
Formalizing P4’s Type System
Parisa Ataei
Harim Hahn

Ryan Doenges
Nate Foster



Types matter in P4

2

𝗁𝖾𝖺𝖽𝖾𝗋_𝗍𝗒𝗉𝖾ℎ𝑡{
𝖿𝗂𝖾𝗅𝖽𝗌{
𝑎: 5;
𝑠𝑢𝑚: 5;

}
}

𝖺𝖼𝗍𝗂𝗈𝗇𝑠𝑢𝑚(){
𝖺𝖽𝖽(𝑚. 𝑠𝑢𝑚,𝑚. 𝑎,𝑚. 𝑎);

}
𝑎 = 0𝑥10

P414

𝑚. 𝑠𝑢𝑚 =?

P414 spec

BMv2 > m.sum()
0x20



Migrating from P414 to P416

3

P416 spec

P4 Git



P416 has a type system

4



P4’s type system in spec

5

When are two types equal?

What is P4’s inference algorithm?

When does an implicit cast occur?

When does a program type check?

- Missing.

- Ambiguous.

- Spread out.



P4’s type system in p4c

6

p4c’s type system is 
distributed among multiple 

passes interspersed with non-
typing passes.

p4c/frontends/p4/
frontend.cpp



Diagnosis & consequences

7

Open to interpretation.

Error prone.

Hard to extend.

P4’s type system is not 
defined precisely in 

neither the spec nor the 
reference 

implementation.



Extending P4’s type system is hard

8

Type families

Generics

Initializers

Name space



Prescription: formalization

9

Gives precise definition 
to the type system.

No holes. No 
ambiguity.

Why?

Unifies different 
implementations.



Prescription: formalization

10

Precise mathematical 
descriptions.

How?



𝜏! =" 𝜏#

Judgment Form
Expression inference

Type equality
Declaration type checking

Type well-formedness

Γ ⊢ 𝑒𝑥𝑝 ⇝ 𝑒𝑥𝑝′, 𝜏, 𝑑𝑖𝑟

Γ ⊢ 𝑑𝑐𝑙: 𝜏

Γ ⊢ 𝜏

Judgment Form
Expression inference

Type equality
Declaration type checking

Γ ⊢ 𝑒𝑥𝑝 ⇝ 𝑒𝑥𝑝′, 𝜏, 𝑑𝑖𝑟
𝜏! =" 𝜏#
Γ ⊢ 𝑑𝑐𝑙: 𝜏 ⊣ Γ′

Judgment Form
Expression inference

Type equality
Γ ⊢ 𝑒𝑥𝑝 ⇝ 𝑒𝑥𝑝′, 𝜏, 𝑑𝑖𝑟
𝜏! =" 𝜏#

Judgment Form
Expression inference Γ ⊢ 𝑒𝑥𝑝 ⇝ 𝑒𝑥𝑝′, 𝜏, 𝑑𝑖𝑟

P4’s formalized spec

11

Language designers.

Practitioners.

Feedback 
appreciated.Who?

Judgment Form
Expression inference

Type equality
Declaration type checking

Type well-formedness
… …

Γ ⊢ 𝑒𝑥𝑝 ⇝ 𝑒𝑥𝑝′, 𝜏, 𝑑𝑖𝑟
𝜏! =" 𝜏#
Γ ⊢ 𝑑𝑐𝑙: 𝜏 ⊣ Γ′

Γ ⊢ 𝜏



Formalized spec vs. current spec

12

Add missing definitions.

Simplify detail-oriented 
complexities.

Remove ambiguity.



Add missing definitions —example

13

Formal spec

…



Remove ambiguity —example

14

Formal spec

…



Simplify details —example

15

Formal spec



Inference

Formalization to implementation

16

Type system is carried out on 
surface IR.

A simple surface IR.

Type system is divided into 
smaller passes for separation of 

concern.

Poulet4







Inference

Inference & checking — example

20

𝖾𝗇𝗎𝗆𝖻𝗂𝗍⟨8⟩𝐸1{𝑒1 = 0, 𝑒2 = 1}
𝖻𝗂𝗍⟨8⟩𝑎;

𝑎 = 𝐸1. 𝑒1 + 1;
𝑎

.p4

(𝖻𝗂𝗍⟨8⟩)(𝖻𝗂𝗍⟨8⟩)

𝖻𝗂𝗍⟨8⟩

=

𝖻𝗂𝗍⟨8⟩

+

𝖻𝗂𝗍⟨8⟩

Parsing

Elaboration

=

𝖾𝗇𝗎𝗆𝖻𝗂𝗍⟨8⟩𝐸1{𝑒1 = 0, 𝑒2 = 1}

Type checking

𝗂𝗇𝗍𝖾𝗀𝖾𝗋= +

𝖻𝗂𝗍⟨8⟩

Inference
1𝐸1. 𝑒1

𝖾𝗇𝗎𝗆

+



Artifacts and progress

21

Surface IR Frontend 
passes

Formalized 
spec

In progress. In progress.



Conclusion

22

Types matter in P4.

Having precise definition (formalization) of type 
systems matters.

Benefits: - unifies different implementations
- develop frontend-specific tools
- easier to understand and extend.



23

Thank You!
Parisa Ataei
Harim Hahn

Ryan Doenges
Nate Foster

On the job market! 
Let’s chat!

Active development of formalized spec: https://github.com/verified-network-toolchain/petr4/tree/p4-

Active development of Poulet4: https://github.com/verified-network-toolchain/petr4/tree/main

https://github.com/verified-network-toolchain/petr4/tree/p4-formalization/docs/petr4spec
https://github.com/verified-network-toolchain/petr4/tree/main

