
On Implementing ChaCha on a Programmable Switch

EuroP4 Workshop 2022

Dec. 9, 2022

Yutaro Yoshinaka, Junji Takemasa, Yuki Koizumi, Toru Hasegawa
(Osaka University)

1

Motivation and Existing Approaches
 Motivation: practical cryptographic primitive on hardware programmable switches

⚫Application:

• Privacy and anti-censorship (PINOT [1], PHI [2])

• Countermeasure for traffic analysis (ditto [3])

• IoT and 5G security [4]

• Onion Routing

⚫Desirable properties:

• Security – probabilistic encryption, sufficient key size (128 or 256 bits)

• Speed – should reduce recirculations for throughput

• Applicability – support for long message input

2

 Existing approaches
⚫AES-Tofino [5]

• Supporting only single-block (16B), deterministic encryption

• Consumes 15% SRAM resources (57k entries) of switch for constructing LUT

⚫Two-round Even-Mansour cipher [1], OTP with HalfSipHash [2,6]

• Short key size (64 bits)

• Considers short message only (~8B)

Our Approach
 ChaCha [7]: stream cipher

⚫Highly portable for pipelined architecture, especially programmable switches

• Operation for encryption and decryption are identical

• ARX-based cipher (consists by only addition, rotation, and XOR)

• Free from LUT and S-box, and requires small memory footprint

• Keeps small internal state and is in-place algorithm

• Natively supports probabilistic and multi-block encryption/decryption

• No key schedule

⚫Sufficient key size (256 bits), and no attacks found for 8+ rounds

⚫Adopted in famous protocols and applications (e.g., TLS 1.3, QUIC, OpenSSH, WireGuard, Adiantum)

3

ChaCha
 Initialization step

⚫Generate 128-bit nonce (for primary block)

⚫ Increment counter (for non-primary block)

⚫ Initialize 512-bit state with key, counter, and nonce

4

 Round step
⚫Shuffle the state by performing four Quarter Rounds

⚫Repeat 20, 12, or 8 rounds

• Odd round: apply four QRs on columns

• Even round: apply four QRs on diagonals

 Encryption/decryption step
⚫Take XOR of message and keystream

𝑣0: const 𝑣1: const 𝑣2: const 𝑣3: const

𝑣4: key 𝑣5: key 𝑣6: key 𝑣7: key

𝑣8: key 𝑣9: key 𝑣10: key 𝑣11: key

𝑣12:

counter

𝑣13:

counter

𝑣14:

nonce

𝑣15:

nonce

<<<

<<<

<<<

<<<

𝑣𝑎
𝑣𝑏
𝑣𝑐
𝑣𝑑

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

𝑄𝑅(𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 , 𝑣𝑑):

𝑣0 𝑣1 𝑣2 𝑣3
𝑣4 𝑣5 𝑣6 𝑣7
𝑣8 𝑣9 𝑣10 𝑣11
𝑣12 𝑣13 𝑣14 𝑣15

𝑣0 𝑣1 𝑣2 𝑣3
𝑣4 𝑣5 𝑣6 𝑣7
𝑣8 𝑣9 𝑣10 𝑣11
𝑣12 𝑣13 𝑣14 𝑣15

Odd rounds Even rounds

QR QR QR QR QR QR QR QR

data[0] data[1] data[2] data[3]

data[4] data[5] data[6] data[7]

data[8] data[9] data[10] data[11]

data[12] data[13] data[14] data[15]

 Finalization step
⚫Obtain keystream by adding initial state and shuffled state

Counter++ RNG

Initial state

keystrem

output

5

ingress pipeline egress pipeline recirculation

Encryption of

1st block

Encryption of

2nd block

9 recirculations
per 2 data blocksInitialization

Even round

Even round

Even round

Even round

Initialization

Even round

Even round

Even round

Even round

Odd round

Odd round

Odd round

Odd round

Finalization Encryption

Odd round

Odd round

Odd round

Odd round

Finalization Encryption

Odd round

Odd round

Odd round

Odd round

Odd round

Odd round

Odd round

Odd round

Even round

Even round

Even round

Even round

Even round

Even round

Even round

Even round

Entire

dependency

Entire

dependency

Challenge and Design
𝑣0 𝑣1 𝑣2 𝑣3
𝑣4 𝑣5 𝑣6 𝑣7
𝑣8 𝑣9 𝑣10 𝑣11
𝑣12 𝑣13 𝑣14 𝑣15

𝑣0 𝑣1 𝑣2 𝑣3
𝑣4 𝑣5 𝑣6 𝑣7
𝑣8 𝑣9 𝑣10 𝑣11
𝑣12 𝑣13 𝑣14 𝑣15

𝑣0 𝑣1 𝑣2 𝑣3
𝑣4 𝑣5 𝑣6 𝑣7
𝑣8 𝑣9 𝑣10 𝑣11
𝑣12 𝑣13 𝑣14 𝑣15

∪ =

Dependency at odd rounds Dependency at even rounds Entire dependency Challenge: Dependency among QRs
⚫Action dependencies between consecutive rounds, not between four QRs in a round

⚫Variable dependencies in QRs precludes implementing odd and even rounds on
a single pipeline

➢Deploy round function to 12 stages by performing four QRs in parallel leveraging VLIW architecture

➢ Place odd and even rounds on ingress and egress pipeline exclusively

➢Generate nonce in ingress pipeline in the first pass, followed by resubmission and round operaions

ingress pipeline

egress pipeline
Nonce generation, Initialization

Odd round

resubmit

Even round

recirculation

Odd round Even round

Odd round Even round

Odd round Even round

Finalization Encryption Initialization

Odd round Even round

Odd round Even round

Odd round Even round

Odd round Even round

Finalization Encryption

Encryption of

1st block

Encryption of

2nd block

Challenge and Design
 Dependency among operations in QR

⚫Action dependencies in Round step (12 steps) fully occupies Tofino’s pipelines (12 stages)

6

Extra

recirculation

9 recirculations

+ 1 resubmission
per 2 data blocks

➢Optimize the implementation of QRs in even rounds for 11 stages, rather than 12 stages

• Tofino’s special instruction makes it possible to execute rotation and addition in one stage

➢ Place Finalization step on the last stage of egress pipeline

➢ Superimpose Initialization and Encryption/decryption step on the first step of odd rounds

Challenge and Design
 Encrypting/decrypting multiple blocks

⚫Variable dependencies between keystream and all data blocks preclude the implementation

ingress pipeline

egress pipeline
Nonce generation

Odd round

Odd round

Odd round

resubmit

Even round

Even round

Even round Finalization

Odd round Even round

Odd round Even roundInitialization

Initialization

Encryption

recirculation

Odd round

Odd round

Odd round

Even round

Even round

Even round Finalization

Encryption

Encryption of

1st block

Encryption of

2nd block

8 recirculations

+ 1 resubmission
per 2 data blocks

Variable

dependency

7

➢Regards data blocks as circular buffer

➢ Always encrypts block at the head position in PHV, and rotates data blocks in ingress parser

1st Block

2nd Block

3rd Block

4th Block

Rotate data blocks

• Encrypt 1st block

2nd Block

3rd Block

4th Block

1st Block

Rotate data blocks

• Encrypt 2nd block

3rd Block

4th Block

1st Block

2nd Block

Rotate data blocks

• Encrypt 3rd block

4th Block

1st Block

2nd Block

3rd Block

Rotate data blocks

• Encrypt 4th block

1st Block

2nd Block

3rd Block

4th Block

Challenge and Design
 Encrypting/decrypting multiple blocks

⚫Variable dependencies between keystream and all data blocks preclude the implementation

8

➢Regards data blocks as circular buffer

➢ Always encrypts block at the head position in PHV, and rotates data blocks in ingress parser

1st Block

2nd Block

3rd Block

4th Block

Rotate data blocks

• Encrypt 1st block

2nd Block

3rd Block

4th Block

1st Block

Rotate data blocks

• Encrypt 2nd block

3rd Block

4th Block

1st Block

2nd Block

Rotate data blocks

• Encrypt 3rd block

4th Block

1st Block

2nd Block

3rd Block

Rotate data blocks

• Encrypt 4th block

1st Block

2nd Block

3rd Block

4th Block

ingress pipeline

egress pipeline
Nonce generation

Odd round

Odd round

Odd round

resubmit

Even round

Even round

Even round Finalization

Odd round Even round

Odd round Even roundInitialization

Initialization

Encryption

recirculation

Odd round

Odd round

Odd round

Even round

Even round

Even round Finalization

Encryption

Encryption of

1st block

Encryption of

2nd block

ingress parser

Data Rotation

Data Rotation

8 recirculations

+ 1 resubmission
per 2 data blocks

Evaluation
 Comparison to AES-Tofino [5] (with one recirculation port)

⚫8 and 12-round ChaCha are 3+ ~ 4+ times faster than AES-128 and -256, resp

(If AES-Tofino utilizes egress pipelines, rate of speedup is 1.5+ ~ 2+)

9

 Maximum throughput (with 29 recirculation ports of 2-pipeline Tofino)
⚫64B data: 8-round ChaCha achieves 203.1Gbps

⚫256B data: 8-round ChaCha achieves 95.1Gbps

⚫384B data: 8-round ChaCha achieves 89.3Gbps

Throughput with one recirculation port Throughput with 29 recirculation ports

 Memory utilization
⚫ChaCha utilizes only 1.35% SRAM and 1.74% TCAM (43 entries), whereas

AES-Tofino utilizes 14.98% SRAM (57k entries)

Conclusion
⚫ We implement cryptographic primitive based on ChaCha on Tofino switches

⚫ Our implementation outperforms AES-based approach in terms of throughput
and small memory footprint

⚫ Future work
• Implementing authenticated encryption

• Mitigating overhead of recirculations by splitting and merging packets

10

Thank You for Listening!

11

Our code is available at: https://github.com/Hasegawa-Laboratory/ChaCha-Tofino

[1] Wang, Liang, et al. "Programmable in-network obfuscation of DNS traffic." NDSS: DNS Privacy Workshop. 2021.

[2] Yoshinaka, Yutaro, et al. "Feasibility of Network-layer Anonymity Protocols at Terabit Speeds using a Programmable Switch." 2022 IEEE 8th International Conference
on Network Softwarization (NetSoft). IEEE, 2022.

[3] Meier, Roland, Vincent Lenders, and Laurent Vanbever. "ditto: WAN Traffic Obfuscation at Line Rate." NDSS Symposium 2022. 2022.

[4] Lin, Yi-Bing, Tse-Jui Huang, and Shi-Chun Tsai. "Enhancing 5g/iot transport security through content permutation." IEEE Access 7 (2019): 94293-94299.

[5] Chen, Xiaoqi. "Implementing AES encryption on programmable switches via scrambled lookup tables." Proceedings of the Workshop on Secure Programmable
Network Infrastructure. 2020.

[6] Yoo, Sophia, and Xiaoqi Chen. "Secure keyed hashing on programmable switches." Proceedings of the ACM SIGCOMM 2021 Workshop on Secure Programmable
network INfrastructure. 2021.

[7] Bernstein, Daniel J. "ChaCha, a variant of Salsa20." Workshop record of SASC. Vol. 8. No. 1. 2008.

