On Implementing ChaCha on a Programmable Switch

EuroP4 Workshop 2022
Dec. 9, 2022

Yutaro Yoshinaka, Junji Takemasa, Yuki Koizumi, Toru Hasegawa
(Osaka University)



Motivation and EXxisting Approaches

O Motivation: practical cryptographic primitive on hardware programmable switches
® Application:
« Privacy and anti-censorship (PINOT [1], PHI [2])
« Countermeasure for traffic analysis (ditto [3])
* |oT and 5G security [4]
* Onion Routing
® Desirable properties:
« Security — probabilistic encryption, sufficient key size (128 or 256 bits)
« Speed — should reduce recirculations for throughput
* Applicability — support for long message input

O Existing approaches
® AES-Tofino [5]
« Supporting only single-block (16B), deterministic encryption
« Consumes 15% SRAM resources (57k entries) of switch for constructing LUT
® Two-round Even-Mansour cipher [1], OTP with HalfSipHash [2,6]
« Short key size (64 bits)
« Considers short message only (~8B)



Our Approach

O ChaCha [7]: stream cipher

® Highly portable for pipelined architecture, especially programmable switches
« Operation for encryption and decryption are identical
« ARX-based cipher (consists by only addition, rotation, and XOR)
* Free from LUT and S-box, and requires small memory footprint
« Keeps small internal state and is in-place algorithm

 Natively supports probabilistic and multi-block encryption/decryption
* No key schedule

® Sufficient key size (256 bits), and no attacks found for 8+ rounds
® Adopted in famous protocols and applications (e.g., TLS 1.3, QUIC, OpenSSH, WireGuard, Adiantum)



ChaCha

O Initialization step
® Generate 128-bit nonce (for primary block)
® Increment counter (for non-primary block)
® Initialize 512-bit state with key, counter, and nonce

O Round step

® Shuffle the state by performing four Quarter Rounds
® Repeat 20, 12, or 8 rounds

« Odd round: apply four QRs on columns

« Even round: apply four QRs on diagonals
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O Finalization step
® Obtain keystream by adding initial state and shuffled state

O Encryption/decryption step
® Take XOR of message and keystream
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Challenge and Design o fec
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® Action dependencies between consecutive rounds, not between four QRs in a round
» Deploy round function to 12 stages by performing four QRs in parallel leveraging VLIW architecture

® VVariable dependencies in QRs precludes implementing odd and even rounds on
a single pipeline
» Place odd and even rounds on ingress and egress pipeline exclusively
» Generate nonce in ingress pipeline in the first pass, followed by resubmission and round operaions
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Challenge and Design

O Dependency among operations in QR

® Action dependencies in Round step (12 steps) fully occupies Tofino’s pipelines (12 stages)
» Optimize the implementation of QRs in even rounds for 11 stages, rather than 12 stages
» Tofino’s special instruction makes it possible to execute rotation and addition in one stage
» Place Finalization step on the last stage of egress pipeline
» Superimpose Initialization and Encryption/decryption step on the first step of odd rounds
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Challenge and Design

O Encrypting/decrypting multiple blocks

® VVariable dependencies between keystream and all data blocks preclude the implementation
» Regards data blocks as circular buffer
» Always encrypts block at the head position in PHV, and rotates data blocks in ingress parser
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Challenge and Design
O Encrypting/decrypting multiple blocks

® VVariable dependencies between keystream and all data blocks preclude the implementation
» Regards data blocks as circular buffer
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Evaluation

O Comparison to AES-Tofino [5] (with one recirculation port)
® 8 and 12-round ChaCha are 3+ ~ 4+ times faster than AES-128 and -256, resp
(If AES-Tofino utilizes egress pipelines, rate of speedup is 1.5+ ~ 2+)

O Maximum throughput (with 29 recirculation ports of 2-pipeline Tofino)
® 64B data: 8-round ChaCha achieves 203.1Gbps
® 256B data: 8-round ChaCha achieves 95.1Gbps
® 384B data: 8-round ChaCha achieves 89.3Gbps

O Memory utilization

® ChaCha utilizes only 1.35% SRAM and 1.74% TCAM (43 entries), whereas
AES-Tofino utilizes 14.98% SRAM (57k entries)
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Conclusion

® \We implement cryptographic primitive based on ChaCha on Tofino switches

® Our implementation outperforms AES-based approach in terms of throughput
and small memory footprint

® Future work
* Implementing authenticated encryption
« Mitigating overhead of recirculations by splitting and merging packets



Thank You for Listening!

Our code is available at: https://github.com/Hasegawa-Laboratory/ChaCha-Tofino
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