
OpenConfig Co-existence with
P4 using TDI

James Choi
Sayan Bandyopadhyay

Sabeel Ansari

• P4 function support end-to-end
model-based program
independent(PI) protocol or API.

• Minimal updates to the protocol
or driver API with new feature
addition.

• Fixed function (non-P4) based
support model based remote
protocol, but the local APIs are
custom named interfaces.

• Require updates to the named
driver API and the interfacing
gRPC server with new feature
addition. IPU Resource Managers

Pipe
Manager

Crypto
Manager

Port Device

Port
Manager

P4 Mgr Intf

P4 Tables

MatchAction

MatchAction-
Indirect

Action

Selector
Counter
Meter
Register

p4c compiler
driver

Assembler

Input Data Model File:
CUSTOM.P4 for P4Runtime

Pipeline
Binary

File

Context

(.JSON)

TDI
(.(.JSON))

TDI C++ Frontend

Mapping
& Resource

Hints

P4 Runtime
Server

OpenConfig
gNMI Server

SDN Controller

Python
CLI

TDI C-
Wrapper

Protobuf

Local
App

Device
Manager

OpenConfig
gNOI Server

P4 -> TDI

P4C Compiler

Table
TableKey
TableData

QoSCrypto

QoS
Manager

Pkt

Pkt
Manager

Fixed
CLI

P4 Function TDI Backend Fixed Function non-TDI
Interface

Current P4 & Fixed Function Control Plane

Table Driven Interface (TDI) is a Target Agnostic Interface.

Present under p4lang/tdi

• A common frontend for TDI exists in open-source which

can be used by control plane applications and target

specific backend.

• Every P4 runtime entity is represented as one or multiple

tables P4(MatchAction, ActionProfile,…)

• tdi.json is a json-based contract between TDI frontend

and control plane on how these tables look like. Similar to

p4info in p4runtime

• P4 Compiler generates a tdi.json for P4 entities.

TDI is Feature Agnostic and can support fixed function (non-

P4 features) as a set of tables.

1. Not easy to create the TDI.JSON for the fixed functions.

These files are hand-written today.

2. Attributes are device specific and not aligned to a

standard.

Want to take advantage of the table abstraction of TDI to

support fixed functions in similar way as P4 functions.

P4 OVS

P4
Runtime
Server

OpenConfig
Server

SDN ControllerOS
Kernel

CLI

Custom
App

NetLink/
SAI

Adapter

Assembler

TDI
Interface

 FPGA TDI
Backend

SW TDI
Backend

ASIC TDI
Backend

Table Driven Interface C & C++ API
TableSession Device Operations

P4 QoS CRY P4 QoS CRY P4 QoS CRY

SONIC
DASH

Target
Context

TDI (Table Driven Interface)

OpenConfig and gNMI

OpenConfig defines various standard data models for
network management using YANG modeling language.
• The models follow consistent style, making

conducive to develop tool to convert to TDI.JSON.
• Consistent naming practices -> TDI table and

attribute names derived from YANG model
hierarchy and attribute names

• Scalar and List -> Maps to keyless and keyed
TDI tables

• Config and State container split -> Config and
State split TDI tables

• Augmenting models -> Additional tables with
inherited key

• Notifications -> Map to TDI Notifications at
module level.

gNMI is a gRPC-based protocol for OC data models from
a target device (https://github.com/openconfig/gnmi)
and implemented using OC tool-generated code stub.
• With model-based TDI driver interface, the mapping

YANG model to TDI.JSON mapping logic can be
utilized to automate mapping to TDI in gNMI server
(e.g. Stratum)

https://github.com/openconfig/gnmi

OpenConfig and gNOI

• OpenConfig defines various standard network operations as microservices to be executed on a target device
using protobuf definitions. (https://github.com/openconfig/gnoi)

• gNOI Operations are shallow RPCs with narrow scoped set of services and messages.

• gNOI operation representations are diverse and requires a more diverse set of vocabularies to describe.

• To support more operational vocabularies, TDIOperation and TDINotification have been added to TDI
specification.

• Following outlines one possible model to service a KillProcess operation.

Uniform Control Plane for P4 & Fixed Functions Using TDI

• For both P4 and Fixed functions, generate the
TDI.JSON from standard model files.

• Utilize tools to generate data model artifacts
and code to help automate or make easier
feature additions.

• To support OC gNMI in similar way as P4,
OC_Yang2TDI (new tool) automates generating
Fixed Function artifacts (TDI.json) for non-P4
tables

• To support gNOI using TDI with more
operational requests, TDIOperation and
TDINotification are added to TDI.

• Using both P4Runtime and OpenConfig gNMI
& gNOI is most common deployment
mechanism; however, we propose a new
method that may help to simplify this further.

IPU Resource Managers

Pipe
Manager

Crypto
Manager

Port
Manager

P4 Mgr Intf

P4 Tables

MatchAction

MatchAction-
Indirect
Action
Selector
Counter
Meter
Register

P4 Runtime
Server

OpenConfig
gNMI Server

SDN Controller

Python
CLI

TDI C-
Wrapper

Local
App

Device
Manager

OpenConfig
gNOI Server

QoS
Manager

Pkt
Manager

P4 Function TDI Backend

Device QoS PortPktCrypto

Fixed Function TDI
Backend

Fixed Config
Table

All Fixed Functions

Fixed State
Table

All Fixed Functions

TDI C++ Frontend (libtdi)

Table
TableKey
TableData

Session Init
DevMgr
TdiInfo

TableAttributes
TableOperations

p4c compiler
driver

P4->TDI

Assembler

Input Data Model File:
CUSTOM.P4 for P4Runtime
OC.YANG for gNMI
OC.Proto for gNOI

Pipeline
Binary

File

Context

(.JSON)

TDI
(.(.JSON))

Mapping
& Resource

Hints

Protobuf

Protobuf-
>TDI

P4C Compiler

OC_YANG2TDI

OC_PROBUF2TDI

YANG ->
TDI

P4Runtime GenericTables

• Present p4runtime interface
• P4 tables and Externs like MatchAction, Counters are supported on p4runtime

• P4runtime native API contains support for some forwarding functionalities which can be fixed functions in targets

• Multicast,

• Cloning, Mirroring

• Problem :
• The fixed p4runtime support isn’t extensible. Any enhanced functionality like ECMP group management in Multicast is not natively

possible.

• No support possible if vendor wants to provide Traffic management and shaping over p4runtime.

• No native support for non-PSA externs like PNA or vendor specific P4 architectures. ExternEntry is present but is a very open ended
mechanism without any specifications, left for vendors to decide runtime and info protos.

• Proposal
• GenericTableEntry in p4runtime (in progress)

• GenericTable to be used for non-PSA externs.

• Can also be used for fixed features where the vendor/user identifies a use to keep them on p4runtime. For example, users might want
to configure all forwarding related features over a single interface.

P4Runtime GenericTables Continued

• GenericTable provides a structured way in
which every feature can be represented as a
set of match-fields and data-fields.

• The construct is similar to TDI tables and can
map easily to TDI tables.

• For non-PSA P4 externs, compiler support
needs to be added to generate the correct
p4info. Compilers can choose to provide
option to select one out of multiple choices
for a particular extern (Standard,
GenericTable, ExternEntry)

• For Fixed features, p4info can be handwritten
to map easily to the corresponding tdi.json

• The above example maps the PNA Hash
extern to a Generic Table where the
control plane application allows users to
change the algorithm being used in
runtime.

• The table consists of one entry with 2
unions/actions, one for a predefined
algorithm using a string and another with
parameters used to define a CRC algorithm

P4Runtime GenericTable Usecase

• Users might prefer using p4runtime
to program forwarding related fixed
features using p4runtime since it is
already used to program forwarding
tables

• Networking and K8s recipes in IPDK
(Infrastructure Programmer Development
Kit) use p4runtime to program some
forwarding related fixed features like
Multicast and Mirroring.

• IPSec uses gNMI to program some
forwarding related fixed features like
SADB(Security Association Database) which
contains the crypto-tag/SPI (Security
Parameter Index)/crypto-algorithm
information.

• Non-PSA P4 externs cannot be
mapped easily from p4runtime.
GenericTable proposes to fill this gap

• Enhanced Forwarding fixed features
like Multicast with ECMP groups can
also be easily supported over
p4runtime with GenericTables

What’s next?

• Enhancements to OC_YANG2TDI tool with config file to allow different
variations in table generation.

• Development of a tool to generate TDI.JSON from gNOI protobuf
definitions.

• Taking GenericTables in P4 API WG forward.
• PR Link : https://github.com/p4lang/p4runtime/pull/419

• A tool to convert an existing tdi.json to its p4info representation
• Tdi.json -> p4info for vendors who have a fixed tdi.json for fixed features
• P4info.txt -> tdi.json for device developers who want to generate a tdi.json from a

new handwritten p4info.txt of a GenericTable. P4 compiler does this from P4
programs, but there is no present way in which developers can do this translation for
purely handwritten p4info.txt

https://github.com/p4lang/p4runtime/pull/419

Thank You!

James Choi
Sayan Bandyopadhyay

Sabeel Ansari

