

Effective DGA Family Classification using a Hybrid Shallow and Deep Packet Inspection Technique on P4 Programmable Switches

Ali AlSabeh University of South Carolina, SC

Agenda

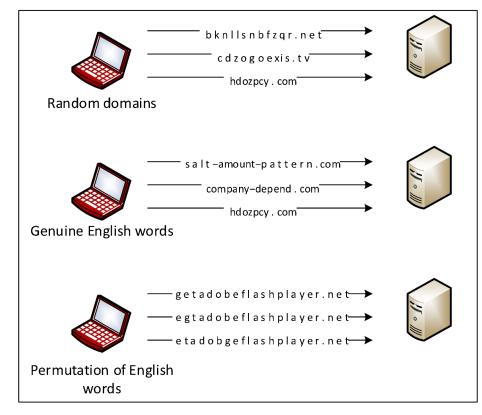
- Introduction
- Motivation
- Contribution
- Related Work
- Programmable switches
- Proposed system
- Implementation and Evaluation
- Conclusion and Discussion

Introduction

- Attackers often use a Command and Control (C2) server to establish communication and send commands to infected machines for malicious acts
- Communication with the C2 server can either be static or dynamic
 - Static communication: the C2 server has a fixed IP address and domain name
 - > Dynamic communication: the C2 server's IP and/or domain name change frequently
- Domain Generation Algorithms (DGAs) are the de facto dynamic C2 communication method used by a broad array of modern malware, including botnets, ransomware, and many others¹

DGA Attacks

- DGAs evade domain-based firewall controls by frequently changing the domain name selected from a large pool of candidates
- The malware makes Domain Name System (DNS) queries in an attempt to resolve the IP addresses of these generated domains
- Only a few IPs will typically be registered and associated with the C2
- Non-Existent Domain (NXD) responses will coincide with the remainder of the DNS queries, denoting that the domain is not registered or the DNS server could not resolve it



DGA-based malware

Open DNS resolvers

Existing Mitigation Strategies

- Most research efforts focus on DGA detection, i.e., they perform binary classification in order to segregate DGAs from benign traffic
- Approaches rely on contextual network traffic analysis (context-aware) or domain name analysis, without considering network traffic (context-less)
- In addition to DGA detection, it is helpful to classify DGA malware based on the family (Trojan, Backdoor, etc.)
 - > The multiclass classification of DGA families allows security professionals to assess the severity of the exploit and apply the appropriate remediation policies in the network¹

¹ A. Drichel, N. Faerber, and U. Meyer, "First Step Towards Explainable DGA Multiclass Classification," in The 16th International Conference on Availability, Reliability and Security, pp. 1–13, 2021.

Motivation

- Context-aware approaches analyze the network traffic behavior to fingerprint DGAs
 - > Slow since they typically analyze batches of traffic offline
- Context-less approaches obtain high accuracy with advanced ML models
 - ➤ Require a general-purpose CPU/GPU to process and analyze the domain names, which could create a bottleneck due to the ubiquitous use of DNS on the Internet
- There is a need for a system that uses context-aware and context-less features to classify DGAs without degrading high-throughput networks

Contribution

- Proposing a novel P4 scheme that uses a hybrid context-aware and context-less feature extraction technique entirely in the data plane
- Implementing an in-network Deep Packet Inspection (DPI) on Intel's Tofino ASIC that extracts and analyzes the entirety of the domain name within 3 microseconds
- Evaluating the proposed approach on 50 DGA families collected by crawling GBs of malware samples
- Highlighting the effectiveness of the proposed work in terms of accuracy, performance

Related Work

- DGA binary and multiclass classification
 - > [1, 2] use NetFlow and an SDN controller to collect context-aware features
 - > [3] uses ML models on context-aware and context-less features on batches of DNS traffic
 - ➤ [4-7] use machine learning trained on features of the domain name (statistical, structural, linguistic, etc.)
- DGA multiclass classification
 - > EXPLAIN [8] and [9] extract numerous features from a domain name to classify DGAs

Approach	DGA multiclass.	Context- less	Context- aware	F.E. latency		
[1]			√	minutes ullet		
[2]			✓	seconds ullet		
EXPOSURE [3]		✓	✓	minutes ullet		
FANCI [4]		√		$ms \bullet$		
ANCS [5]		✓		$ms \bullet$		
[6]		✓		$ms \bullet$		
[7]		√		$ms \bullet$		
EXPLAIN [8]	✓	√		100's μs ●		
[9]	✓	✓		$ms \bullet$		
Our approach	✓	✓	✓	2-3 μs *		

★ : ASIC processing • : CP

• : CPU/GPU processing

Overview P4 Switches

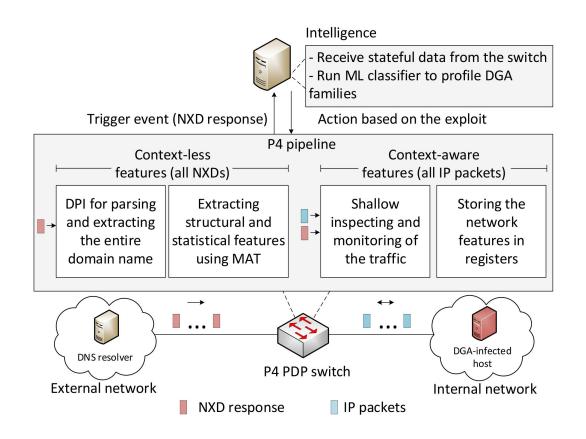
- P4 switches permit programmer to program the data plane
- Customized packet processing
- High granularity in measurements
- Per-packet traffic analysis and inspection
- Stateful memory processing
- If the P4 program compiles, it runs on the chip at line rate

P4 code

Programmable chip

Proposed System

- The P4 PDP switch collects and stores the contextaware features of the hosts
- When an NXD response is received, the switch performs DPI on the domain name to extract its context-less features
- The switch sends the collected features to the control plane
- The control plane runs the intelligence to classify the DGA family and initiate the appropriate incidence response



Proposed System

- Context-aware features
 - > It characterizes the network behavior of DGAs while they attempt to contact the C2 server
 - For each host in the network, the following features are stored in the data plane:
 - Number of IPs contacted
 - Number of DNS requests made
 - Time it takes to for the first NXD response to arrive
 - Inter-arrival Time (IAT) between subsequent NXD responses
 - > Collected in the data plane without involving the control plane (until an NXD response is received)

Proposed System

- Context-less features
 - > It computes the bigram of the domain name; a bigram model may suffice to predict whether a domain name is a legitimate human readable domain
 - > Other domain name attributes include length of the domain name and number of subdomains
 - > For each NXD response received, the data plane extracts the following features from the domain name
 - Randomness of a domain name d according to its bigram frequency

$$score\ (d) = \sum_{\forall\ subdomain\ s\ \in\ d} \left(\sum_{\forall\ bigram\ b\ \in\ s} f_s^b\right)$$
 Where f_s^b is the frequency of the bigram b in the subdomain s

> Example: bigrams of "google" are: "\$g", "go", "oo", "og", "gl", "le", "e\$"

P4 Implementation

- The parser parses DNS packets in the data plane
 - Packet recirculation maybe required for certain domain names
 - ➤ To compute the randomness of a domain, each bigram b will be applied to a Match-Action Table (MAT)
 - ➤ The frequencies of the bigrams are computed offline using the English dictionary; thus, the lower the score the more it is considered random
 - ➤ The MATs are pre-populated by the control plane with the frequency of each bigram

Algorithm 1: Pseudocode of the P4 code

```
1 Parser():
      Parse\_headers(ETH, IP, UDP, DNS)
      if pkt == IPv4 \&\& DNS.type == NXD then
          part1 \leftarrow pkt.extract(p.domain\_label1.part1) // Extract 2<sup>0</sup> bytes
          part2 \leftarrow pkt.extract(p.domain\_label1.part2) // Extract 2^1 bytes
          part4 \leftarrow pkt.extract(p.domain\_label1.part4) // Extract 2^2 bytes
 7 SwitchIngress():
      table\ bigram\_tabel 1
         key: part1;
         actions: add_bigram_val;
11
12
      for i = 0, 1, 2 do
13
          if part2^{i}.isValid() then
            Apply (2^i - 1) bigrams of part2^i
15
          if part2^{i-1}.isValid() && part_2^i.isValid() then
16
             Calculate the bigram between part2^{i-1} and part2^{i}
17
          if domain.is\_fully\_parsed == False then
18
             recirculate();
19
          else
             check\_validity\_TLD();
21
          calc_domain_length();
          set\_invalid(part2^i);
24 SwitchEgress():
      register unique_ips_contacted;
      register nb_DNS_requests;
      register unique_NXDs;
      unique_ips_contacted.update();
      nb_DNS_requests.update();
      unique\_NXDs.update();
```

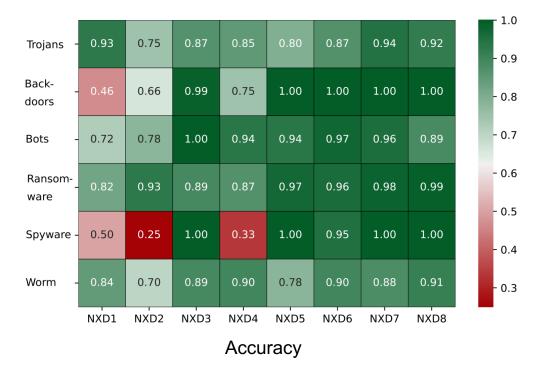
Dataset

- > Hundreds of GB of malware samples from cyber security websites were crawled
- > Each sample was instrumented in an isolated environment to capture its network traffic behavior
- ➤ To collect DGA-based malware, only samples that receive NXD responses containing domain names generated by DGAs (based on DGArchive¹) are considered
- > The resulting dataset includes 1,311 samples containing 50 DGA families
- Experimental setup
 - > The collected dataset was used to train ML models offline on a general-purpose CPU
 - 80% of data was used for training and 20% for testing
 - > 5-fold Cross Validation (CV) was used to avoid overfitting the model
 - > Weights were assigned for every class (DGA family) to deal with class imbalance

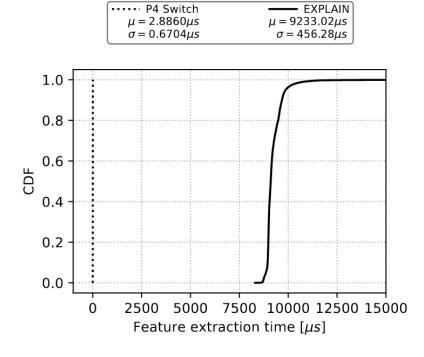
- Accuracy (Acc), F1 score, and Precision (Prec) of different ML classifiers during the first 8 NXD responses received were reported
- The Random Forest (RF) model performed best
 - The Accuracy (Acc) starts at 92% from the first NXD response received and reaches 95% by the 8th NXD response

NXD count	RF		SVM		MLP		LR		GNB						
	Acc	F1	Prec	Acc	F 1	Prec	Acc	F1	Prec	Acc	F1	Prec	Acc	F 1	Prec
NXD 1	0.923	0.907	0.902	0.872	0.856	0.847	0.87	0.843	0.829	0.716	0.679	0.667	0.726	0.688	0.688
NXD 2	0.951	0.943	0.943	0.899	0.893	0.893	0.904	0.897	0.9	0.76	0.741	0.747	0.727	0.701	0.707
NXD 3	0.964	0.958	0.964	0.918	0.913	0.914	0.924	0.914	0.912	0.767	0.74	0.743	0.649	0.668	0.732
NXD 4	0.966	0.961	0.963	0.906	0.905	0.912	0.916	0.909	0.915	0.79	0.765	0.758	0.633	0.635	0.692
NXD 5	0.97	0.966	0.967	0.915	0.91	0.911	0.919	0.91	0.907	0.77	0.735	0.746	0.604	0.615	0.689
NXD 6	0.975	0.972	0.973	0.914	0.911	0.912	0.922	0.915	0.918	0.794	0.767	0.783	0.617	0.627	0.716
NXD 7	0.977	0.976	0.979	0.92	0.915	0.915	0.929	0.924	0.93	0.799	0.771	0.78	0.61	0.613	0.714
NXD 8	0.98	0.979	0.981	0.917	0.912	0.914	0.93	0.923	0.921	0.764	0.73	0.735	0.631	0.618	0.65

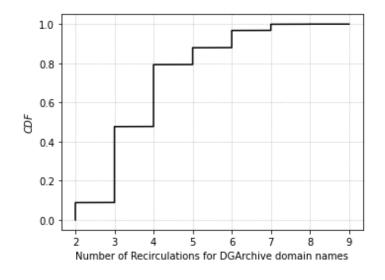
- Performance of the proposed approach amid varying NXD responses on a subset of samples grouped by their attack category
- The accuracy of critical attacks, such as ransomware, is high from the first NXD response
- The majority of attacks are classified with high confidence by the 5th NXD response



- Feature extraction time of our work and EXPLAIN
- EXPLAIN's available source code was tested on a general-purposed CPU with 64 GB RAM, 2.9 GHz processor with 8 cores



- Our approach only recirculates NXD responses
 - NXDs account for 0.01% of the traffic in campus traffic¹
 - The rest of the traffic undergoes shallow packet inspection (few hundreds of nanoseconds)
- Number of recirculations for domain names in DGArchive
 - 80% of the domains require a maximum of four recirculations



¹ Garcia, Sebastian, et al. "An empirical comparison of botnet detection methods." *computers & security* 45 (2014): 100-123.

Conclusion and Discussion

- In this work, we propose a hybrid feature extraction technique relying on context-aware and context-less features to classify DGA families
- Context-aware features characterize the network traffic behavior of the DGAs and require shallow packet inspection (no degradation to the throughput)
- Context-less features study the statistical and structural characteristics of the domain names relating to NXDs using DPI
- With 50 DGA families analyzed, the proposed approach achieves 92% accuracy with RF classifier from the first NXD response and reaches up to 98% by the 8th NXD response
- In the future, we aim to explore other techniques that are robust against encrypted DNS traffic, in addition to collecting more DGA families

Acknowledgement

- Thanks to the National Science Foundation (NSF)
- Activities in the CI Lab at the UofSC are supported by NSF, Office of Advanced Cyberinfrastructure (OAC), awards 2118311 and 2104273

References

- [1] M. Grill, I. Nikolaev, V. Valeros, and M. Rehak, "Detecting DGA Malware using NetFlow," in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1304–1309, IEEE, 2015.
- [2] Y. Iuchi, Y. Jin, H. Ichise, K. Iida, and Y. Takai, "Detection and Blocking of DGA-Based Bot Infected Computers by Monitoring NXDOMAIN Responses," in 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 82–87, IEEE, 2020.
- [3] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, "Exposure: A passive DNS Analysis Service to Detect and Report Malicious Domains," ACM Transactions on Information and System Security (TISSEC), vol. 16, no. 4, pp. 1–28, 2014.
- [4] S. Schuppen, D. Teubert, P. Herrmann, and U. Meyer, "FANCI: Feature-based Automated NXDomain Classification and Intelligence," in 27th USENIX Security Symposium (USENIX Security 18), pp. 1165–1181, 2018.
- [5] L. Fang, X. Yun, C. Yin, W. Ding, L. Zhou, Z. Liu, and C. Su, "ANCS: Automatic NXDomain Classification System Based on Incremental Fuzzy Rough Sets Machine Learning," IEEE Transactions on Fuzzy Systems, vol. 29, no. 4, pp. 742–756, 2020.
- [6] K. Highnam, D. Puzio, S. Luo, and N. R. Jennings, "Real-time Detection of Dictionary DGA Network Traffic Using Deep Learning," SN Computer Science, vol. 2, no. 2, pp. 1–17, 2021.
- [7] B. Yu, D. L. Gray, J. Pan, M. De Cock, and A. C. Nascimento, "Inline DGA Detection with Deep Networks," in 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 683–692, IEEE, 2017.
- [8] A. Drichel, N. Faerber, and U. Meyer, "First Step Towards Explainable DGA Multiclass Classification," in The 16th International Conference on Availability, Reliability and Security, pp. 1–13, 2021.
- [9] T. A. Tuan, H. V. Long, and D. Taniar, "On Detecting and Classifying DGA Botnets and their Families," Computers & Security, vol. 113, p. 102549, 2022.

Thank You!

Ali AlSabeh aalsabeh@email.sc.edu