

P4 HAL for Network Virtualization

Parveen Patel April 2023

••••

Key takeaways

→ P4 has played a dual role in Switch SDN

- As a Hardware Abstraction Layer (HAL) for the Control Plane
- As an SDK to program the switch pipeline

→ P4 has an even bigger opportunity on SmartNICs

- As a HAL for Network Virtualization
- Enable NIC optionality. Win-win for users and vendors

Outline

- 1. Google's SDN journey
- 2. Lessons from P4 deployment at scale for Switch SDN
- 3. P4 as a HAL for Network Virtualization
- 4. Call to action

Google's SDN journey

Lessons from P4-based Switch SDN at scale

P4 vision from 2014

- Language to program packet processors
- Reconfiguration of a switch in the field
- Protocol independence for the switches
- Target independence for the control plane

-

The P4 SDN stack at Google

- Controller's logical view of the switch is in P4
- P4 eventually gets translated to SAI
- SAI is the translation layer between the controller intent and the hardware
- Some switch vendors implement SAI using P4

Lessons Learnt: P4 has two related yet distinct use-cases!

• HAL for SDN applications

- Google SDN Controllers
- Target-independent P4, avoid vendor extensions
- SDK for programmable hardware
 - Barefoot, Cisco, AMD
 - Target-specific P4, custom optimization extensions

Lessons Learnt: P4 HAL key benefits

- Target-independent controller code
 - Abstraction layer for switch HW
- Alignment on expected behavior
 - Formal specification and behavioral model
- Fewer production bugs
 - Automated tests

	Controller
Implementation	Belavioral isological

P4 as a HAL for Network Virtualization

Google's Network Virtualization journey

Andromeda 2.0 2016 - 10 Gbps, minimal offloads Andromeda 2.2 2019 - 100 Gbps, partial offloads Andromeda 3.0 2022 - 200 Gbps, fully offloaded

Google

Network Virtualization (NV) needs a HAL

- Porting NIC software to different hardware is a multi-year effort
- Need a HAL to enable multiple NICs in the fleet

P4 would be a great HAL for Network Virtualization

- P4 has the right building blocks
 - APIs + behavioral model + validation tests
- What's missing?
 - High-performance P4Runtime
 - Millions table ops/sec for per-connection insert/delete, bulk ops, counter reads
 - Local controller only, no need for the overhead due to serialization

A sketch of a P4 HAL for Network Virtualization

→ P4 HAL

- P4Runtime Local
- Table Driven Interface (TDI)
- → Provides high performance
 - Millions table ops/sec
- → Enable a variety of targets
 - Manual or compiler-driven
- → Enable rapid development of features
 - No intermediary between HAL and target backend

How to make P4 NV HAL successful?

- Investment in toolchain
 - Especially Testgen and DPDK backend
- User adoption of TDI as an open, vendor-agnostic API
 - \circ $\,$ $\,$ For both P4 and non-P4 HALs $\,$
- Support for a variety of targets
 - Regardless of the type and degree of programmability

• • • •

Call to action

→ P4 has played a dual role in Switch SDN

- As a Hardware Abstraction Layer (HAL) for the Control Plane
- As an SDK to program the switch pipeline

→ P4 has an even bigger opportunity on SmartNICs

- As a HAL for Network Virtualization
- Enable NIC optionality. Win-win for users and NIC vendors

→ Call to action

Needs coordinated effort across users and vendors

Backup

P4 addresses a subset of SmartNIC functionality

Much more than a switch-style packet processor

- Multi-modal packet processing: Extensible fastpath, slowpath, transport stacks
- Accelerators: RDMA, compression, cryptography, VM live migration
- Multiple subsystems: NVMe, Hypervisor offloads