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P4-DPDK: What is it
• Open-source framework to run P4 programs on 

multi-core CPUs.
• Goal: Develop better and faster SW switches and 

network stacks by combining the P4 language 
flexibility with the DPDK performance.

• The IPDK project uses P4-DPDK as the CPU target.
• Open-source:

• P4 compiler back-end and TDI driver on p4.org
• P4 data plane engine on dpdk.org.

P4-DPDK is getting better, faster and more pervasive every year!

P4-DPDK is 
the IPDK P4-
based CPU 

target

https://github.com/p4lang/p4c/tree/main/backends/dpdk
http://git.dpdk.org/dpdk/tree/lib/pipeline
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P4-DPDK Feature Update (since P4 Workshop 2022)
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P4-DPDK Feature Update (since P4 Workshop 2022) (2)

Item (new/existing) Details

IPsec Fixed function pipeline companion for IPsec.

Soft NIC (DPDK driver) The Soft NIC device driver can now run a P4 program (translated to pipeline.so first):
https://git.dpdk.org/dpdk/tree/drivers/net/softnic

Hash functions Specified in PSA, non-cryptographic digest over n-tuple for load balancing, flow affinity, etc.

I/O ports Added non-blocking behavior.

Exact Match Table Added support for configurable hash function for table bucket compute (e.g. jhash, CRC hash, etc).

Headers/Meta-data Added support for large fields (field size > 64 bits).

Add-on-Miss Tables Reworked the timer mechanism: Explicit table key re-arm on table lookup hit instead of automatic.

Counters, Registers, 
Meters

Added support for direct counters, registers, meters; previously, only indirect counters, registers, 
meters were supported. Limitation: direct counters, registers, meters supported for exact match tables 
and add-on-miss tables, but not supported for wildcard match tables and LPM tables.

Pipeline C code generate The build process (pipeline.p4 -> pipeline.spec -> pipeline.c -> pipeline.so) can now be customized by 
the user. The legacy “interpreted” mode (executing the pipeline.spec file directly without prior 
translation to .c and .so) removed. DONE AS PROMISSED LAST YEAR! J

https://git.dpdk.org/dpdk/tree/drivers/net/softnic


Augmenting P4 pipelines with accelerators

• Pipelines:
• Programmable => Can do many things

• Accelerators/extern blocks:
• Fixed function (configurable, but not 

programmable) => It only does one thing
• HW pipelines: accelerators are HW blocks 

stitched at design time
• SW pipelines: accelerators are SW blocks 

(reusable, scalable) stitched in flexible ways at 
app init time
• Parallel execution: Executed in parallel with the 

pipelines on the same or different CPU core 
(multi-core CPUs)

• Async comm with the pipeline: Pipeline does not 
need to wait for the accelerator to complete

Portable NIC Architecture (PNA)



P4-DPDK: IPsec key points

• Supports the IPsec inbound and outbound processing in tunnel and 
transport modes.

• Reuses the DPDK IPsec and crypto libraries for the underlying 
implementation of the cryptographic ciphers and hashes.

• A set of purposely crafted externs hide the complexity of using the 
IPsec block away from the P4 program developer.



P4-DPDK: IPsec inbound path
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1. The pipeline reads pkt from NET RX (encrypted Ethernet pkt):
• The Ethernet header is removed.
• An intrinsic header containing the SA id is prepended to the IP header.
• The pkt is sent out on a reserved output port connected to the IPsec block.
• Externs: ipsec.from_ipsec(status) == FALSE, ipsec.enable(), 

ipsec.set_sa_index(sa_id).

2. The IPsec block reads IP pkt (encrypted) with intrinsic header:
• The SA id is read from the intrinsic header, which gets consumed.
• The pkt is decrypted based on SA indicated by the SA id. The ESP header 

and trailer and the outer IP header (for tunnel mode) are removed.
• The pkt is sent pack to the pipeline on reserved input port.

3. The pipeline reads pkt from the IPsec block (decrypted IP pkt):
• Pkts with decrypt error are dropped.
• Pkts decrypted successfully get Ethernet header and sent to a HOST RX port.
• Externs: ipsec.from_ipsec(status) == TRUE.

Link to the IPsec externs (ipsec_accelerator.p4) and the sample IPsec program (ipsec.p4): 
https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec

https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec


P4-DPDK: IPsec outbound path
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1. The pipeline reads pkt from HOST RX (clear text Ethernet pkt):
• The Ethernet header is removed.
• An intrinsic header containing the SA id is prepended to the IP header.
• The pkt is sent out on a reserved output port connected to the IPsec block.
• Externs: ipsec.from_ipsec(status) == FALSE, ipsec.enable(), 

ipsec.set_sa_index(sa_id).

2. The IPsec block reads IP pkt (clear text) with intrinsic header:
• The SA id is read from the intrinsic header, which gets consumed.
• The pkt is encrypted based on SA indicated by the SA id. The ESP header 

and trailer and the outer IP header (for tunnel mode) are added.
• The pkt is sent pack to the pipeline on reserved input port.

3. The pipeline reads pkt from the IPsec block (encrypted IP pkt):
• Pkts with encrypt error are dropped.
• Pkts encrypted successfully get Ethernet header and sent to a NET TX port.
• Externs: ipsec.from_ipsec(status) == TRUE.

Link to the IPsec externs (ipsec_accelerator.p4) and the sample IPsec program (ipsec.p4): 
https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec

https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec


Conclusions

1. P4-DPDK has great functional coverage versus the P4, PSA and PNA 
specs! There are limitations, but they represent the exception, not 
the rule.

2. P4-DPDK can be used for the rapid development of complex CPU 
network stacks that also require the IPsec processing.

3. P4-DPDK is becoming better, faster and more pervasive every 
year!



Thank You!


