the stream token specified by the client in a connect request.

• Forced restart of stream from the oldest record when it detects:

o A very slow client taking records older than Tombstone retention.

o A reconnect request with a token for a record older than Tombstone retention.

• Pong frame timeout connection drop behaviour

The following figure shows the use cases and relationship to the hybrid message sequence chart in the figure

above. The heading bars are the same as the righthand vertical bars on the previous figure. The flow across

the figure assumes a chaining of the use cases in the order they are described in the earlier sections.

Connect

Steady State (near newest record no compaction)

Kill pipeline

Loss

Event Storm, slow client (compaction)

Prepare

Event Storm, very slow client (delayed past tombstone retention) Drop Connection

Connect

Force oldest record (offset 0) moves to newest through compaction)

Steady State (near newest record no compaction)

Force oldest record (offset 0) moves to newest through compaction)

Kill pipeline

Connect Steady State (near newest record no compaction) Loss Kill pipeline

Connect > Tombstone Force oldest record (offset 0) moves to newest through compaction)

Steady State (near newest record no compaction)

Steady State reception
UC ST-0.3

Event Storm bad day
UC ST-0.5

Event Storm, very bad day
(fail) UC ST-0.6

Connect to stream and
align UC ST-0.1, 0.2 and 0.3

Steady state then short loss
of comms UC ST-0.7

Event Storm, very bad day
(realign) UC ST-0.9

Steady state then long loss
of comms UC ST-0.8

Force realignment after
long loss UC ST-0.8 and 0.9

Steady State UC ST-0.3

ConnectPrepare Streaming Kill pipelineLoss Drop Connection

Figure 30 Phases of interaction for Use Cases

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 93 of 110 © 2022 Open Networking Foundation

5.9 Use cases beyond current release

Beyond the current release there will be further improvements including the ability to dynamically adjust the

stream behavior and the feeds to the stream as follows:

• Adjustment of compaction delay and tombstone retention on-the-fly

o Allows for tuning of stream behavior at initial start-up and during predictable comms failures.

• Building and adjusting the context (creation, expansion, contraction and deletion)

o Allows for multiple clients with differing needs and security clearances etc.

▪ Negotiate Context opportunities based upon policy and client role etc.

▪ Build explicit context (including topology, nodes, links etc.)

▪ Various interactions to set up intent for nodes and links that themselves need

to be realized in the underlying structure.

▪ Note that the initial requests are in terms of shared knowledge such as city or building

location and generalized termination points/flows with minimal technology detail.

o In the general solution, with TAPI feeding a client, there could be several alternative contexts

that can be provided. Contexts may focus on a single layer or layer grouping or on a region of

the network etc. In a more sophisticated solution where there are many clients each with a

slice, in these solutions various negotiations would be required to agree and form the context.

o Note: Currently, the context is defined by a default intent where there was no opportunity for

the client to express the context intent over an interface.

• Taking advantage of context adjustment capabilities to increase and decrease the intensity of view of

information. This is applied where the intensity could not be handled across the whole context and

hence is a focus. This may be where the parameter changes very often.

o Spotlighting: Allows the client to selectively increase the fidelity of measurements by

changing the measurement policy for a specific property and/or by including an instance of a

property in the context where that property is usually not monitored

o Single snapshot: Allows the client to select a property to take a momentary view of via the

stream. This may be the capturing of a single counter value where that counter changes very

often (e.g., a packet counter) such that streaming of the raw value would be excessive even

for a single measure.

• Compacted log based delta/Change only streaming where only the changed properties are sent.

• Streaming data collected as a result of performance monitoring via a TAPI conformant

gnmi/protobuf stream.

There are clearly other potential applications of a streaming solution where there are:

1. Many direct clients using the same context.

o Here some form of multi-cast stream with a message broker or other multi-cast mechanism

may be appropriate.

o In the cases where there is a broker, it may be appropriate to continue to use the compacted

log, but this will only benefit the broker and the provider will not be aware of clients or

client performance challenges.

o There are no apparent specific applications in a telecommunications network context.

2. Many direct clients each with different context

o This leads to a characteristic very similar to that considered in this document.

o The distinction is the multiple contexts.

o It is likely that context build/modify will be necessary to enable this capability.

o An application example is presentation of a slice to its client where each client has its own

slice.

3. Short-lived clients that are attached for only a short period and want a specific context.

o It is likely, for this case, that there will also be multiple clients.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 94 of 110 © 2022 Open Networking Foundation

o It is possible that the short-lived clients define a short-term context and align with this.

o A possible case is a controller component dedicated to a particular test activity where the

provider presents a context related to the test and when the test is complete the provider

deletes the context.

o Another possible case is a GUI. This does have a short-term cache and may benefit from

ongoing updates even if only for a short period.

4. Clients that do not have a cache or store of information acquired from the provider.

o A solution that does not store information cannot be expected to take significant advantage

of a stream that provides information on changes.

o However, as the stream can be used to gain current state and the context can be set to define

the relevant things that current state is required for, then a one-shot compacted log stream

could be used to get a temporary snapshot.

o A human driven CLI is an example, and this does not normally provide asynchronous

delivery. In general, TAPI is not oriented towards this case.

▪ A human tends to want to make somewhat random, complex and unbounded queries.

Cases 1-3 appear to benefit from the streaming capabilities described in this document, whereas case 4 does

not, but it also does not seem to be a relevant TAPI application.

For each consideration in this section, it will be necessary to enhance the expression of capability such that

the client can know what opportunities for adjustment are available. It is expected that this will be expressed

using machine interpretable specifications.

5.10 Message approach (WebSocket example)

5.10.1 Basic interaction

The messaging is as defined below:

• The general structure for the WebSocket URL is obtained from the connection-address field of the

discovered available streams. The implementations MAY support WS and WSS. For example, the

URI can be of the form :

“wss://<host>/tapi/data/context/stream-context/available-stream=<uuid>”

where the uuid is acquired through a RESTCONF GET operation of available-stream (s). Using this

URL would start the stream from the oldest record.

• Considering the "Connect (token)" from the message sequence diagram, this becomes

“wss://<host>/tapi/data/context/stream-context/available-

stream=<uuid>?start_from=<token>”. Omitting the token causes the provider to start from offset

zero (i.e., the oldest record).

• In some cases, it may be relevant to start from the latest (e.g., for non-compacted logs)

“wss://<host>/tapi/data/context/stream-context/available-

stream=<uuid>?start_from=latest”.

5.10.2 Authorization example – WebSockets

The WebSockets specification indicates that the WebSockets server can use any client authentication

mechanism available to a generic HTTP server (https://tools.ietf.org/html/rfc6455#page-53).

Use of the authorization framework defined in https://tools.ietf.org/html/rfc6750 is recommended.

https://tools.ietf.org/html/rfc6455#page-53
https://tools.ietf.org/html/rfc6750

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 95 of 110 © 2022 Open Networking Foundation

A valid authentication token for the provider must be supplied by the client via the use of "Authorization:

Bearer <token>". This must be supplied in the header of the WebSockets connection request.

The authentication token is obtained from the provider using an appropriate method. This would supply a

token for the specific username (i.e., the client).

5.10.3 Connecting to a stream example - WebSockets

This token is then used in the WebSockets handshake:

GET /tapi/data/context/stream-context/available-stream=<uuid> HTTP/1.1

Upgrade: websocket

Connection: Upgrade

Host: <host name>

Origin: http://<host name>

Sec-WebSocket-Key: <key>

Sec-WebSocket-Version: 13

Authorization: Bearer <authentication token>

The provider will provide a response similar to:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Sec-WebSocket-Accept: eiUnNdCyox5gJ7eAbD4ZNo2H4xY=

Date: Mon, 07 Sep 2020 11:57:08 GMT

Connection: upgrade

Strict-Transport-Security: max-age=31536000; includeSubDomains

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

Content-Security-Policy: default-src 'self' data: mediastream: blob: filesystem:

'unsafe-inline' 'unsafe-eval'

Followed by stream messages.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 96 of 110 © 2022 Open Networking Foundation

6 Appendix

6.1 Appendix – Considering compacted logs

The following section considers Kafka as an example implementation of a compacted log and then discusses

implications of compaction and some storage strategies.

6.1.1 Essential characteristics of a compacted log

Compaction is described in the Kafka documentation

at https://kafka.apache.org/documentation/#compaction

Figure 31 Kafka compaction

With retention (for non-deletes) set to “FOREVER”, the log becomes a single source of truth for absolute

state (eventual consistency) and change of state (cost effective fidelity).

Client essentially reading next record in sequence:

• To the right of the Cleaner Point ensures full fidelity

• Between cleaner and delete retention (tombstone retention) points provides reduced fidelity but still

supports eventual consistency

• To the left of (before) the delete retention (tombstone retention) point potentially violates eventual

consistency and requires the client to go back to read record offset zero

6.1.2 Order of events

• Disordering of records

o In a distributed system, information from the various parts is received with varying delay

such that it is likely to be out of order

o It can be assumed that time of day is well synchronized across the network

o Event order can be regenerated (within reason) based upon time of event at source

o Critical ordering that should be preserved through the log and pipeline is that related to each

single event source. For example, consider an alarm detector.

▪ It is possible that the time granularity at the source is not sufficient to resolve the

active-clear sequence when cycling is very rapid as they can both appear to be at the

same recorded time.

▪ If the detector goes active and then clear, that ordering should be preserved through

the system such that time granularity problems are not encountered, so that the view

of system state is always eventually consistent with the state of the controlled system

https://kafka.apache.org/documentation/

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 97 of 110 © 2022 Open Networking Foundation

• Multiple receipts of the same record: Idempotency

o A record received more than once should not have any impact on system behavior

6.1.3 Log segments

A log may be divided into segments (units of storage) where the segments may have a defined maximum

size. Records will be stored in an active segment until it becomes full at which point a new segment will be

created for new records (a new active segment) and the previously active segment will become inactive. A

log of this form will comprise a sequence of inactive segments and one active segment.

6.1.4 Partitions

To improve scaling a stream may be fed from a conceptual log that is formed from a number of separate logs

where those separate logs are considered as partitions of the single conceptual log feeding the stream. The

partitions have to be such as to maintain integrity of the flow with respect to the order of occurrence for any

particular entity instance. Each partition has its own sequence numbering. The resource allocation to each

partition and the load on the partitions is likely to be different. There is no particular order in which

partitions may feed the stream.

6.1.5 Compaction in a real implementation

Considering compaction delay, in general system load will cause the compaction to sometimes drift such

that less compaction occurs than is ideal.

In Kafka, compaction does not operate at a fixed cleaner point as the head (active) segment is not

compacted. When the head rolls to become a tail (inactive) segment compaction can happen but may be

delayed. The behavior is not fully deterministic as it depends upon segment fill and intermittency

occurrence.

6.1.6 The Tombstone

The Tombstone record is a light-weight record that indicates that the identified entity is no longer in

existence. The Tombstone is used to ensure eventual consistency during a realignment after a long

communications failure. When the client receives a Tombstone, it should remove any record of the entity

identified.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 98 of 110 © 2022 Open Networking Foundation

6.2 Appendix – UML Model

The Yang model for streaming has been generated using the Eagle tooling for the streaming UML model.

The UML diagrams provide a convenient overview of the streaming structure and relevant properties. The

key UML diagrams for streaming are provided in this section.

The conversion from UML to Yang accounts for various considerations including the change of formats and

notations. For example, in UML camel case is used whereas in Yang uses kebab case (hyphenated lower

case). The diagrams should be read with this in mind.

The figure below shows the structure of the streaming model. This structural view may help when reviewing

the Yang representation.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 99 of 110 © 2022 Open Networking Foundation

Figure 32 Structure of the streaming model

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 100 of 110 © 2022 Open Networking Foundation

The figure below shows key content of the classes shown in the structure above.

Figure 33 Structure and content of the streaming model

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 101 of 110 © 2022 Open Networking Foundation

Figure 34 Datatypes of the streaming model

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 102 of 110 © 2022 Open Networking Foundation

The figure below shows the UML form of augmentation (using the <<specify>> stereotype). All classes in

the model can augment LogRecordBody.

Figure 35 Example of Augmentation of the LogRecordBody with some classes from the model

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 103 of 110 © 2022 Open Networking Foundation

6.3 Appendix – Stream record example

The following is an example of an alarm:

{

 "log-record-header": {

 "token": "Rfm8:1666904039108_0:-1379579382:AAAAAQAAgnk=",

 "log-append-time-stamp": "2022-10-27T20:46:35.359Z",

 "entity-key": "-1542773359860369954",

 "record-type": "RECORD_TYPE_CREATE_UPDATE",

 "full-log-record-offset-id": [{

 "value-name": "partition",

 "value": "0"

 },

 {

 "value-name": "offset",

 "value": "377"

 }

]

 },

 "log-record-body": {

 "event-time-stamp": {

 "approx-date-and-time": {

 "primary-time-stamp": "2022-04-01T07:04:36.101Z",

 "spread": "SPREAD_AT",

 "source-precision": "SOURCE_PRECISION_SYNCHRONIZED"

 }

 },

 "record-content": "CONDITION_DETECTOR",

 "condition-detector": {

 "condition-native-name": "Loss Of Signal",

 "measured-entity-uuid": "113f57a4-74a5-36a4-7a4b-5f4ffa38159a",

 "measured-entity-native-id": "fac-63782-1uag",

 "measured-entity-device-native-name": "LON_76728A",

 "condition-normalized-name": "LOS",

 "measured-entity-class": "CONNECTIVITY_OBJECT_TYPE_CONNECTION_END_POINT",

 "detector-uuid": "10d490f2-3e3d-38d9-9346-4c923fa38195",

 "detector-native-id": "-1542773359860369954",

 "condition-detector-type": " CONDITION_DETECTOR_TYPE_ALARM_DETECTOR",

 "tapi-fm:detected-condition": {

 "detected-condition-name": "ALARM_NAME_LOS",

 "detected-condition-native-name": "Loss Of Signal",

 "detected-condition-native-info": "56",

 "detector-info": {

 "perceived-severity": "CRITICAL",

 "service-affecting": "SERVICE_AFFECTING",

 "is-acknowledged": false,

 "detector-category": "DETECTOR_CATEGORY_CONNECTIVITY"

 },

 "simple-detector": {

 "simple-detector-state": "SIMPLE_DETECTOR_STATE_ACTIVE"

 }

 },

 “tapi-vendor-detector-info:detector-info”: {

 “node-type”: “Plant",

 “self-clearing”: true,

 “number-of-occurrences”: “10"

 }

 }

 }

}

A more compact conformant alarm record:

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 104 of 110 © 2022 Open Networking Foundation

{

 "log-record-header": {

 "token": "Rfm8:1666904039108_0:-1379579382:AAAAAQAAgnk=",

 "log-append-time-stamp": "2022-10-27T20:46:35.359Z",

 "entity-key": "-1542773359860369954",

 "record-type": "RECORD_TYPE_CREATE_UPDATE",

 "full-log-record-offset-id": [{

 "value-name": "partition",

 "value": "0"

 },

 {

 "value-name": "offset",

 "value": "377"

 }

]

 },

 "log-record-body": {

 "event-time-stamp": {

 "approx-date-and-time": {

 "primary-time-stamp": "2022-04-01T07:04:36.101Z",

 "source-precision": "SOURCE_PRECISION_SYNCHRONIZED"

 }

 },

 "record-content": "CONDITION_DETECTOR",

 "condition-detector": {

 "measured-entity-native-id": "fac-63782-1uag",

 "measured-entity-device-native-name": "LON_76728A",

 "detector-native-id": "-1542773359860369954",

 "condition-detector-type": " CONDITION_DETECTOR_TYPE_ALARM_DETECTOR",

 "tapi-fm:detected-condition": {

 "detected-condition-name": "ALARM_NAME_LOS",

 "detected-condition-native-name": "Loss Of Signal",

 "simple-detector": {

 "simple-detector-state": "SIMPLE_DETECTOR_STATE_ACTIVE"

 }

 }

 }

 }

}

6.4 Appendix – Detectors, detected conditions and alarms

This section deals with the conceptual model underlying alarm reporting.

6.4.1 Detect

As a result of observation of some properties of a thing (entity, assembly, environment etc.) there is a

recognition of some relevant states distinct from the previously recognized states.

6.4.2 Detector

A device that both observes (monitors) a thing in a particular way and recognizes the state and change of

state.

6.4.3 Condition

A specific combination of states that is defined and is of interest.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 105 of 110 © 2022 Open Networking Foundation

6.4.4 Condition detector

A device that detects a specific condition and reports the presence that condition (the detected condition). It

also reports when that condition is no longer present.

The condition detector represents any monitoring component that assesses properties of something and

determines from those properties what conditions are associated with the thing.

For example, a thing might be "too hot" or might be "unreliable".

The monitor may a multi-state output.

The condition detector lifecycle depends upon the lifecycle of the thing it is monitoring. For example, once

the thing is removed/deleted, so is the condition detector.

6.4.5 Detected condition

The detected condition may be a state with associated values and with importance/priority etc.

6.4.6 Alarm

An alarm is an alert that relates to a specific detected condition that is considered problematic, where it is

likely that some action will need to be taken to adjust system state such that the condition is cleared. Whilst

the condition (alarm condition) is present, the alarm is ACTIVE and when not present the alarm is CLEAR.

6.4.7 Alarm detector

A detector that detects and highlights a specific alarm condition by reporting that the alarm condition is

ACTIVE and the absence of that condition by reporting that the alarm is CLEAR.

6.4.8 Traditional alarm reporting and legacy-properties

The legacy-properties are provided to deal with the traditional alarm reporting properties. Alarm systems of

the 20th century were based primarily on local lamps (initially filament bulbs) and bells. Lamps can only be

on or off, and bells sounding or not sounding, so alarms were Boolean in nature. Where a detector was

essentially multi-state it was converted into multiple Boolean statements.

The management of the network devices (equipments) was essentially human only and local only (there

were rarely remote systems). The network device with the problem was the only possible indicator of

importance and it had only three distinct bulbs to illuminate (filament bulbs tend to fail requiring costly

replacement).

The network devices were relatively simple in function and analysis of the detectors was crude. There was

only the network device to indicate severity. The network device also could provide the best view as to

whether a service was impacted, although clearly it had almost no knowledge.

In a modern solution with well-connected remote systems that increasingly analyse problems and where

there is increasingly 'lights out' building operation, the network device's guess at severity etc. is irrelevant. In

addition, with sophisticated resilience mechanisms, the network device cannot make any relevant statement

on whether the customer service has been impacted.

Likewise, in a world where there were no remote systems and local management was the only practice,

alarms had to be locally 'acknowledged'. Where there are remote systems, per alarm acknowledge is

burdensome.

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 106 of 110 © 2022 Open Networking Foundation

7 References

[DDD] https://en.wikipedia.org/wiki/Domain-driven_design

[GNMI] https://github.com/openconfig/reference/tree/master/rpc/gnmi

[GNMI-SPEC] https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-

specification.md

[KAFKA] https://kafka.apache.org/

[ONF TR-512] https://www.opennetworking.org/wp-content/uploads/2018/12/TR-

512_v1.4_OnfCoreIm-info.zip

[ONF TR-547] TAPI v2.4.0 Reference Implementation Agreement (TR-547 v2.0). Available at

https://wiki.opennetworking.org/display/OTCC/TAPI+Reference+Implementation

+Agreements+and+other+Documentation

[RESTCONF] https://tools.ietf.org/html/rfc8040

[RIA AT] Located on

https://wiki.opennetworking.org/display/OTCC/TAPI+RIA+Associated+Docume

nts find the most recent TAPI_Alarm_TCA_List.xlsx

[RIA SS] Located on

https://wiki.opennetworking.org/display/OTCC/TAPI+RIA+Associated+Docume

nts find the most recent TAPI_Notification_and_Streaming_Sequences.xlsx

[RFC6455] https://tools.ietf.org/html/rfc6455 The websocket protocol

[WC3 SSE] https://www.w3.org/TR/eventsource/ Server-Sent Events

[YANG] https://tools.ietf.org/html/rfc6020

https://en.wikipedia.org/wiki/Domain-driven_design
https://github.com/openconfig/reference/tree/master/rpc/gnmi
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md
https://kafka.apache.org/
https://www.opennetworking.org/wp-content/uploads/2018/12/TR-512_v1.4_OnfCoreIm-info.zip
https://www.opennetworking.org/wp-content/uploads/2018/12/TR-512_v1.4_OnfCoreIm-info.zip
https://wiki.opennetworking.org/display/OTCC/TAPI+Reference+Implementation+Agreements+and+other+Documentation
https://wiki.opennetworking.org/display/OTCC/TAPI+Reference+Implementation+Agreements+and+other+Documentation
https://tools.ietf.org/html/rfc8040
https://wiki.opennetworking.org/display/OTCC/TAPI+RIA+Associated+Documents
https://wiki.opennetworking.org/display/OTCC/TAPI+RIA+Associated+Documents
https://wiki.opennetworking.org/download/attachments/766218066/TAPI_Alarm_TCA_List.xlsx?api=v2
https://wiki.opennetworking.org/display/OTCC/TAPI+RIA+Associated+Documents
https://wiki.opennetworking.org/display/OTCC/TAPI+RIA+Associated+Documents
https://wiki.opennetworking.org/download/attachments/766218066/TAPI_Notification_and_Streaming_Sequences.xlsx?api=v2
https://tools.ietf.org/html/rfc6455
https://www.w3.org/TR/eventsource/
https://tools.ietf.org/html/rfc6020

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 107 of 110 © 2022 Open Networking Foundation

8 Definitions and Terminology

No terms are special to this work.

This document uses terms defined elsewhere. In some cases, the term is used in a particular way in this

document; Particular usage is highlighted.

CEP Connection End Point (a TAPI class) [ONF TR-547]

Client In this document, an application/system (usually a controller (see below)) which

uses TAPI streaming (hence is a TAPI client) to gain and maintain alignment with

the current state of a network that is exposed through a provider system

• The client is a superior controller to the provider

Control To attempt to achieve an agreed intent and measure the results to validate

achievement and where necessary to initiate actions to fix any problems

• Note that automated management is control (see [ONF TR-512] (specifically

TR-512.8))

Controlled network A controlled system that consists of devices that provide networking functionality.

Controlled system A system of devices that are managed/controlled by a controller.

• Also covers managed system as automation of management is the focus and

automated management is control

Controller A devices that controls other devices.

• Examples, with varying degrees of control responsibility and varying degrees

of automation, include devices mentioned in this definition list such as SDTN

Controller, SDN-C, Orchestrator, EMS, NMS, OSS (see Figure 1 Example

SDN architecture for WDM/OTN network on page 8)

• The primary focus for Streaming in TAPI 2.4 is simple and efficient ongoing

alignment of a Controller (client) with a view presented by another Controller

(provider).

DDD Domain Driven Design

Device A thing formed from an assembly of electronic (and mechanical) equipment

usually running software that is made or adapted for a particular purpose. See

also:

• network device

• controller

EMS Element Management System

ForwardingDomain An ONF Core Model class [ONF TR-512]

GUI Graphical (human) User Interface

KAFKA https://kafka.apache.org/

Log A sequential store

Management (see control)

Management-Control (see control)

MEP Maintenance End Point (a TAPI class) [ONF TR-547]

Network device A device that is designed to and/or is used to support networking functions (e.g.,

an OTN Switch).

NMS Network Management System

https://kafka.apache.org/

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 108 of 110 © 2022 Open Networking Foundation

Node A TAPI Class [ONF TR-547]

OAM Operations Administration and Maintenance

ONF Open Networking Foundation https://www.opennetworking.org/

Orchestrator An overarching Controller that coordinates other subordinate controllers

OSS Operations Support System

PoC Proof of Concept

Provider In this document, an application/system (usually a controller (see above)) which

offers TAPI streaming (hence is a TAPI provider) to enable a client to gain and

maintain alignment with the current state of the network that it, the provider,

exposed

• The client is a superior controller to the provider

SDN-C Software Defined Network Controller [ONF TR-547]

SDTN Software-Defined Transport Network

SDTN Controller An SDTN Orchestrator [ONF TR-547]

TAPI Transport API (Application Programmers Interface) [ONF TR-547]

Tombstone A special message that indicates that an entity no longer exists.

Topology A TAPI Class [ONF TR-547]

TR Technical Report (from ONF)

UML Universal Modeling Language

UUID Universally Unique Identifier

WS WebSockets

Yang Yet Another Next Generation… see [YANG]

https://www.opennetworking.org/

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 109 of 110 © 2022 Open Networking Foundation

9 Individuals engaged

9.1 Editors

Nigel Davis Ciena

9.2 Contributors

Nigel Davis Ciena

Ramon Casellas CTTC

Arturo Mayoral Telecom Infra Project (Arturo previously at Telefónica & Meta)

Kam Lam FiberHome

Pedro Amaral Infinera

Jonathan Sadler Infinera

Karthik Sethuraman NEC

Andrea Mazzini Nokia

Ronald Zabaleta Telefónica

Malcolm Betts ZTE

Xiaobing Niu ZTE

Jai Qian ZTE

TR-548 TAPI v2.4.0 Reference Implementation Agreement - Streaming Version 2.0

Page 110 of 110 © 2022 Open Networking Foundation

10 Appendix: Changes between versions

10.1 Changes between v1.1 and v2.0

• Updated UML/YANG – 2.4.0 (including UML diagrams) covering v2.4.0 changes in tapi-streaming:

• RPCs have been removed

• Most properties are now Conditional with the CONDITION stated in the description.

• record-trigger (ON_CHANGE, PERIODIC) aspect separated out from log-record-strategy

(now CHANGE_ONLY and WHOLE_ENTITY)

• object-class-identifier, used in v2.1.3 has been replaced by object-type from tapi-common

and this is now augmented with classes from tapi-streaming (and all relevant classes in each

other model)

• Formalized enumerations (represented as identities) for connection-protocol and encoding-

format replace strings used in v2.1.3 and GNMI and PROTOBUF added for streaming

options

• Two new compacted log properties (max-allowed-segment-roll-delay and max-compaction-

lag added

• information-record-strategy added in preparation for advanced PM streaming

• detected-condition from tapi-fm.yang used in place of alarm-condition-detector-detail (which

is deprecated)

• condition-detector-type used to explain choice of details in detected-condition augmentation

• YANG explanations have been improved to reference condition statements in the YANG

descriptions

• Various wording clarifications and improvements

• More data types included in the explanatory text

• Improvements to non-normative proposal for periodic measurements streaming

• parent-address explanation improved and specific usage for each object class detailed

• Use of tapi-fm introduced and explained

• References to TR-547 detail of relevant parameters improved

• Some use case steps improved

• Alarm examples has been updated (Appendix)

• References to the TAPI RIA Associated Documents (TAPI_Alarm_TCA_List.xlsx and

TAPI_Notification_and_Streaming_Sequences.xlsx) have been added

End of Document

	Disclaimer
	List of Tables
	Document History
	1 Introduction
	1.1 General introduction
	1.2 Introduction to this document
	1.3 Specification

	2 Overview
	2.1 Essential feature and benefits
	2.2 TAPI application

	3 Summary of key considerations
	3.1 Overview
	3.2 RESTCONF notification mechanism (described in [ONF TR-547])
	3.3 TAPI Streaming
	3.4 Stream content
	3.5 TAPI Application in detail
	3.6 Summary of Streaming Characteristics
	3.7 Supported and available streams
	3.7.1 Supported stream type
	3.7.2 Available Streams

	3.8 Streaming approach and log strategy
	3.8.1 Log storage strategy
	3.8.1.1 Compacted log
	3.8.1.2 Truncated log
	3.8.1.3 Full history log
	3.8.1.4 Full history with periodic baseline log

	3.8.2 Log record strategy and record trigger
	3.8.2.1 Whole entity on change
	3.8.2.2 Change only
	3.8.2.3 Whole entity periodic
	3.8.2.4 Change-only periodic

	3.9 Using the stream
	3.9.1 Streaming the context
	3.9.1.1 Effect of streaming approach and compacted log characteristics on alignment
	3.9.1.2 Preparing to connect
	3.9.1.3 Initial connection
	3.9.1.4 Tombstone (Delete) retention passed
	3.9.1.5 Compaction delay passed
	3.9.1.6 (Eventual) Consistency achieved
	3.9.1.7 Degraded performance
	3.9.1.8 Need for realignment
	3.9.1.9 Summary

	3.9.2 Future combination considerations (by example)
	3.9.2.1 Many clients
	3.9.2.2 Many views and many clients (with a few clients per view)
	3.9.2.3 Many short-lived clients
	3.9.2.4 Live measurements
	3.9.2.5 Threshold Crossing
	3.9.2.6 Periodic measurement data
	3.9.2.7 Bulk Performance Monitoring (PM) data

	3.10 Record content
	3.10.1 Log Record Header
	3.10.2 Log Record Body
	3.10.3 Considering parent-address

	3.11 Considering order/sequence and cause/effect
	3.11.1 Time
	3.11.2 Backend stream details

	3.12 The Context
	3.13 Handling changes in the Context
	3.14 Reporting change
	3.15 Model implications
	3.16 System engineering
	3.17 Eventual Consistency and Fidelity
	3.17.1 Eventual Consistency
	3.17.2 Fidelity
	3.17.3 Related stream characteristics

	3.18 Stream Monitor
	3.19 Solution structure – Architecture Options
	3.19.1 Full compacted log
	3.19.2 Emulated compaction
	3.19.3 Comparing the full compacted log and the emulated compacted log

	4 Using the compacted log approach for alarm reporting
	4.1 Specific alarm characteristics - raising/clearing an alarm
	4.2 Key Features of an alarm solution (example usage)
	4.3 Log strategy
	4.4 Alarm behavior
	4.5 Condition detector and alarm structure
	4.5.1 condition-detector from tapi-streaming.yang
	4.5.2 detected-condition from tapi-fm.yang
	4.5.3 alarm-condition-detector-detail from tapi-streaming.yang

	4.6 Alarm Identifier and location
	4.7 Alarm tombstone behavior
	4.8 Time
	4.9 Detected Condition normalization
	4.10 Meaningful detection (device or any other source)

	5 Use Cases
	5.1 Use Case General Considerations
	5.1.1 TAPI Context
	5.1.2 Underlying behavior
	5.1.3 Model conformance
	5.1.4 Use Case Overview

	5.2 Streaming infrastructure use cases
	5.2.1 Use Case ST-0.1: Get Auth Token
	5.2.2 Use Case ST-0.2: Discover supported and available streams, then select available streams
	5.2.3 Use Case ST-0.3: Connect to Stream and align - new client
	5.2.4 Use Case ST-0.4: Client maintains idle connection
	5.2.5 Use Case ST-0.5: Provider delivers event storm (or slow client) – bad day
	5.2.6 Use Case ST-0.6: Provider delivers extreme event storm (or very slow client) – very bad day
	5.2.7 Use Case ST-0.7: Short loss of communications
	5.2.8 Use Case ST-0.8: Long loss of communications requiring realignment
	5.2.9 Use Case ST-0.9: Client requires realignment

	5.3 Building and operating a stream on a provider
	5.3.1 Use Case ST-1.1: Provider initializes and operates a stream
	5.3.2 Use Case ST-1.2: Provider recovers a stream after internal loss
	5.3.3 Use Case ST-1.3: Provider recovers a stream after an upgrade

	5.4 Client maintains alignment – Example strategies and approaches
	5.4.1 Use Case ST-2.1: Client aligns with a stream
	5.4.2 Use Case ST-2.2: Client realigns
	5.4.3 Use Case ST-2.3: Client performs a stream audit

	5.5 Gaining and maintaining Alignment with individual network resources
	5.5.1 Use Case ST-3.1: Client maintains alignment with all instances of a class (e.g., Node) in a context
	5.5.2 Use Case ST-3.2: Client maintains alignment with all alarms in the context

	5.6 Dealing with the whole context of resources
	5.6.1 Use Case ST-4.1: Client maintains alignment with all resources in the context
	5.6.2 Use Case ST-4.2: In a resilient solution the Controller the client is connected to becomes unavailable

	5.7 Connectivity Service Lifecycle
	5.7.1 Use Case ST-5.1: Provide streams network changes to the client
	5.7.2 Use Case ST-5.2: Client runs a provisioning use case ([ONF TR-547] UC1x etc.)
	5.7.3 Use Case ST-5.3: Client runs the service deletion use case ([ONF TR-547] UC10)

	5.8 Message Sequence example
	5.9 Use cases beyond current release
	5.10 Message approach (WebSocket example)
	5.10.1 Basic interaction
	5.10.2 Authorization example – WebSockets
	5.10.3 Connecting to a stream example - WebSockets

	6 Appendix
	6.1 Appendix – Considering compacted logs
	6.1.1 Essential characteristics of a compacted log
	6.1.2 Order of events
	6.1.3 Log segments
	6.1.4 Partitions
	6.1.5 Compaction in a real implementation
	6.1.6 The Tombstone

	6.2 Appendix – UML Model
	6.3 Appendix – Stream record example
	6.4 Appendix – Detectors, detected conditions and alarms
	6.4.1 Detect
	6.4.2 Detector
	6.4.3 Condition
	6.4.4 Condition detector
	6.4.5 Detected condition
	6.4.6 Alarm
	6.4.7 Alarm detector
	6.4.8 Traditional alarm reporting and legacy-properties
	6.4.9

	7 References
	8 Definitions and Terminology
	9 Individuals engaged
	9.1 Editors
	9.2 Contributors

	10 Appendix: Changes between versions
	10.1 Changes between v1.1 and v2.0

