On Implementing ChaCha on a Programmable Switch

EuroP4 Workshop 2022
Dec. 9, 2022

Yutaro Yoshinaka, Junji Takemasa, Yuki Koizumi, Toru Hasegawa
(Osaka University)

Motivation and EXxisting Approaches

O Motivation: practical cryptographic primitive on hardware programmable switches
® Application:
« Privacy and anti-censorship (PINOT [1], PHI [2])
« Countermeasure for traffic analysis (ditto [3])
* |oT and 5G security [4]
* Onion Routing
® Desirable properties:
« Security — probabilistic encryption, sufficient key size (128 or 256 bits)
« Speed — should reduce recirculations for throughput
* Applicability — support for long message input

O Existing approaches
® AES-Tofino [5]
« Supporting only single-block (16B), deterministic encryption
« Consumes 15% SRAM resources (57k entries) of switch for constructing LUT
® Two-round Even-Mansour cipher [1], OTP with HalfSipHash [2,6]
« Short key size (64 bits)
« Considers short message only (~8B)

Our Approach

O ChaCha [7]: stream cipher

® Highly portable for pipelined architecture, especially programmable switches
« Operation for encryption and decryption are identical
« ARX-based cipher (consists by only addition, rotation, and XOR)
* Free from LUT and S-box, and requires small memory footprint
« Keeps small internal state and is in-place algorithm

 Natively supports probabilistic and multi-block encryption/decryption
* No key schedule

® Sufficient key size (256 bits), and no attacks found for 8+ rounds
® Adopted in famous protocols and applications (e.g., TLS 1.3, QUIC, OpenSSH, WireGuard, Adiantum)

ChaCha

O Initialization step
® Generate 128-bit nonce (for primary block)
® Increment counter (for non-primary block)
® Initialize 512-bit state with key, counter, and nonce

O Round step

® Shuffle the state by performing four Quarter Rounds
® Repeat 20, 12, or 8 rounds

« Odd round: apply four QRs on columns

« Even round: apply four QRs on diagonals

Nun
Vg™
Up I*I
Ve »HH

vy ——OEIA

#0 #1 #2 #3 #4 #5 #6

;III n
> »

QR(Ua,Ub,UC,Ud): I*I
‘l

A
v v

#7 #8 #9 #10 #11

O Finalization step
® Obtain keystream by adding initial state and shuffled state

O Encryption/decryption step
® Take XOR of message and keystream

V- const|vy: const|v,: const|vs: const
v, key | vs: key | vg: key | v,: key
vg: key | vq: key | vqp: key | vq1: key
counter | counterJ{_nonce_| _nonce
Initial state
/Odd rounds Even rounds
QR QR
%1 /\172\/\%
N5 %\%
\%@10%?}_1_
12N 13NV 1 NV15)
A A4
Y
keystrem
data[0] | data[1] | data[2] | data[3]
data[4] | data[5] | data[6] | data[7] Eva
data[8] | data[9] |data[10]|data[11]
data[12]|data[13]|data[14]|data[15]
\
output

Challenge and Design o fec

12

: DD
D Cha”enge- Dependency among QRS Dependencyat odd rounds Dependenc;’atg\,/en\rgunds

® Action dependencies between consecutive rounds, not between four QRs in a round
» Deploy round function to 12 stages by performing four QRs in parallel leveraging VLIW architecture

® VVariable dependencies in QRs precludes implementing odd and even rounds on
a single pipeline
» Place odd and even rounds on ingress and egress pipeline exclusively
» Generate nonce in ingress pipeline in the first pass, followed by resubmission and round operaions

. —ingress pipeline ——egressnineline racirculation 9 recirculations
—)|| Initializatiorl_| Qdd round —)I| Odd round|| Even round | A per 2 data blocks
I—*| Even round| Odd round Odd round Even round
I—*| Even rounci| Odd round —)I| Odd round]| Even round > Encryption of

1st block

!
r 7'7] Oddlound _)II_OQQQ\J./W Even round |
!
!

)
)
)
|
Entire @ption| f—)IQ Entire ?
dependency Odd round I)I‘%j/emiendency ven round
I Odd
)
)
)

N/ ~J"\0dd round T\N\Even round
—)I| Odd round

I—*| Even rounc|| Odd round Even round |
—* Odd round Even round |

l—*| Even rounci_| Odd round
_*l |. j

I—*| Even rounci|FinaIization| Encryption |

, Encryption of
2"d block

\L_I_I__I_I_I_I__I

Challenge and Design

O Dependency among operations in QR

® Action dependencies in Round step (12 steps) fully occupies Tofino’s pipelines (12 stages)
» Optimize the implementation of QRs in even rounds for 11 stages, rather than 12 stages
» Tofino’s special instruction makes it possible to execute rotation and addition in one stage
» Place Finalization step on the last stage of egress pipeline
» Superimpose Initialization and Encryption/decryption step on the first step of odd rounds

ingress pipeline resubmit . .
. — 9 recirculations
—> Nonce generation, Initialization |—| o _ _ S
egress pipeline recirculation + 1 resubmission
|—)| Odd round —> Even round = A per 2 data blocks
L) Odd round —> Even round =
Encryption of
Odd round Even round >
%AV/ | 15t block
l—)| Odd round N Even round
— : Extra —
Finalization | Encryption . lati Initialization D
>eCirculiationy ' ~
l—)| Odd round < SO Even round =
BN Odd round M@I s Even round =
l—)| Odd round —> Even round |—| - Encryption of
2"d block
l—)| Odd round —> Even round |—|
I—)| Finalization | Encryption | |—)| }_) J

Challenge and Design

O Encrypting/decrypting multiple blocks

® VVariable dependencies between keystream and all data blocks preclude the implementation
» Regards data blocks as circular buffer
» Always encrypts block at the head position in PHV, and rotates data blocks in ingress parser

1st Block 2d Block 3 Block 4t Block 1st Block
> 2"d Block 3" Block 4t Block 15t Block 2"d Block >
31 Block || Rotate data blocks | 4" Block || Rotate data blocks_ | 1% Block || Rotate data blocks | 2™ Block || Rotate data blocks_| 3 Block
4% Block 1st Block | 2" Block "| 3 Block | 4™ Block
« Encrypt 1t block « Encrypt 2" block « Encrypt 3" block « Encrypt 4" block
ingress pipeline resubmit 8 recirculations
—)| Nonce generation |—| aqi
g egress pipeline recirculation + 1 resubmission
|_) il per 2 data blocks
nitialization Odd round —> Even round]
I—)' Odd round |—)| Even round | |—| >Encryptic)n of
L) Odd round —> Even round | = 15t block
L] Odd round —> Even round | Finalization |—|
—> Even round
Variable ~«
> N dependenc — | > Even round | — | Encryption of
I—)l < P b —> Even round | |—| 2nd plock
I—)| /Mﬁd\ —> Even round | Finalization |—|
l—_)l Encryption | —> >

Challenge and Design
O Encrypting/decrypting multiple blocks

® VVariable dependencies between keystream and all data blocks preclude the implementation
» Regards data blocks as circular buffer
» Always encrypts block at the head position in PHV, and rotates data blocks in ingress parser

1st Block 2"d Block 3 Block 4% Block 1st Block
> 2" Block 34 Block 4t Block 1st Block 2" Block >
31 Block || Rotate data blocks | 4" Block || Rotate data blocks_ | 1% Block || Rotate data blocks | 2™ Block || Rotate data blocks_| 3 Block
4th Block "1 1%t Block ~| 2" Block "| 3 Block 4™ Block
« Encrypt 1t block « Encrypt 2" block « Encrypt 3" block « Encrypt 4" block
ingress parser ingress pipeline resubmit 8 recirculations
——)| |—)| Nonce generation P
- I_l egress pipeline recirculation +1 rSZUbT)'ISSLon
|—) || Initialization | Odd round —> Even round N) per = Cora boce
I—)l |—)| Odd round |—)| Even round | |—| _ Encryption of
L) —>| Odd round —> Even round | = 15t block
I—)| |—)| Odd round |—)| Even round | Finalization |—| J
I_) _ Encryption A
Data Rotation—>nitialization Odd round —> Even round
l—)l —> Odd round —> Even round | |—| 2" plock
I—)| —> Odd round —> Even round | Finalization |—|
I—)|Data Rotation|—)| Encryption | |—)| I—) J

Evaluation

O Comparison to AES-Tofino [5] (with one recirculation port)
® 8 and 12-round ChaCha are 3+ ~ 4+ times faster than AES-128 and -256, resp
(If AES-Tofino utilizes egress pipelines, rate of speedup is 1.5+ ~ 2+)

O Maximum throughput (with 29 recirculation ports of 2-pipeline Tofino)
® 64B data: 8-round ChaCha achieves 203.1Gbps
® 256B data: 8-round ChaCha achieves 95.1Gbps
® 384B data: 8-round ChaCha achieves 89.3Gbps

O Memory utilization

® ChaCha utilizes only 1.35% SRAM and 1.74% TCAM (43 entries), whereas
AES-Tofino utilizes 14.98% SRAM (57k entries)

[—
o

%

b b b b

B ChaCha8 [AES-128
[ChaChal?2 [AES-192 1
[ChaCha20 [—] AES-256 -

o

128

Throughput [Gbps]

192

256 320 384

Data size [B]
Throughput with one recirculation port

Throughput [Gbps]

(\®]
-
O

o

I ChaCha8 -
@ ChaChal2 |
I |:| ChaCha20
192 256 320 %84
Data size [B]

Throughput with 29 recirculation ports

Conclusion

® \We implement cryptographic primitive based on ChaCha on Tofino switches

® Our implementation outperforms AES-based approach in terms of throughput
and small memory footprint

® Future work
* Implementing authenticated encryption
« Mitigating overhead of recirculations by splitting and merging packets

Thank You for Listening!

Our code is available at: https://github.com/Hasegawa-Laboratory/ChaCha-Tofino

[1] Wang, Liang, et al. "Programmable in-network obfuscation of DNS traffic." NDSS: DNS Privacy Workshop. 2021.

[2] Yoshinaka, Yutaro, et al. "Feasibility of Network-layer Anonymity Protocols at Terabit Speeds using a Programmable Switch." 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft). IEEE, 2022.

[3] Meier, Roland, Vincent Lenders, and Laurent Vanbever. "ditto: WAN Traffic Obfuscation at Line Rate." NDSS Symposium 2022. 2022.
[4] Lin, Yi-Bing, Tse-Jui Huang, and Shi-Chun Tsai. "Enhancing 5g/iot transport security through content permutation.” IEEE Access 7 (2019): 94293-94299.

[5] Chen, Xiaoqi. "Implementing AES encryption on programmable switches via scrambled lookup tables." Proceedings of the Workshop on Secure Programmable
Network Infrastructure. 2020.

[6] Yoo, Sophia, and Xiaogi Chen. "Secure keyed hashing on programmable switches." Proceedings of the ACM SIGCOMM 2021 Workshop on Secure Programmable
network INfrastructure. 2021.

[7] Bernstein, Daniel J. "ChaCha, a variant of Salsa20." Workshop record of SASC. Vol. 8. No. 1. 2008.
11

