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Motivation and Existing Approaches
 Motivation: practical cryptographic primitive on hardware programmable switches

⚫Application:

• Privacy and anti-censorship (PINOT [1], PHI [2])

• Countermeasure for traffic analysis (ditto [3])

• IoT and 5G security [4]

• Onion Routing

⚫Desirable properties:

• Security – probabilistic encryption, sufficient key size (128 or 256 bits)

• Speed – should reduce recirculations for throughput

• Applicability – support for long message input
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 Existing approaches
⚫AES-Tofino [5]

• Supporting only single-block (16B), deterministic encryption

• Consumes 15% SRAM resources (57k entries) of switch for constructing LUT

⚫Two-round Even-Mansour cipher [1], OTP with HalfSipHash [2,6]

• Short key size (64 bits)

• Considers short message only (~8B)



Our Approach
 ChaCha [7]: stream cipher

⚫Highly portable for pipelined architecture, especially programmable switches

• Operation for encryption and decryption are identical

• ARX-based cipher (consists by only addition, rotation, and XOR)

• Free from LUT and S-box, and requires small memory footprint

• Keeps small internal state and is in-place algorithm

• Natively supports probabilistic and multi-block encryption/decryption

• No key schedule

⚫Sufficient key size (256 bits), and no attacks found for 8+ rounds

⚫Adopted in famous protocols and applications (e.g., TLS 1.3, QUIC, OpenSSH, WireGuard, Adiantum)
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ChaCha
 Initialization step

⚫Generate 128-bit nonce (for primary block)

⚫ Increment counter (for non-primary block)

⚫ Initialize 512-bit state with key, counter, and nonce
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 Round step
⚫Shuffle the state by performing four Quarter Rounds

⚫Repeat 20, 12, or 8 rounds

• Odd round: apply four QRs on columns

• Even round: apply four QRs on diagonals

 Encryption/decryption step
⚫Take XOR of message and keystream
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 Finalization step
⚫Obtain keystream by adding initial state and shuffled state
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keystrem
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Dependency at odd rounds Dependency at even rounds Entire dependency Challenge: Dependency among QRs
⚫Action dependencies between consecutive rounds, not between four QRs in a round

⚫Variable dependencies in QRs precludes implementing odd and even rounds on 
a single pipeline

➢Deploy round function to 12 stages by performing four QRs in parallel leveraging VLIW architecture

➢ Place odd and even rounds on ingress and egress pipeline exclusively

➢Generate nonce in ingress pipeline in the first pass, followed by resubmission and round operaions
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Challenge and Design
 Dependency among operations in QR

⚫Action dependencies in Round step (12 steps) fully occupies Tofino’s pipelines (12 stages)
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Extra
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+ 1 resubmission
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➢Optimize the implementation of QRs in even rounds for 11 stages, rather than 12 stages

• Tofino’s special instruction makes it possible to execute rotation and addition in one stage

➢ Place Finalization step on the last stage of egress pipeline

➢ Superimpose Initialization and Encryption/decryption step on the first step of odd rounds



Challenge and Design
 Encrypting/decrypting multiple blocks

⚫Variable dependencies between keystream and all data blocks preclude the implementation
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➢Regards data blocks as circular buffer

➢ Always encrypts block at the head position in PHV, and rotates data blocks in ingress parser
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Challenge and Design
 Encrypting/decrypting multiple blocks

⚫Variable dependencies between keystream and all data blocks preclude the implementation
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Evaluation
 Comparison to AES-Tofino [5] (with one recirculation port)

⚫8 and 12-round ChaCha are 3+ ~ 4+ times faster than AES-128 and -256, resp 

(If AES-Tofino utilizes egress pipelines, rate of speedup is 1.5+ ~ 2+)
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 Maximum throughput (with 29 recirculation ports of 2-pipeline Tofino)
⚫64B data:  8-round ChaCha achieves 203.1Gbps

⚫256B data: 8-round ChaCha achieves 95.1Gbps

⚫384B data: 8-round ChaCha achieves 89.3Gbps

Throughput with one recirculation port Throughput with 29 recirculation ports

 Memory utilization
⚫ChaCha utilizes only 1.35% SRAM and 1.74% TCAM (43 entries), whereas

AES-Tofino utilizes 14.98% SRAM (57k entries)



Conclusion
⚫ We implement cryptographic primitive based on ChaCha on Tofino switches

⚫ Our implementation outperforms AES-based approach in terms of throughput 
and small memory footprint

⚫ Future work
• Implementing authenticated encryption

• Mitigating overhead of recirculations by splitting and merging packets
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Thank You for Listening!
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Our code is available at: https://github.com/Hasegawa-Laboratory/ChaCha-Tofino
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