
From Programmability to Fungibility

Ang Chen

Department of Computer Science
Rice University

SW functions increasingly sunk into HW

1

•Hardware must have software-like flexibility
• Programmability: Wide range of tasks

• Fungibility: Context switches across tasks

Open, programmable
network devices

Resource-fungible,
runtime changes

l
b

vla
n

I
O

telemetr
y

routin
g

Programmability is already here for networks

• Programmable network devices are prevalent
• E.g., SmartNICs, DPUs, IPUs, DSCs, Switches
• Capable of many tasks, easy feature development
• Use cases: Security, telemetry, monitoring, ..
• Some of our work: Ripple, NetWarden, Poise, Bedrock

2

Domain-spec. lang. Many targets Diverse vendors Exciting “apps”

Ex: Programmable network defenses

3

A C

D

E

F
B

•Network attacks are dynamic and shapeshift quickly:
• Changing attack strategies and locations

• Programmable network defenses are a great match

•But defenses must be reconfigurable at runtime!

Today’s programmable devices lack fungibility

4

•Today, network programming is a compile-time activity
• Incurs intrusive downtime, requires maintenance before reprogramming

•Also, can’t pre-reinstall all programs we’ll ever needed
• Can’t anticipate attacks, limited switch resources (e.g., 10Mb SRAM)

Network program

Control ingress{
 tab.apply ()
 …
}
......

defense.p4

network compiler

programmable switch

Compile-time
programmability

• Runtime network (re)programming end-to-end
• No downtime, zero packet loss, consistency guarantees
• From programmability to resource fungibility

5

The vision

(b) Runtime compilation

6

Exciting challenges, require community work

• Runtime changes to infrastructure stacks is challenging
• SW/HW “touchpoints” create coupling, changes impact upper layers

• Including network switches, but also NICs and OS

• Vision: Network/Infra stacks with resource fungibility
• Programming, compilation, verification, and management

(a) Fungible datapath programming

l
b

vla
n

I
O

telemetr
y

routin
g

(d) Real-time infra. control

Infra. mgmt. interface

(c) Runtime infra. verification

Exciting
Questions

Programming a fungible datapath (flex program)

• How to enable a resource-fungible datapath across the stack?
• Runtime resource allocation + reclamation, without downtime
• SOTA: P4, NPL, PoF languages specify single-device behaviors

8

infrastructure.flex

lb

vlan
ACL

telemetry

L2+L3

fungible datapath

Real-time network extensions (flex extensions)

• How to program network extensions into a “base” program?
• Infrastructure program: Basic utilities, e.g., ACL, telemetry
• User-specific upgrades, e.g., DDoS, refined telemetry
• SOTA: BPF extensions to OS kernels, at well-defined hooks

9

tenant.flexupdate.flex

Verifying real-time changes (flex verification)

• How to provide high assurance for runtime changes?
• Infrastructure changes are risky, especially at runtime
• Runtime verification to eliminate bugs, constrain blast radius
• SOTA: P4 verification and validation “before deployment”

10

specifications

fixes

Runtime infrastructure management

• How to manage dynamic network programs as they roam?
• Network “apps” migrate, expand, shrink at runtime
• E.g., adding resources dynamically to attack locations
• SOTA: P4Runtime for micro-behaviors not macro-behaviors

11

Control plane interface

App
migration

App
scaling

dRPCs

Preliminary
Work

Runtime programmable switches

13

• Goal: Live network reprogramming w/ consistency guarantees
• Use cases: Real-time attack mitigation, workload-driven optimizations, ..

Disaggregated arch.

defense1 defense2

Partial reconfiguration Atomic transactions Consistency guarantees

B

E

s s

C

F

TX1 TXn Begin

End

…

Disaggregation offers runtime flexibility

14

• Monolithic: Tight coupling of memory/compute in stages

• Disaggregated: Decoupling for resource fungibility

Monolithic (RMT)

Memory

MA MA MA

Disaggregated (dRMT)

vs.

M
em

o
ry

MA

M
em

o
ry

MA
M

em
o

ry
MA

T1 T2

T1 T2

1 2

Compute
(MA units)

Memory
(MA entries)

Ex: Runtime table addition

15

• Ex: Insert Access Control List (ACL) into a live program
• Install new elements in scratchpad, pointer swaps to place them in

• Finally, activate changes atomically for next pkt

Compute Memory

ipv4

nat

nat table

ipv4 table

control ingress {

 ipv4.apply(); // 3Mb

 nat.apply(); // 5Mb
}

P4 program

+ acl.apply(); // 5Mb

acl table
acl

Live, partial hardware reconfiguration

16

• Larger change: Use “delta” between old and new
• Approach 1: minimum change graph (NSDI’22)

• Approach 2: @add, @del, @mod annotations (NSDI’23)

• Transform “delta” into a set of PR primitives

+

A

B

s

C

A

B

E

s

C

FD
D

r r

Old program New program

A

B

E

s

C

F

r

D

Primitive # HW Ops

AllocTbl 112

GroupTbl 112

AllocCond 43

SetCondPtr 2

AllocEx 3

AllocState 22

AllocTrans 5

SetPtr 1

MA Tables

Control flow

Parser state
and transition

Atomic

Providing atomic transactions

17

• Idea: Bootstrap from atomic operations to transactions
• Prepare delta in scratch area, guarded by version control

• Atomic version modification commits transaction

• But, need to prepare the entire delta before activating it

i

Atomic hardware operations

Old version

New version

A

B

E

s

C

F

r

D
i ii

1

0
1

10

0

Delta w/ version control

A

B

s

C

r

D
i ii

v=0, old

A

B

E

s

C

F

r

D
i ii

v=1, new

0

1

if (metadata.v == 0) {
 next = old_table;
} else {
 next = new_table;
}

v=1

v=0

Resource headroom constrains TX sizes

18

• One-step TX not always possible b/c resource constraints
• Ex: {@add T1’, @del T1, @add T2’, @del T2} 🡪 must add before del

• One-step TX: large peak utilization. Two-step TXs: Feasible

• In between TXs, we’ll expose intermediate states!

T1

T2

T1’

T2’

Reconfig. steps

T1

T2

T1’

T2’

T1

T2

T1’

T2’

Breaking it down

T1

T2

T2’

T1

T2’

T1

T1’

T2’Cap.

TX1 TX2

IntermediateOld New

Consistency guarantees

19

• Idea: Weaker consistency guarantees w/ granular TXs
• E.g., pkts never mix old and new tables

• E.g., User-defined specifications

B

E

s

C

F

D

Program consistency

B

E

s

D

s

C

F

Element consistency

B

E

s s

C

F
E

s

D

Execution consistency

One-step TX TX1 TX2 TX1 TX2 TX3

> >

Runtime update plan synthesis

20

• User provides change annotation and consistency spec.

• Goal: Identify a sequence of safe and feasible TXs
• Safe: Intermediate states between TXs satisfy spec

• Feasible: Each TX fits within the resource headroom

• Counterexample guided inductive synthesis (CEGIS)

control ingress {
 @add ecmp.apply();
 if (ipv4.isValid) {
 nat.apply();
 }
 @del {
 if (ipv6.isValid) {
 flowlet.apply();
 }
}}

Program w/ annotated changes

specification {
 ghost sawNew, sawOld;
 @old => {sawOld = true;}
 @new => {sawNew = true;}

 exec_consistency = {
 !($cur.eg.sawOld &&
 $cur.eg.sawNew);
 }
 assert exec_consistency;

Consistency specification

Additions

Deletions

Ghost
variables

Constrain
intermediate
states w/ GVs

Assertions

An experiment with Nvidia ASIC

21

Implementation

bmv2 emulator

Nvidia 12.8Tbps ASIC

Evaluation metrics

• Number of HW operations

• Consistency algorithms

• Transaction sizes, headroom

• Effective for diff. programs

• Intermediate program states

Case studies

• Real-time network defense
• Covert channels
• Access control

• Just-in-time optimization
• Accelerated multicast
• Scenario: ZeroMQ multicast

w/ 1-6 receivers
• FlexCore: Just-in-time

injection of switch
multicast program

Case study: Accelerated multicast

22

• Pub/sub workload: Repeated unicast vs. switch multicast
• Multicast program injected to switch at runtime

• Zero packet loss; dramatic performance gains

Time
Baseline @add

multicast
@del

multicast
@add

telemetry
@del

telemetry

Traffic throughput Job completion time
app runs

perf.
gain

Opt.Base.

But More
Is Needed

(b) Runtime compilation

24

Open questions abound, across the stack

• Fungibility as a first-order design goal
• Device architectures?

• Languages and abstractions?

• Compilation and verification?

• Network management stacks?

(a) Fungible datapath programming

l
b

vla
n

I
O

telemetr
y

routin
g

(d) Real-time infra. control

Infra. mgmt. interface

(c) Runtime infra. verification

25

An academia/industry coalition
 https://flexnet-project.org

• Anchored by an NSF project, with industry engagement

• Looking for more collaborators and brainstorming partners!

26

From programmability to fungibility

None
(before 2013)

Programmability
(2013 – now)

Fungibility
(going forward)

Vendors control
network logic

Operators control
network logic

Users control
network logic

Hard to develop and
deploy new features

Easy to develop,
hard to deploy

Easy to develop and
deploy new features

We need community work!

27

Aditya Akella
Tom Anderson

Ang Chen
Sushovan Das
Matty Kadosh

Patrick Kon
Arvind Krishnamurthy

Jiaxin Lin
Hongyi Liu

Alan Lo

Acknowledgments

Jeongyoon Moon
T. S. Eugene Ng

Yonatan Piasetzky
Hari Sezhiyan
Omer Shabtai

Yiming Qiu
Weitao Wang
Zhuang Wang

Crystal Wu
Jiarong Xing
https://jxing.me/

