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SW functions increasingly sunk into HW
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•Hardware must have software-like flexibility 
• Programmability: Wide range of tasks 

• Fungibility: Context switches across tasks

Open, programmable 
network devices

Resource-fungible, 
runtime changes
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Programmability is already here for networks

• Programmable network devices are prevalent
• E.g., SmartNICs, DPUs, IPUs, DSCs, Switches 
• Capable of many tasks, easy feature development
• Use cases: Security, telemetry, monitoring, .. 
• Some of our work: Ripple, NetWarden, Poise, Bedrock
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Domain-spec. lang. Many targets Diverse vendors Exciting “apps”



Ex: Programmable network defenses
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•Network attacks are dynamic and shapeshift quickly: 
• Changing attack strategies and locations

• Programmable network defenses are a great match 

•But defenses must be reconfigurable at runtime! 



Today’s programmable devices lack fungibility
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•Today, network programming is a compile-time activity
• Incurs intrusive downtime, requires maintenance before reprogramming

•Also, can’t pre-reinstall all programs we’ll ever needed
• Can’t anticipate attacks, limited switch resources (e.g., 10Mb SRAM)

Network program

  ......
Control ingress{
  tab.apply ()
  …
}
......

defense.p4

network compiler

programmable switch

Compile-time 
programmability



• Runtime network (re)programming end-to-end
• No downtime, zero packet loss, consistency guarantees 
• From programmability to resource fungibility
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The                 vision



(b) Runtime compilation
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Exciting challenges, require community work

• Runtime changes to infrastructure stacks is challenging
• SW/HW “touchpoints” create coupling, changes impact upper layers

• Including network switches, but also NICs and OS 

• Vision: Network/Infra stacks with resource fungibility 
• Programming, compilation, verification, and management

(a) Fungible datapath programming
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(d) Real-time infra. control

Infra. mgmt. interface

(c) Runtime infra. verification



Exciting 
Questions



Programming a fungible datapath (flex program)

• How to enable a resource-fungible datapath across the stack?
• Runtime resource allocation + reclamation, without downtime
• SOTA: P4, NPL, PoF languages specify single-device behaviors
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infrastructure.flex

lb

vlan
ACL

telemetry

L2+L3

fungible datapath



Real-time network extensions (flex extensions)

• How to program network extensions into a “base” program?
• Infrastructure program: Basic utilities, e.g., ACL, telemetry
• User-specific upgrades, e.g., DDoS, refined telemetry 
• SOTA: BPF extensions to OS kernels, at well-defined hooks
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tenant.flexupdate.flex



Verifying real-time changes (flex verification)

• How to provide high assurance for runtime changes? 
• Infrastructure changes are risky, especially at runtime
• Runtime verification to eliminate bugs, constrain blast radius
• SOTA: P4 verification and validation “before deployment”
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specifications

fixes



Runtime infrastructure management

• How to manage dynamic network programs as they roam?
• Network “apps” migrate, expand, shrink at runtime
• E.g., adding resources dynamically to attack locations
• SOTA: P4Runtime for micro-behaviors not macro-behaviors
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Control plane interface

App 
migration 

App 
scaling

dRPCs



Preliminary 
Work



Runtime programmable switches
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• Goal: Live network reprogramming w/ consistency guarantees
• Use cases: Real-time attack mitigation, workload-driven optimizations, ..

Disaggregated arch.

defense1 defense2

Partial reconfiguration Atomic transactions Consistency guarantees
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Disaggregation offers runtime flexibility
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• Monolithic: Tight coupling of memory/compute in stages

• Disaggregated: Decoupling for resource fungibility

Monolithic (RMT)

Memory

MA MA MA

Disaggregated (dRMT)
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Memory 
(MA entries)



Ex: Runtime table addition
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• Ex: Insert Access Control List (ACL) into a live program
• Install new elements in scratchpad, pointer swaps to place them in

• Finally, activate changes atomically for next pkt

Compute Memory

ipv4

nat

nat table

ipv4 table

control ingress {

    ipv4.apply(); // 3Mb

    nat.apply();  // 5Mb
}

P4 program

+  acl.apply(); // 5Mb

acl table
acl



Live, partial hardware reconfiguration
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• Larger change: Use “delta” between old and new
• Approach 1: minimum change graph (NSDI’22) 

• Approach 2: @add, @del, @mod annotations (NSDI’23)

• Transform “delta” into a set of PR primitives

+ 

A

B

s

C

A

B

E

s

C

FD
D

r r

Old program New program

A

B

E

s

C

F

r

D

Primitive # HW Ops

AllocTbl 112

GroupTbl 112

AllocCond 43

SetCondPtr 2

AllocEx 3

AllocState 22

AllocTrans 5

SetPtr 1

MA Tables

Control flow

Parser state 
and transition

Atomic



Providing atomic transactions
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• Idea: Bootstrap from atomic operations to transactions
• Prepare delta in scratch area, guarded by version control

• Atomic version modification commits transaction

• But, need to prepare the entire delta before activating it
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Atomic hardware operations
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New version
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Delta w/ version control
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if (metadata.v == 0) {
        next = old_table;
} else {
        next = new_table;
}

v=1

v=0



Resource headroom constrains TX sizes
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• One-step TX not always possible b/c resource constraints
• Ex: {@add T1’, @del T1, @add T2’, @del T2} 🡪 must add before del 

• One-step TX: large peak utilization. Two-step TXs: Feasible

• In between TXs, we’ll expose intermediate states! 
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Consistency guarantees 
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• Idea: Weaker consistency guarantees w/ granular TXs
• E.g., pkts never mix old and new tables  

• E.g., User-defined specifications  
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Runtime update plan synthesis
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• User provides change annotation and consistency spec. 

• Goal: Identify a sequence of safe and feasible TXs  
• Safe: Intermediate states between TXs satisfy spec

• Feasible: Each TX fits within the resource headroom

• Counterexample guided inductive synthesis (CEGIS)

control ingress {
  @add ecmp.apply();
  if (ipv4.isValid) {
    nat.apply();  
  }
  @del {
    if (ipv6.isValid) {
      flowlet.apply();
    }
}}

Program w/ annotated changes

specification {
  ghost sawNew, sawOld;
  @old => {sawOld = true;}
  @new => {sawNew = true;}

  exec_consistency = {
    !($cur.eg.sawOld && 
     $cur.eg.sawNew);
  }
  assert exec_consistency;

Consistency specification

Additions

Deletions

Ghost 
variables

Constrain 
intermediate 
states w/ GVs

Assertions



An experiment with Nvidia ASIC
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Implementation

bmv2 emulator

Nvidia 12.8Tbps ASIC

Evaluation metrics

• Number of HW operations

• Consistency algorithms

• Transaction sizes, headroom

• Effective for diff. programs

• Intermediate program states

Case studies

• Real-time network defense
• Covert channels
• Access control

• Just-in-time optimization
• Accelerated multicast
• Scenario: ZeroMQ multicast 

w/ 1-6 receivers
• FlexCore: Just-in-time 

injection of switch 
multicast program



Case study: Accelerated multicast    
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• Pub/sub workload: Repeated unicast vs. switch multicast
• Multicast program injected to switch at runtime

• Zero packet loss; dramatic performance gains

Time
Baseline @add 

multicast
@del 

multicast
@add 

telemetry
@del 

telemetry

Traffic throughput Job completion time
app runs

perf.
gain

Opt.Base.



But More 
Is Needed



(b) Runtime compilation
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Open questions abound, across the stack

• Fungibility as a first-order design goal
• Device architectures? 

• Languages and abstractions? 

• Compilation and verification? 

• Network management stacks?

(a) Fungible datapath programming
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(d) Real-time infra. control

Infra. mgmt. interface

(c) Runtime infra. verification
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An academia/industry coalition
                      https://flexnet-project.org

• Anchored by an NSF project, with industry engagement

• Looking for more collaborators and brainstorming partners!
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From programmability to fungibility

None
(before 2013)

Programmability
(2013 – now)

Fungibility
(going forward)

Vendors control 
network logic

Operators control 
network logic

Users control 
network logic

Hard to develop and 
deploy new features

Easy to develop, 
hard to deploy

Easy to develop and 
deploy new features

We need community work!
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