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• P4 function support end-to-end 
model-based program 
independent(PI) protocol or API.

• Minimal updates to the protocol 
or driver API with new feature 
addition.

• Fixed function (non-P4) based 
support model based remote 
protocol, but the local APIs are 
custom named interfaces.

• Require updates to the named 
driver API and the interfacing 
gRPC server with new feature 
addition. IPU Resource Managers
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Table Driven Interface (TDI) is a Target Agnostic Interface. 

Present under p4lang/tdi

• A common frontend for TDI exists in open-source which 

can be used by control plane applications and target 

specific backend.

• Every P4 runtime entity is represented as one or multiple 

tables P4(MatchAction, ActionProfile,…)

• tdi.json is a json-based contract between TDI frontend 

and control plane on how these tables look like. Similar to

p4info in p4runtime

• P4 Compiler generates a tdi.json for P4 entities.

TDI is Feature Agnostic and can support fixed function (non-

P4 features) as a set of tables.

1. Not easy to create the TDI.JSON for the fixed functions. 

These files are hand-written today.

2. Attributes are device specific and not aligned to a 

standard.

Want to take advantage of the table abstraction of TDI to 

support fixed functions in similar way as P4 functions.
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OpenConfig and gNMI

OpenConfig defines various standard data models for 
network management using YANG modeling language.
• The models follow consistent style, making 

conducive to develop tool to convert to TDI.JSON.
• Consistent naming practices -> TDI table and 

attribute names derived from YANG model 
hierarchy and attribute names

• Scalar and List -> Maps to keyless and keyed 
TDI tables

• Config and State container split -> Config and 
State split TDI tables

• Augmenting models -> Additional tables with 
inherited key

• Notifications -> Map to TDI Notifications at 
module level.

gNMI is a gRPC-based protocol for OC data models from 
a target device (https://github.com/openconfig/gnmi) 
and implemented using OC tool-generated code stub.
• With model-based TDI driver interface, the mapping 

YANG model to TDI.JSON mapping logic can be 
utilized to automate mapping to TDI in gNMI server 
(e.g. Stratum)

https://github.com/openconfig/gnmi


OpenConfig and gNOI

• OpenConfig defines various standard network operations as microservices to be executed on a target device 
using protobuf definitions. (https://github.com/openconfig/gnoi) 

• gNOI Operations are shallow RPCs with narrow scoped set of services and messages.

• gNOI operation representations are diverse and requires a more diverse set of vocabularies to describe. 

• To support more operational vocabularies, TDIOperation and TDINotification have been added to TDI 
specification.

• Following outlines one possible model to service a KillProcess operation.



Uniform Control Plane for P4 & Fixed Functions Using TDI

• For both P4 and Fixed functions, generate the 
TDI.JSON from standard model files.

• Utilize tools to generate data model artifacts 
and code to help automate or make easier 
feature additions.

• To support OC gNMI in similar way as P4, 
OC_Yang2TDI (new tool) automates generating 
Fixed Function artifacts (TDI.json) for non-P4 
tables

• To support gNOI using TDI with more 
operational requests, TDIOperation and 
TDINotification are added to TDI.

• Using both P4Runtime and OpenConfig gNMI
& gNOI is most common deployment 
mechanism; however, we propose a new 
method that may help to simplify this further.
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P4Runtime GenericTables

• Present p4runtime interface
• P4 tables and Externs like MatchAction, Counters are supported on p4runtime

• P4runtime native API contains support for some forwarding functionalities which can be fixed functions in targets

• Multicast,

• Cloning, Mirroring

• Problem :
• The fixed p4runtime support isn’t extensible. Any enhanced functionality like ECMP group management in Multicast is not natively

possible.

• No support possible if vendor wants to provide Traffic management and shaping over p4runtime.

• No native support for non-PSA externs like PNA or vendor specific P4 architectures. ExternEntry is present but is a very open ended
mechanism without any specifications, left for vendors to decide runtime and info protos.

• Proposal
• GenericTableEntry in p4runtime (in progress)

• GenericTable to be used for non-PSA externs. 

• Can also be used for fixed features where the vendor/user identifies a use to keep them on p4runtime. For example, users might want 
to configure all forwarding related features over a single interface.



P4Runtime GenericTables Continued 

• GenericTable provides a structured way in 
which every feature can be represented as a 
set of match-fields and data-fields. 

• The construct is similar to TDI tables and can 
map easily to TDI tables.

• For non-PSA P4 externs, compiler support 
needs to be added to generate the correct 
p4info. Compilers can choose to provide 
option to select one out of multiple choices 
for a particular extern (Standard, 
GenericTable, ExternEntry)

• For Fixed features, p4info can be handwritten 
to map easily to the corresponding tdi.json

• The above example maps the PNA Hash 
extern to a Generic Table where the 
control plane application allows users to 
change the algorithm being used in 
runtime.

• The table consists of one entry with 2 
unions/actions, one for a predefined 
algorithm using a string and another with 
parameters used to define a CRC algorithm



P4Runtime GenericTable Usecase

• Users might prefer using p4runtime 
to program forwarding related fixed 
features using p4runtime since it is 
already used to program forwarding 
tables

• Networking and K8s recipes in IPDK 
(Infrastructure Programmer Development 
Kit) use p4runtime to program some 
forwarding related fixed features like 
Multicast and Mirroring.

• IPSec uses gNMI to program some 
forwarding related fixed features like 
SADB(Security Association Database) which 
contains the crypto-tag/SPI (Security 
Parameter Index)/crypto-algorithm 
information.

• Non-PSA P4 externs cannot be 
mapped easily from p4runtime. 
GenericTable proposes to fill this gap

• Enhanced Forwarding fixed features 
like Multicast with ECMP groups can 
also be easily supported over 
p4runtime with GenericTables



What’s next?

• Enhancements to OC_YANG2TDI tool with config file to allow different 
variations in table generation.

• Development of a tool to generate TDI.JSON from gNOI protobuf
definitions.

• Taking GenericTables in P4 API WG forward. 
• PR Link : https://github.com/p4lang/p4runtime/pull/419

• A tool to convert an existing tdi.json to its p4info representation
• Tdi.json -> p4info for vendors who have a fixed tdi.json for fixed features
• P4info.txt -> tdi.json for device developers who want to generate a tdi.json from a 

new handwritten p4info.txt of a GenericTable. P4 compiler does this from P4 
programs, but there is no present way in which developers can do this translation for 
purely handwritten p4info.txt

https://github.com/p4lang/p4runtime/pull/419
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