A P4-Based Content-Aware Approach to Mitigate Slow HTTP POST Attacks

EuroP4 - December 9, 2022

Chih-Yu Hsieh, Hong-Yen Chen, Shan-Hsiang Shen, Chen-Hsiang Hung, Tsung-Nan Lin

Agenda

- Introduction
- Proposed Method
- Experiments and Results
- Conclusion

Slow HTTP DDoS Attacks

Slow HTTP DDoS attacks disturb services by occupying server threads with

- HTTP headers: slowloris / slow header
- HTTP body: slow POST / slow body / RUDY

Sending body simulates realistic file upload

POST /posts HTTP/1.1	start-line	
Host: 10.0.1.1	headers	
User-Agent: Mozilla/4.0		
Content-Length: 7		seg
Content-Type: application/x-www-form-urlencoded		
		exp
foo=bar	body	
	bouy	

	slowloris	slow POST
segment	HTTP header	HTTP body
expected size	small	large

HTTP request example

Challenge of Detection

- How to distinguish attackers from clients correctly in various network activities?
 - Viewing websites
 - Uploading photos / videos
 - Filling forms
 - Slow HTTP attack
- Existing works
 - timeout methods [1-3]
 - credibility method [4]

• False positives make legitimate users suffer from denial-of-service

[1] J. Park, K. Iwai, H. Tanaka, and T. Kurokawa, "Analysis of slow read dos attack and countermeasures on web servers," International Journal of Cyber-Security and Digital Forensics, vol. 4, no. 2, pp. 339–353, 2015.

[2] T. Hirakawa, K. Ogura, B. B. Bista, and T. Takata, "A defense method against distributed slow http dos attack," in 2016 19th International Conference on Network-Based Information Systems (NBiS), 2016, pp. 152–158.

[3] K. Hong, Y. Kim, H. Choi, and J. Park, "Sdn-assisted slow http ddos attack defense method," IEEE Communications Letters, vol. 22, no. 4, pp. 688–691, 2018.
[4] Y.-C. Wang and R.-X. Ye, "Credibility-based countermeasure against slow http dos attacks by using sdn," in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 2021, pp. 0890–0895.

Timeout-based Defense Mechanism

Files are corrupt because the user cannot finish uploading within the timeout.

Credibility-based Defense Mechanism

The file to upload cannot be completed within the specified number of packets

Contribution

Our proposed method, RASP, is an open source¹, P4-based **content-aware** countermeasure.

- High accuracy: overcome the false positive issue by utilizing HTTP information
- **Scalable** deployment by P4
 - Application-layer headers processing is distributed to switches
 - Quantifies network usage savings
- Demonstrates the ability of P4 to parse variable-length header fields

¹ <u>https://github.com/doraeric/p4-rasp</u>

RASP overview

Initial Protection

- Limitation per client per category
 - complete: none
 - **short-term**: number of requests is 8, connection time < 10 seconds
 - long-term: number of requests is 4
- Close excess connections and keep old ones.

The user needs to finish old requests first.

Punishment at the End

- HTTP status code can indicate whether a request is successful.
 - **2xx**: the backend processes the request without error
 - **4xx**: the request failed due to client error (malformed / invaild request)

. . .

• Punishment is to decrease the number of allowed connections.

HTTP/1.1 200 OK Server: Apache/2.4.25 (Debian) Content-Type: text/html

A good HTTP response.

HTTP/1.1 400 Bad Request Server: Apache/2.4.25 (Debian) Content-Type: text/html

A bad HTTP response.

Implementation

- Control plane
 - manage connection state
- Data plane
 - parse HTTP headers
 - manage the number of open connections with register
 - report to controller with digest messages

Experiments - Simulation Scenario

We simulate different usage scenarios to verify the robustness of RASP:

- 1. short GET: slow client viewing websites under a slow header attack
- 2. long non-GET: clients **uploading** several **photos** under a slow POST attack
- 3. short non-GET: clients **uploading GPS** locations under a slow POST attack.

We investigate

- the number of successful requests the clients send
- reduction in network usage by adopting P4

Experiment with BMv2

1. Slow Header Attack

Short-term GET clients under slow header attack

Our proposed RASP mitigates attacks **earlier** by sending TCP RST.

2. POST Photos

Long-term non-GET clients under slow POST attacks

RASP **correctly** completes all client requests in time

Table. Received files by backend			
Method	receive bytes	complete files	
SHDA	43.3 MB	0	
CCSA	1.7 MB	0	
RASP	129 MB	60	

3. Upload GPS Locations

Short-term non-GET clients under slow POST attacks

RASP **correctly** protects clients from DDoS attacks.

Table. Received requests by backend

Method	# of req	success
SHDA	1782	99%
CCSA	300	16.7%
RASP	1800	100%

Network Usage

- Send smaller digests messages than raw packets
 - Raw: between switches and **clients**, including attackers
 - P4RT: degest messages between switches and controller
- Digest message (P4) compared to raw packets (OpenFlow)
 - Number of packets -> approximately 30%
 - Number of bytes -> 20%
- Larger HTTP body benefit more (exp2, 0.74% / 0.1%)

(a) Packets sent in ratio (%).

⁽b) Bytes sent in ratio (%).

Conclusion

- We propose RASP, a defense mechanism against slow HTTP POST DDoS attacks. RASP utilizes new information from **application-layer headers** to implement more delicate control.
- RASP achieves more **accurate** detection than that in previous work under realistic simulations.
- It is implemented on the highly **programmable P4**, which provides potential for future development. Other plaintext-based protocols like HTTP, may be applied in similar approaches.

Chih-Yu Hsieh r09921a17@ntu.edu.tw

Thank you!

github.com/doraeric/p4-rasp