
State of P4

Andy Fingerhut

P4’s raison d’être

• “reason for being”

• The same as it has been since it was created:
• To program packet processing devices that achieve the best

price/power/performance ratios that anyone knows how to build.
• Hardware architectures are usually some variant of RMT, DRMT, or “array of

small RISC cores”

• If P4 did not exist, many people would (and did) invent variants of it
• But each even more target-specific than P4 is today

Is P4 feature complete?

• Do you see features missing?

• I do.

• Let us find ways to add them incrementally to what we have.

Missing features in 2020

• Add-on-miss
• Add new entries to tables at high rate in data plane

• Auto-delete
• Delete old entries in the data plane when they have been unmatched for

configurable duration.
• The timeout duration of an entry is modifiable at packet processing time.

• Packet encryption
• Data plane APIs and P4 architecture flow for encryption & decryption

• Now part of the PNA specification

Missing features in 2023

• Data-plane-writable action data
• e.g. maintain expected TCP sequence numbers independently for each table

entry, in TCP connection tracking.

• High throughput control plane APIs
• Adding millions of table entries per second to large tables.

• Configuring externs with P4Runtime API more consistently
• See new GenericTable idea proposed in P4 API work group

• In active discussion in P4.org working groups now

Missing features in 2023 (cont’d)

• Updating P4 code with 0 down time
• Implementation techniques are typically target-dependent, but sharing ideas on

how is likely to make this more widely available.

• Support in Linux to load P4 code into kernel
• Then offload into NICs that support it. See talk on P4-TC later in the workshop.

• Good IDE support
• New open source repo: https://github.com/p4lang/p4analyzer

• In active discussion/development now

https://github.com/p4lang/p4analyzer

As specification

• P4 is also used as a specification language
• Write behavioral specification of a not-P4-programmable device
• Then use a combination of formal verification methods and testing to

compare this spec to actual device, or desired network-wide behavior.

• One tool of note:
• P4TestGen is now open source and part of https://github.com/p4lang/p4c

(thanks to Nate Foster, Fabian Ruffy, and others)

https://github.com/p4lang/p4c

Active participants today include

• AMD*

• Google*

• Intel*

• Keysight*

• Marvell

• Nvidia

• Vmware*

• Most device vendors use open source P4 front/mid-end compiler from
https://github.com/p4lang/p4c

• * At least one P4.org work group co-chair works here

https://github.com/p4lang/p4c

Thank You!

Andy Fingerhut

