Augmenting P4-DPDK software pipelines
with accelerators: the IPsec use-case

Cristian Dumitrescu, Usha Gupta, Venkata Suresh Kumar P,
Kamalakannan R, Yogesh Jangra, Harshad Narayane, Andy Fingerhut
Intel

Agenda

1. P4-DPDK Big Picture
2. P4-DPDK Feature Update
3. P4-DPDK IPsec Overview

4. Conclusions

P4-DPDK: What is it

Opelrn-sou rcCePfJamework to run P4 programs on aas Pass il Acceleration
multi-core S. 5 (==
e === . ()
Goal: DeveIoi better and faster SW switches and e % S @@S
nEtwork StaC S by Comblnln the P4 |anguage IPDK Infrastructure Application Interface
flexibility with the DPDK performance. ~ _ |
The IPDK project uses P4-DPDK as the CPU target. Comminty %gj@ @ipdk o
@) pen-source: . |PDKTargetAbstractioninterface [
* P4 compiler back-end and TDI driver on p4.org ook —
P4 data plane engine on dpdk.org. i [;'

P4-DPDK is \'—- CPU Target IPU Target Switch Target
the IPDK P4- :
based CPU
target

P4-DPDK is getting better, faster and more pervasive every year!

https://github.com/p4lang/p4c/tree/main/backends/dpdk
http://git.dpdk.org/dpdk/tree/lib/pipeline

P4-DPDK Feature Update (since P4 Workshop 2022)

;-\...)IJJ].. PACIR! IVIORE

Dro; : PERFORM
Updates ANCE!
Soft NIC P4
COUNTersi&d PINAsarch! (DPDK
Reglste S driver)
\ - DOCUM
T_I?bles wt/ generate ENTA'TIO
imeou ..;&.—z N!
JV]LL..J!J Varbit PARUNLINE, P4

Headers pLitios EXAMPL
pch ES!
A J”-’ Fixed Func:

Pip ,JaJ]ns
Traffic

Mgr
EXten|
ACtion) W i”IiIiI‘H EVE unitiest

.= New; ¢ =0Old; <:>= Future; @ = Significant improvements

P4-DPDK Feature Update (since P4 Workshop 2022) (2)

e | e

IPsec

Soft NIC (DPDK driver)

Hash functions

I/O ports

Exact Match Table
Headers/Meta-data
Add-on-Miss Tables
Counters, Registers,

Meters

Pipeline C code generate

Fixed function pipeline companion for IPsec.

The Soft NIC device driver can now run a P4 program (translated to pipeline.so first):
https://qit.dpdk.org/dpdk/tree/drivers/net/softnic

Specified in PSA, non-cryptographic digest over n-tuple for load balancing, flow affinity, etc.

Added non-blocking behavior.

Added support for configurable hash function for table bucket compute (e.g. jhash, CRC hash, etc).
Added support for large fields (field size > 64 bits).

Reworked the timer mechanism: Explicit table key re-arm on table lookup hit instead of automatic.

Added support for direct counters, registers, meters; previously, only indirect counters, registers,
meters were supported. Limitation: direct counters, registers, meters supported for exact match tables
and add-on-miss tables, but not supported for wildcard match tables and LPM tables.

The build process (pipeline.p4 -> pipeline.spec -> pipeline.c -> pipeline.so) can now be customized by
the user. The legacy “interpreted” mode (executing the pipeline.spec file directly without prior
translation to .c and .so) removed. DONE AS PROMISSED LAST YEAR! ©

https://git.dpdk.org/dpdk/tree/drivers/net/softnic

Augmenting P4 pipelines with accelerators

- Pipelines:

Programmable => Can do many things

- Accelerators/extern blocks:

Fixed function (configurable, but not
programmable) => It only does one thing

HW pipelines: accelerators are HW blocks
stitched at design time

SW pipelines: accelerators are SW blocks
(reusable, scalable) stitched in flexible ways at
app init time

* Parallel execution: Executed in parallel with the

pipelines on the same or different CPU core
(multi-core CPUs)

* Async comm with the pipeline: Pipeline does not
need to wait for the accelerator to complete

Network Ports

Programmed in P4

M VTR
: | \\Rlahnad Extension

NET HOST RECIRC Fixed function

MainParser
y

MainControl

MainDeparser

| Accelerators |
I

Portable NIC Architecture (PNA)

¥

777
v

ZZ

A,

777
727

77

7

!
Host 1

gz
L 07

Host N

7

P4-DPDK: IPsec key points

. Supports the IPsec inbound and outbound processing in tunnel and
transport modes.

Reuses the DPDK IPsec and crypto libraries for the underlying
implementation of the cryptographic ciphers and hashes.

. A set of purposely crafted externs hide the complexity of using the
IPsec block away from the P4 program developer.

P4-DPDK: IPsec inbound path

1. The pipeline reads pkt from NET RX (encrypted Ethernet pkt):
®* The Ethernet header is removed.
®* Anintrinsic header containing the SA id is prepended to the IP header. P4Runtime
®* The pktis sent out on a reserved output port connected to the IPsec block. :

¥
®* Externs:ipsec.from_ipsec(status) == FALSE, ipsec.enable(), . .
ipsec.set_sa_index(sa_id). NET - CPU Plpellne /:-H-QS-T——>
L RX (P4a) /| | RX
2. The IPsec block reads IP pkt (encrypted) with intrinsic header: -
®* TheSAidisread from the intrinsic header, which gets consumed. ! !
®* The pktis decrypted based on SA indicated by the SA id. The ESP header CPU IPsec Block
and trailer and the outer IP header (for tunnel mode) are removed. Open
®* The pktis sent pack to the pipeline on reserved input port. SADB PEN— Config
T IKE
3. The pipeline reads pkt from the IPsec block (decrypted IP pkt): oDe (IKE)
® Pkts with decrypt error are dropped.

®* Pkts decrypted successfully get Ethernet header and sent to a HOST RX port.
®* Externs:ipsec.from_ipsec(status) == TRUE.

Link to the IPsec externs (ipsec_accelerator.p4) and the sample IPsec program (ipsec.p4):
https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline IPsec

https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec

P4-DPDK: IPsec outbound path

1. The pipeline reads pkt from HOST RX (clear text Ethernet pkt):

® The Ethernet header is removed.

P4Runtime
®* Anintrinsic header containing the SA id is prepended to the IP header. !
®* The pktis sent out on a reserved output port connected to the IPsec block. ¥
®* Externs:ipsec.from_ipsec(status) == FALSE, ipsec.enable(), HOST - CPU Pipeline - NET —
ipsec.set_sa_index(sa_id). ___'F)@_/' (p4) / - TX
2. The IPsec block reads IP pkt (clear text) with intrinsic header: { t

®* TheSAidisread from the intrinsic header, which gets consumed. CPU IP B K
®* The pktis encrypted based on SA indicated by the SA id. The ESP header 220 Bl

and trailer and the outer IP header (for tunnel mode) are added. \ SADB Open
(= = =

®* The pktis sent pack to the pipeline on reserved input port. ?ﬁ?g?

3. The pipeline reads pkt from the IPsec block (encrypted IP pkt): toDe
®* Pkts with encrypt error are dropped.
®* Pkts encrypted successfully get Ethernet header and sent to a NET TX port.
®* Externs:ipsec.from_ipsec(status) == TRUE.

Link to the IPsec externs (ipsec_accelerator.p4) and the sample IPsec program (ipsec.p4):
https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_|Psec

https://github.com/ipdk-io/networking-recipe/tree/main/p4src/Inline_IPsec

Conclusions

1. P4-DPDK has great functional coverage versus the P4, PSA and PNA
specs! There are limitations, but they represent the exception, not

the rule.

2. P4-DPDK can be used for the rapid development of complex CPU
network stacks that also require the IPsec processing.

3. P4-DPDK is becoming better, faster and more pervasive every
year!

Thank You!

