
Introducing IPDK
Deb Chatterjee, Sr Dir Eng @Intel, presenter

Dan Daly, Sr PE @Intel

Infrastructure Trends

2

Exponential Scale
Billions of users, East-West, IOT

• Same modular software runs everywhere, from the data center to IoT device

• Open, modular software is driving the pace of this software revolution

Huge Datasets
Everything logged 24x7, ML & Data Analytics!

Real-Time / Interactive
Interactive apps need microsecond response time

Software-Defined Infrastructure

Distributed Compute

Disaggregated storage

Microservices

Edge Computing

A pervasive theme across
industries

Architectural Compartmentalization and
Domain-Specific Hardware

3

● Mismatch of software to hardware
abstractions and trust boundaries

● Hypervisors are unable to effectively
abstract domain-specific hardware

● Desire to use entire host CPU for
application workloads

Emergence of the IPU

1. Efficient high-performance software programmable multi-core
CPUs

2. Flexible and programmable acceleration engines
3. SW-defined device functions and rich programmability

IPDK Overview
• IPDK is a development

framework

• community-driven

• target agnostic

• runs on CPU, IPU, DPU,
or switch.

IPDK.io : Infrastructure Programmer Development Kit
Collaborate with the community on Github & Slack

IPDK
Targets

Use
Cases

IaaS PaaS Inline Acceleration

Open
Community

Compiler
Driven

IPDK Target Abstraction Interface

NETWORK STORAGE CRYPTO FIREWALL,IDS ML/AI 5G/EDGE

IPDK Infrastructure Application Interface

CPU Target IPU Target Switch
Target

DPU
Target

https://ipdk.io/
http://www.github.com/ipdk-io
http://www.slack.com/ipdk

IPDK Approach

1. Delineate Business Logic vs. Infrastructure
2. Simplify Infrastructure Management
3. Optimize Infrastructure using a Compiler-Driven Target Abstraction

EXISTING ENVIRONMENT
DELINEATE SIMPLIFY OPTIMIZE

INFRASTRUCTURE
MANAGEMENT

CPUs

IPUs

DPUs

Switches

IPDK.io: Infrastructure Programmer Development Kit
Collaborate with the community on Github & Slack

https://ipdk.io/
http://www.github.com/ipdk-io
http://www.slack.com/ipdk

IAI, TAI, TDI – the IPDK Standard Interfaces
• Infrastructure Application

Interface (IAI)

• Target Abstraction
Interface (TAI)

• Table Driven Interface
(TDI)

IPDK.io: Infrastructure Programmer Development Kit
Collaborate with the community on Github & Slack

IPDK
Targets

Use
Cases

IaaS PaaS Inline Acceleration

Open
Community

Compiler
Driven

IPDK Target Abstraction Interface

NETWORK STORAGE CRYPTO FIREWALL,IDS ML/AI 5G/EDGE

IPDK Infrastructure Application Interface

CPU Target IPU Target Switch
Target

DPU
Target

https://ipdk.io/
http://www.github.com/ipdk-io
http://www.slack.com/ipdk

IPDK journey is use-case driven
1. Infrastructure-as-a-Service

2. Platform-as-a-Service

3. Inline Acceleration

IPDK.io: Infrastructure Programmer Development Kit
Collaborate with the community on Github & Slack

IPDK
Targets

Use
Cases

IaaS PaaS Inline Acceleration

Open
Community

Compiler
Driven

IPDK Target Abstraction Interface

NETWORK STORAGE CRYPTO FIREWALL,IDS ML/AI 5G/EDGE

IPDK Infrastructure Application Interface

CPU Target IPU Target Switch
Target

DPU
Target

https://ipdk.io/
http://www.github.com/ipdk-io
http://www.slack.com/ipdk

Device

Host IPDK Apps

idev

• Insert/Delete devices into hosts
(bare metal, VMs inside bare metal)

• Direct and virtual devices
(drives, NICs, Accel)

Hardware Hypervisor I/O
Virtual Switch, Block Storage & Crypto

VM HOSTING

Example Use Case: IaaS
BARE METAL HOSTING

VM

qemu

KV
M

IPDK Apps

idev

• Insert/Delete devices into VMs

• Direct attached devices
(drives, NICs, Accel)

Software Hypervisor I/O
Virtual Switch, Block Storage & Crypto

IPDK.io: Infrastructure Programmer Development Kit
Collaborate with the community on Github & Slack

• Common Control

• Common Interfaces

• Target Abstraction

https://ipdk.io/
http://www.github.com/ipdk-io
http://www.slack.com/ipdk

Open-Source Development
• Recipes and ingredients

• Open-Source Development &
Governance

• Development has started, join us!
Collaborate on Slack , Github & IPDK.io

IPDK.io: Infrastructure Programmer Development Kit
Collaborate with the community on Github & Slack

http://www.slack.com/ipdk
http://www.github.com/ipdk-io
https://ipdk.io/
https://ipdk.io/
http://www.github.com/ipdk-io
http://www.slack.com/ipdk

IPDK, Diamond Bluff, OPI

From Dell - Need for an Open API for D/IPU

© Copyright 2022 Dell Inc.

• Define standard mechanisms for Service Deployment

• Support of a Multi-Vendor Open D/IPU API definition and adoption for
– Storage Services
– Network Services
– Security Services
– AI/ML
– Telemetry
– System and Lifecycle Management

• Reuse Existing or define new common APIs for Configuration, Management and
Consumption

1. “here's our cluster's discovery endpoint, here's the UUID of the volume we want, now surface it asa local NVMe
device on the host, connected to this PF or VF”

2. A joint API that is common to most if not all SmartNICs and IPUs
a. For configuring remote storage
b. For deployment and provisioning of local services
c. For VXLANs and network virtualization
d. For network transport security, e.g., IPsec
e. For storage data-at-rest encryption/decryption
f. For end-to-end data integrity configuration (e.g., DIF)
g. For resource metering and limiting (bandwidth and/or IOPs QoS, rate limiting)
h. For billing?

3. Support for controlling IPUs both locally from the host and remotely from some centralized management layer
a. potentially different mgmt access transports, security considerations, "ownership", etc.

4. Simplicity - keep the APIs and abstractions as simple as possible but no simpler. Clear and concise error reporting.
5. Robustness - the APIs should be race-free, safe in the face of retries/crashes/outages/concurrency. For block

storage, "it usually works" is not considered acceptable.
6. Ultimately: “do one thing and do it well”

Lightbits LabsProprietary and Confidential | 13

From Lightbits - An IPDK Shopping List

From Ericsson -CouldIPDKsupportTelcosrequirements
● IPDK should

– Allow multi-vendor IPU/DPU for Telco Operator
– Allow mix of IPU/DPU and CPUbased networking stack for Telco Operator
– Enable IPU/DPU SW stacks with large portability for Telco Vendors

● Enable CPUusage for deployment without IPU/DPU
● Enable functional portability over CPU, IPU/DPU and Programmable switches where deployed

– Enable SW application portability with low need for re-verification
● Over different IPU/DPU, CPUand Cloud providers

– Fit the Cloud Native paradigm and be seamlessly exposed through K8s Infrastructure
● Must support the Telco functional extensions e.g. for secondary networking

Work together to grow the shared cake instead of chasing growth of each small slice or crumble
| Tomas Fredberg | B | 2022-03-16 | Telco needs of IPDK, Cloud, HW and SWsuppliers | Open | Page 14 of
8

6 | ©2020 F5

! BusinessApps run on the Node

! InfrastructureApps are Services running
on the DPU
" Network
" Storage
" Security
" Virtualization

! Why move Infrastructure off the node?
- “30% of CPU cores are being used for
datacenter infrastructure needs”
-“It would take 125 cores to run all the
Security, Network, and Storage offloads at
125Gbps”

Jensen Huang, NVIDIACEO,@ 2020 GTC Keynote

From Dell - Separating BusinessApps from Infrastructure

BusinessApplications

DPU

Host OS

app app app app

Infrastructure Services
Network Storage Security Virtualize

From Marvell - OCTEON IPDK PoC conclusion

● IPDK working smoothly on OCTEON DPU
○ ARM support was missing - added and upstreamed by Marvell

● p4 DPDK target
○ Performance limitations - CPU Scalability

● PCI Interface support missing
○ Virtio only
○ Required for external interface
○ Required for DPU->Host interface

End-to-End Infrastructure Programming

Disparate Apps w/
Different Dataplanes

Dataplane Declared in
Languages Like C & P4

Optimized in Software
(DPDK, eBPF, Instructions)

P4

DPDK

Compile to
Hardware Option

Static Analysis
For ‘Fit’

Growing
Ecosystem

Programmable Infrastructure Ecosystem Using P4

Network
Analytics

New Functionality

Differentiation

Rapid Innovation

Workload Acceleration

Network Analytics

SDE &
Compiler

P4 targets –
• SW
• IPU ASICs
• IPU in FPGAs
• Switches

A single Programming Model Across Servers, IPUs, FPGAs & Switches

Platform

Mt Evans IPUServer (P4 DPDK) Oak Springs Canyon IPU

P4 Compiler Front-end

P4 Visualization

Tofino Switch

H
ardw

are

SD
K

Tofino Back-end

H
ardw

are

SD
K

Mt Evans Back-end

Softw
are

SD
K

DPDK Back-end

table routing {
key = { ipv4.dstAddr : lpm; }
actions = { drop; route; }
size : 2048; }

control ingress() {
apply {

routing.apply(); }
}

P4 Program

H
ardw

are

SD
K

FPGA Back-end

P4 demo on SW target

● Presented by Sandeep Nagapattinam from EPG SW
● Works on the P4 DPDK backend

○ A special P4 DPDK compiler backend was written
○ A special P4 DPDK packet processing library was developed

● Uses P4-OVS as control plane
● Please view in the tutorial

P4 demo on Tofino Target

● Presented by Sayan Bandyopadhy from XFG

Tofino™ 3

P4 demo on Big Spring Canyon FPGA IPU Target

● Presented by Anbuvelu Venkataraman from EPG SW

P4 demo on Mt Evans Target

● Presented by Nupur Uttarwar from EPG SW

Linux_networking.p4 – starting point of P4-OVS
control linux_networking_control(inout headers_t hdr,

inout local_metadata_t local_metadata,

in pna_main_input_metadata_t istd,

inout pna_main_output_metadata_t ostd)

{
ActionRef_t vendormeta_mod_action_ref = (16w1 << NO_MODIFY);

ModDataPtr_t vendormeta_mod_data_ptr = 0xFFFF;

ModDataPtr_t vendormeta_neighbor_mod_data_ptr = 0xFFFF;

action do_recirculate() {

// recirculate();

}
action set_exception(PortId_t vport) {

send_to_port(vport);

local_metadata.exception_packet = 1;

}

table ipv4_tunnel_term_table {

key = {

local_metadata.tunnel.tun_type : exact @name("tunnel_type");

hdr.outer_ipv4.src_addr : exact @name("ipv4_src");

hdr.outer_ipv4.dst_addr : exact @name("ipv4_dst");

}

actions = {

@tableonly decap_outer_ipv4;

@defaultonly NoAction;

// @defaultonly set_exception;

}

default_action = NoAction;

}

action set_tunnel(ModDataPtr_t tunnel_id, ipv4_addr_t dst_addr) {

vendormeta_mod_action_ref = vendormeta_mod_action_ref | (16w1 << VXLAN_ENCAP);

vendormeta_mod_data_ptr = tunnel_id; /* ptr can be tunnel_id */

local_metadata.ipv4_dst_match = dst_addr;

local_metadata.is_tunnel = 1;

}

Connection_tracking.p4
table set_ct_options {

key = {
hdr.tcp.flags: ternary;

}
actions = {

tcp_syn_packet;
tcp_fin_or_rst_packet;
tcp_other_packets;

}
const entries = {

TCP_SYN_MASK &&& TCP_SYN_MASK: tcp_syn_packet;
TCP_FIN_MASK &&& TCP_FIN_MASK: tcp_fin_or_rst_packet;
TCP_RST_MASK &&& TCP_RST_MASK: tcp_fin_or_rst_packet;

}
const default_action = tcp_other_packets;

}
action ct_tcp_table_hit () {

if (update_aging_info) {
if (update_expire_time) {

set_entry_expire_time(new_expire_time_profile_id);
// This is implicit and automatic part of the behavior
// of set_entry_expire_time() call:
//restart_expire_timer();

} else {
restart_expire_timer();

}
// a target might also support additional statements here

} else {

control MainControlImpl(
inout headers_t hdr,
inout metadata_t meta,
in pna_main_input_metadata_t istd,
inout pna_main_output_metadata_t ostd)

{
action drop () {

drop_packet();
}

// Inputs from previous tables (or actions, or in general other P4
// code) that can modify the behavior of actions of ct_tcp_table.
bool do_add_on_miss;
bool update_aging_info;
bool update_expire_time;
ExpireTimeProfileId_t new_expire_time_profile_id;

// Outputs from actions of ct_tcp_table
bool add_succeeded;

action tcp_syn_packet () {
do_add_on_miss = true;
update_aging_info = true;
update_expire_time = true;
new_expire_time_profile_id = EXPIRE_TIME_PROFILE_TCP_NEW;

}
action tcp_fin_or_rst_packet () {

update_aging_info = true;
update_expire_time = true;
new_expire_time_profile_id = EXPIRE_TIME_PROFILE_TCP_NOW;

}

Container_load_balancing.p4
action pinned_flows_hit (FlowId_t flow_id, PortId_t p,

ModDataPtr_t ptr) {
// This action should only be executed for Tx packets.
meta.dst_port = p;
send_to_port(p);
meta.mod_action = WRITE_DEST_IP;
meta.mod_blob_ptr = ptr;

}

// Note: This action does nothing at all if
// do_clb_pinned_flows_add_on_miss is false.
action pinned_flows_miss() {

if (do_clb_pinned_flows_add_on_miss) {
//my_flow_id = allocate_flow_id();//DPDK doesn't yet support

allocate_flow_id()
my_flow_id = (FlowId_t)0;
add_succeeded =

add_entry(action_name = "pinned_flows_hit", // action name
action_params = (clb_pinned_flows_hit_params_t)

{flow_id = my_flow_id,
p = meta.dst_port,
ptr = meta.mod_blob_ptr});

}
}

control MainControlImpl(
inout headers_t hdr,
inout main_metadata_t meta,
in pna_main_input_metadata_t istd,
inout pna_main_output_metadata_t ostd)

{
//vendormeta_t vendormeta;
bool do_clb_pinned_flows_add_on_miss = false;
bool add_succeeded = false;
FlowId_t my_flow_id = (FlowId_t)0;

action update_src_ip_mac(bit<48> new_smac, bit<32> new_ip) {
hdr.ethernet.srcAddr = new_smac; //TODO: how to use meta in main_metadata_t
hdr.ipv4.srcAddr = new_ip;

}

table write_source_ip_table {
key = { meta.mod_blob_ptr : exact; }
actions = { update_src_ip_mac; }
size = 2048;

}

action set_source_ip (bit<24> ptr) {
meta.mod_action = (ActionRef_t)WRITE_SRC_IP; // from mod_hints.p4
meta.mod_blob_ptr = (ModDataPtr_t)ptr;

}

Summary

● IPDK is a target and platform-agnostic Infrastructure Programming Kit
● IPDK is entirely in open source and in active development. Please come and join us!
● IPDK is a part of OPI and will shortly move under Linux foundation
● First major IPDK release is 22.07, in July of this year. Next release is 23.01, in January

2023. Two releases will be made every year
● P4 is a cornerstone of IPDK. We hope to create newer use cases for P4 through IPDK,

such as the ones shown. We are also extending P4 support into Linux kernel
● That’s all! If you have questions, please write to me or Dan
● Deb.Chatterjee@intel.com
● Dan.daly@intel.com

mailto:Deb.Chatterjee@intel.com
mailto:Dan.daly@intel.com

Thank You
More IPDK information on

www.ipdk.io

http://www.ipdk.io/

