
Augmenting P4-DPDK software pipelines 
with accelerators: the IPsec use-case

Cristian Dumitrescu, Usha Gupta, Venkata Suresh Kumar P, 
Kamalakannan R, Yogesh Jangra, Harshad Narayane, Andy Fingerhut

Intel



Agenda

1. P4-DPDK Big Picture
2. P4-DPDK Feature Update
3. P4-DPDK IPsec Overview
4. Conclusions



P4-DPDK: What is it
• Open-source framework to run P4 programs on 

multi-core CPUs.
• Goal: Develop better and faster SW switches and 

network stacks by combining the P4 language 
flexibility with the DPDK performance.

• The IPDK project uses P4-DPDK as the CPU target.
• Open-source:

• P4 compiler back-end and TDI driver on p4.org
• P4 data plane engine on dpdk.org.

P4-DPDK is getting better, faster and more pervasive every year!

P4-DPDK is 
the IPDK P4-
based CPU 

target

https://github.com/p4lang/p4c/tree/main/backends/dpdk
http://git.dpdk.org/dpdk/tree/lib/pipeline


NIC
I/O Port

Pipeline-
to-CPU 

core 
mapping

Pipeline 
(Instructio

ns)

Metadata

Actions 
(Instructio

ns)

Extern 
Function 

I/F

Extern 
Object I/F

Headers

CLI-based 
test agent

Atomic 
Table 

Updates

Inet Cksum

Unit Test 
Suite

PCAP File 
I/O Port

Drop
I/O Port

Exact 
Match 
Table

Ring
I/O Port

Wildcard 
Match 
Table

TAP 
I/O Port

Counters & 
Registers

Meters

P4-DPDK Feature Update (since P4 Workshop 2022)

MORE 
P4 

EXAMPL
ES!

?

?

?

?

?

?

?

MORE 
PERFORM

ANCE!

MORE 
DOCUM
ENTATIO

N!

Better 
error 
msgsFixed 

Func: 
Traffic 

Mgr
? ?

?

?

= New; = Old; = Future;

P4C IR 
(.spec file)

LPM Table

Action 
Selector

Add-on-
Miss 

Tables w/ 
Timeout

Varbit 
Headers

Packet 
Mirroring

PNA arch 
support

Packet 
Recirculati

on

Pipeline C 
code 

generate

P4Runtime 
Support 

(TDI)

Soft NIC P4 
(DPDK 
driver)

Fixed Func: 
IPsec

Hash 
Functions

= Significant improvements



P4-DPDK Feature Update (since P4 Workshop 2022) (2)

Item (new/existing) Details

IPsec Fixed function pipeline companion for IPsec.

Soft NIC (DPDK driver) The Soft NIC device driver can now run a P4 program (translated to pipeline.so first):
https://git.dpdk.org/dpdk/tree/drivers/net/softnic

Hash functions Specified in PSA, non-cryptographic digest over n-tuple for load balancing, flow affinity, etc.

I/O ports Added non-blocking behavior.

Exact Match Table Added support for configurable hash function for table bucket compute (e.g. jhash, CRC hash, etc).

Headers/Meta-data Added support for large fields (field size > 64 bits).

Add-on-Miss Tables Reworked the timer mechanism: Explicit table key re-arm on table lookup hit instead of automatic.

Counters, Registers, 
Meters

Added support for direct counters, registers, meters; previously, only indirect counters, registers, 
meters were supported. Limitation: direct counters, registers, meters supported for exact match tables 
and add-on-miss tables, but not supported for wildcard match tables and LPM tables.

Pipeline C code generate The build process (pipeline.p4 -> pipeline.spec -> pipeline.c -> pipeline.so) can now be customized by 
the user. The legacy “interpreted” mode (executing the pipeline.spec file directly without prior 
translation to .c and .so) removed. DONE AS PROMISSED LAST YEAR! J

https://git.dpdk.org/dpdk/tree/drivers/net/softnic


Augmenting P4 pipelines with accelerators

• Pipelines:
• Programmable => Can do many things

• Accelerators/extern blocks:
• Fixed function (configurable, but not 

programmable) => It only does one thing
• HW pipelines: accelerators are HW blocks 

stitched at design time
• SW pipelines: accelerators are SW blocks 

(reusable, scalable) stitched in flexible ways at 
app init time
• Parallel execution: Executed in parallel with the 

pipelines on the same or different CPU core 
(multi-core CPUs)

• Async comm with the pipeline: Pipeline does not 
need to wait for the accelerator to complete

Portable NIC Architecture (PNA)



P4-DPDK: IPsec key points

• Supports the IPsec inbound and outbound processing in tunnel and 
transport modes.

• Reuses the DPDK IPsec and crypto libraries for the underlying 
implementation of the cryptographic ciphers and hashes.

• A set of purposely crafted externs hide the complexity of using the 
IPsec block away from the P4 program developer.



P4-DPDK: IPsec inbound path

NET 
RX

CPU Pipeline
(P4)

HOST 
RX

CPU IPsec Block

CryptoDev

Open 
Config 
(IKE)

SADB

P4Runtime

1. The pipeline reads pkt from NET RX (encrypted Ethernet pkt):
• The Ethernet header is removed.
• An intrinsic header containing the SA id is prepended to the IP header.
• The pkt is sent out on a reserved output port connected to the IPsec block.
• Externs: ipsec.from_ipsec(status) == FALSE, ipsec.enable(), 

ipsec.set_sa_index(sa_id).

2. The IPsec block reads IP pkt (encrypted) with intrinsic header:
• The SA id is read from the intrinsic header, which gets consumed.
• The pkt is decrypted based on SA indicated by the SA id. The ESP header 

and trailer and the outer IP header (for tunnel mode) are removed.
• The pkt is sent pack to the pipeline on reserved input port.

3. The pipeline reads pkt from the IPsec block (decrypted IP pkt):
• Pkts with decrypt error are dropped.
• Pkts decrypted successfully get Ethernet header and sent to a HOST RX port.
• Externs: ipsec.from_ipsec(status) == TRUE.

Link to the IPsec externs (ipsec_accelerator.p4) and the sample IPsec program (ipsec.p4): 
https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec

https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec


P4-DPDK: IPsec outbound path

NET 
TX

CPU Pipeline
(P4)

HOST 
TX

CPU IPsec Block

CryptoDev

Open 
Config 
(IKE)

SADB

P4Runtime

1. The pipeline reads pkt from HOST RX (clear text Ethernet pkt):
• The Ethernet header is removed.
• An intrinsic header containing the SA id is prepended to the IP header.
• The pkt is sent out on a reserved output port connected to the IPsec block.
• Externs: ipsec.from_ipsec(status) == FALSE, ipsec.enable(), 

ipsec.set_sa_index(sa_id).

2. The IPsec block reads IP pkt (clear text) with intrinsic header:
• The SA id is read from the intrinsic header, which gets consumed.
• The pkt is encrypted based on SA indicated by the SA id. The ESP header 

and trailer and the outer IP header (for tunnel mode) are added.
• The pkt is sent pack to the pipeline on reserved input port.

3. The pipeline reads pkt from the IPsec block (encrypted IP pkt):
• Pkts with encrypt error are dropped.
• Pkts encrypted successfully get Ethernet header and sent to a NET TX port.
• Externs: ipsec.from_ipsec(status) == TRUE.

Link to the IPsec externs (ipsec_accelerator.p4) and the sample IPsec program (ipsec.p4): 
https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec

https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec


Conclusions

1. P4-DPDK has great functional coverage versus the P4, PSA and PNA 
specs! There are limitations, but they represent the exception, not 
the rule.

2. P4-DPDK can be used for the rapid development of complex CPU 
network stacks that also require the IPsec processing.

3. P4-DPDK is becoming better, faster and more pervasive every 
year!



Thank You!


