
Can SmartNICs help accelerate
distributed systems?

Arvind Krishnamurthy
Univ. of Washington

Programmable NICs

• Renewed interest in NICs that allow for customized per-packet

processing

• Many NICs equipped with multicores or packet processing pipelines

• E.g., Mellanox BlueField, Marvell LiquidIO, Pensando, Fungible, Intel IPU, etc.

• Primarily used to accelerate networking & storage

• Supports offloading of fixed functions used in protocols

Can we use programmable NICs to accelerate general distributed

applications?

Outline

• Hardware model

• Case studies of accelerating distributed systems

• Opportunities & challenges

• Discussion & future agenda

Diversity of Compute Elements

• PISA packet processing on the NIC

• E.g., Pensando, Netronome

• General purpose computation on packets (multi-core, FPGA, etc.)

• Further classified into:

• On-path computing

• Off-path computing

On-path SmartNICs

TX
/R

X
p

o
rt

s

Tr
af

fi
c

m
an

ag
er

N
IC

 c
o

re
s

H
o

st
 c

o
re

s
SmartNIC

 NIC cores handle all traffic on both the send & receive paths

 Tight integration of computing and communication

Off-path SmartNICs

TX/RX ports

NIC switch

NIC cores

Host cores

SmartNIC

• Programmable NIC switch (P4-like) enables targeted delivery

Off-path SmartNICs

TX/RX ports

NIC switch

NIC cores

Host cores

SmartNIC

• Programmable NIC switch (P4-like) enables targeted delivery

• Host traffic does not consume NIC cores

• Communication support is less integrated

Hardware Convergence

• Many off-path SmartNICs are now embracing on-path compute cores
(e.g., Mellanox BlueField 3)

• On-path SmartNICs are also including programmable switching
capabilities (e.g., Marvell Octeon 10)

• Question: how do we make use of these diverse computing elements on
the SmartNIC?

Use case studies to drive the design of offloading frameworks and new NIC designs

#1: Deploying Load Balancers on SmartNICs

• Load balancers are a crucial part of datacenters (e.g., L4 and L7)

• Now also being used within service meshes

• Traditional networking application that seems appropriate for SmartNICs

• NIC cores can perform general-purpose computing, while programmable NIC
switch can perform specialized packet processing at line rates

• If successful, can form a cheap (low-cost) load-balancing substrate within
datacenters

Challenges & Opportunities

• NIC cores can perform general computation but aren’t powerful

• Characterized the performance of Nginx running on host and the NIC

NIC-side computing is 2-8x slower executing traditional server-based apps

Challenges & Opportunities

• Disparity in packet processing is much less, especially if we use hardware
packet processing engine (i.e., NIC switch)

• Characterized the performance of MAC-Swap on host and the NIC

NIC-side packet processing can be faster than CPU due to the hardware engines

Laconic: Streamlined Load Balancers for SmartNICs

• Designed an L7 load balancer that is streamlined for a SmartNIC

• Key ideas:

• SmartNIC does not run a full transport stack, but merely runs a lightweight packet
rewriting/forwarding engine

• Inspects and processes only the “control” messages (e.g., resource requests that
have to be vetted for policy and routed appropriately)

• Bulk of the communication are simple packet rewrites; relies on the end-hosts to
handle losses & congestion control

• Simple packet rewrites can be accelerated using the hardware flow engine

Performance Benefits on BlueField-2

• Real-world workloads
can benefit from Laconic

• Performance currently
limited by updates to
hardware flow engine

#2: Distributed Transactions in the Datacenter

Our target: distributed ACID transactions on a replicated, in-memory
database

Common approach is Optimistic Concurrency Control + replication

Viability depends on efficient remote operations → hardware acceleration

Coordinator

Primary

Backup

Execute Validate Log Commit

🔒 🔓

📦 📦 📦

Xenic

Distributed transactions accelerated with on-path SmartNICs

1. Co-designed data store, spread across NIC + host DRAM

‣Minimize lookup overhead, utilizing NIC’s on-board memory

2. SmartNIC function shipping

‣Offload transaction logic to avoid PCIe crossings

3. Multi-hop OCC protocols

‣Reduce communication with optimized message patterns

Xenic: Robinhood Data Store

Host DRAM contains all objects; SmartNIC caches objects and lookup hints, stores locks

Critical path accesses: NIC memory hit or DMA read, DMA log write

• Lookup hints limit DMA cost for cache misses

• OCC + pinning ensure NIC/host consistency

Host Robinhood Hash

… …

Write Log

SmartNIC Caching Index

… … D D

 Cache miss: bounded DMA R

 Cache hit: NIC DRAM

 Commit: DMA W + pin

Xenic: SmartNIC Function Shipping

SmartNIC cores act as a function shipping target

Shipping execution can reduce overhead, depending on application-level
computation and state requirements

SmartNIC function shipping saves coordinator PCIe crossings

int smallbank_exec(reads, writes, AMOUNT) {
writes[0].val = reads[0].val + AMOUNT;
writes[1].val = reads[1].val - AMOUNT;
return START_COMMIT;

}

fn = smallbank_exec, AMOUNT = 5

Xenic: Multi-hop OCC Protocols

Xenic also ships execution to remote SmartNICs

Multi-hop NIC-to-NIC communication increases network efficiency

P2

 1 execute 2 execute

 5 commit

 6 commit 3 log

 4 log

P1

B1
1

B1
2

B2
1

B2
2

 2 log
 3 log

 1 execute

P1

B1
1

B1
2

B2
1

B2
2

P2
 4 commit

 5 commit
4 → 3 message delays to commit

Local write (P1) + remote write (P2)
Execution at coordinator P1

Local write (P1) + remote write (P2)
Shipped to remote primary P2

Evaluation: Benchmark Results

Xenic (2x50GbE LiquidIO 3) versus RDMA systems (100GbE CX5)

Better latency & throughput than
RPC, RDMA, hybrid designs

SmartNIC Opportunities & Challenges

• Offload CPU operations to SmartNIC, but

• NIC cores are wimpy

• Perform stateful operations on SmartNIC, but

• Need to keep state consistent with CPU

• Limited memory capacity & bandwidth on NIC

• On-path cores: Efficient NIC-to-NIC communication, but

• Software packet processing means latency overheads

• Off-path cores: Avoids traffic sent to host cores, but

• Lack of tight integration with the host cores or the NIC pipeline

Discussion & Future Agenda

• Application programmability of SmartNICs is now viable

• Can offload or accelerate end-host computations

• Many opportunities but also challenges

•Many interesting research directions:

• Hardware features that can aid performance & functionality

• Systems support for shared state & adaptive execution

• Programming support for application-specific tasks; support both general-purpose
computation & packet processing logic

Thank you!

