State of P4

Andy Fingerhut



P4’s raison d’étre

“reason for being”

. The same as it has been since it was created:

- To program packet processing devices that achieve the best
price/power/performance ratios that anyone knows how to build.

Hardware architectures are usually some variant of RMT, DRMT, or “array of
small RISC cores”

If P4 did not exist, many people would (and did) invent variants of it
But each even more target-specific than P4 is today



Is P4 feature complete?

.- Do you see features missing?

- | do.
- Let us find ways to add them incrementally to what we have.



Missing features in 2020

Add-on-miss
Add new entries to tables at high rate in data plane

Auto-delete

Delete old entries in the data plane when they have been unmatched for
configurable duration.

The timeout duration of an entry is modifiable at packet processing time.

Packet encryption
Data plane APIs and P4 architecture flow for encryption & decryption

Now part of the PNA specification



Missing features in 2023

Data-plane-writable action data

- e.g. maintain expected TCP sequence numbers independently for each table
entry, in TCP connection tracking.

. High throughput control plane APls
- Adding millions of table entries per second to large tables.

. Configuring externs with P4Runtime APl more consistently
- See new GenericTable idea proposed in P4 APl work group

In active discussion in P4.org working groups now



Missing features in 2023 (cont’d)

Updating P4 code with 0 down time

Implementation techniques are typically target-dependent, but sharing ideas on
how is likely to make this more widely available.

Support in Linux to load P4 code into kernel
Then offload into NICs that support it. See talk on P4-TC later in the workshop.

Good IDE support
New open source repo: https://github.com/p4lang/p4analyzer

In active discussion/development now


https://github.com/p4lang/p4analyzer

As specification

P4 is also used as a specification language
Write behavioral specification of a not-P4-programmable device
- Then use a combination of formal verification methods and testing to

compare this spec to actual device, or desired network-wide behavior.
One tool of note:

P4TestGen is now open source and part of https://github.com/p4lang/p4c
(thanks to Nate Foster, Fabian Ruffy, and others)



https://github.com/p4lang/p4c

Active participants today include

AMD*

- Google*
Intel*
Keysight*

- Marvell
Nvidia

« Vmware*

- Most device vendors use open source P4 front/mid-end compiler from
https://github.com/p4lang/p4c

* At least one P4.org work group co-chair works here



https://github.com/p4lang/p4c

Thank Youl

Andy Fingerhut



