
Hydra: Effective Runtime
Network Verification

1

Sundararajan Renganathan
Stanford University



Research Team



Networks are simple

3

Packet
Output 
port?



However…

4

>107 LoC!

A modern datacenter switch
(“SwitchV”, SIGCOMM ‘22)

Control Plane
(e.g., ONOS is ~106 LoC)

Networks are simple😄
complex😭



How do we build trustworthy networks?

5



Motivating example: Color isolation

6

Policy: every packet should only traverse switches of a single color

“Bluebird: High- performance SDN for bare-metal cloud services”, NSDI 2022.



How do we build trustworthy networks?

7

Axiomatic
“I trust my Cisco routers to 

implement the desired 
policy correctly.”



How do we build trustworthy networks?

Model network 
behavior

✅

❌

Check policy in 
the model

8Are we done? J

Analytic
E.g., HSA, Veriflow, Anteater, 
Batfish, Minesweeper, etc.



Limitations of Analytic Trust

9

All network behavior

Limitation 1: Bugs may be 
in unmodeled behavior

Limitation 2: Model may 
not reflect reality

Limitation 3: Model may be 
tedious to construct

Modeled behavior

Limitation 4: Model 
checking may not scale



Instrumentation

Can we build a network that checks itself?

10

System

Runtime Verification

Predicate
(safety property)

Execution
Trace Halt

✅

❌

Runtime Verification for networks?

Instrumentation

System

Predicate

Halt

✅

❌
Execution

Trace

• “Eraser: A Dynamic Data Race Detector for Multithreaded Programs”, ToCS 1997.
• “Efficient formal verification for the Linux kernel”, ICSE 2019.



Comparison to Analytic Trust

11

Bugs may be in unmodeled behavior

Model may not reflect reality

Model may be tedious to construct

Model checking may not scale

RV verifies a running system

RV scales better since it verifies one 
or a few execution traces



How do we build trustworthy networks?

12

Synthetic
“I check that every packet 
conforms to the desired 

policy at runtime.”

Axiomatic
“I trust my Cisco routers to 

implement the desired 
policy correctly.”

Analytic
“I built a model of my 

network. The desired policy 
holds in the model.”



Runtime Verification for Color Isolation

13
Goal: instrument the network to verify policy compliance at runtime

Policy: every packet should only traverse switches of a single color

φ1

φ2

𝜑1
φ3

φ4
φ6

φ5

𝜑2

𝜑3

𝜑4

𝜑5

𝜑6

Monitoring is 
independent of how 

policy is implemented 



Runtime Verification for Color Isolation

14

Packet Trace: First 
hop’s color

Predicate: First 
hop’s color 

matches current 
switch’s color?

Predicate: …



Hints for Runtime Network Verification

15

Collect network-wide execution traces on packets

Evaluate predicates per packet (fine-grained events)

Monitoring and forwarding code/state should be independent

How do we realize this design? J

If a check fails, then stop packet from making forward progress



Runtime Network Verification using P4

16

This is how you should process packets!

Forwarding
+

Execution tracing
+

Predicate evaluation
+

Halting

Monitoring

Forwarding + Monitoring = Single P4 Program



Runtime Network Verification using P4

17

Collect network-wide execution traces on packets

Evaluate predicates on traces on per-packet basis

Monitoring and forwarding code/state should be independent

If a check fails, then stop packet from making forward progress

✅

✅

P4 only presents a single-switch 
abstraction

Hard to enforce independence 
when P4 code is used for both



Runtime Network Verification using Hydra

18

We designed Indus, a new domain-specific property language based on network-wide traces and predicates

Color Isolation in Indus

State
• Packet variables

• first_hop_color
• hop_colors

• Static variables
• switch_color



Runtime Network Verification using Hydra

19

We designed Indus, a new domain-specific property language based on network-wide traces and predicates

Color Isolation in Indus

Semantics
• Initialization happens at first hop
• Telemetry executes at every hop 

and updates telemetry variables
• Checker executes at last hop and 

implements the predicate; packets 
that fail checks are dropped



Verifying load balance in Indus

20

• Invariant to verify
• Load is balanced across two output ports at every 

switch in a packet’s path

• Indus provides sensor variables to aggregate state 
across packets
• Semantics: sensor variables reside on switches

• Telemetry
• Carry values of sensors in telemetry variables

• Predicate
• Check that sensor values for each pair of output ports 

is approximately equal
• Send a report to the control plane if they are not



Research Questions

21

Q. Is the language powerful enough to 
express rich network-wide properties?

Q. How do we efficiently enforce properties 
thus specified on modern hardware?

We prove that the language can encode any 
network-wide property written in Linear 

Temporal Logic, heavily used in RV

We built a compiler that compiles and merges 
an Indus program with the forwarding code 

into a single binary for P4 switches



Hydra in action

22

• Developed properties that capture key invariants for 
Aether, an open-source cellular platform
• “Aether: Private 4G/5G Connected Edge 

Platform for Enterprises”

• Properties
• Loop avoidance, leaf-spine routing, egress port 

validity, VLAN isolation, ECMP correctness

• Deployed said checkers on the Aether “dogfooding” 
testbed at Princeton

• Injected faults (buggy forwarding rules) that violate 
the “Egress Port Validity” property

• Errant packets are immediately detected and 
reported to controller



Hydra Overheads: Latency

23

Comparison of packet RTT with and without Hydra

Overhead is negligible J



Hydra Overheads: Tofino Resource Utilization

24

Programmable
Parser

Packet 
Header 

Vector (PHV)

N Pipeline Stages Programmable
Deparser

Programmable switching pipeline

1. Pipeline Stage Usage 2. PHV Usage 3. Parser TCAM Usage



Hydra Overheads: Tofino Resource Utilization

25
Overheads seem manageable J

Aether’s P4
Program

Finding 1: Number of stages used is the same, despite more usage on existing stages

Finding 2: PHV and Parser TCAM overheads are low



Future Work

• Incremental Deployment
• Fixed function switches provide telemetry, check predicates at edge in NICs/eBPF?

• “Root-cause” packets that fail checks instead of simply halting progress

• Closed-loop control
• Can we actuate the network back to a known good state?

• Probabilistic Verification

• Verifying higher-level service abstractions composed of per-packet checks

26



Summary

27

Instrumentation

System

Predicate

Halt

✅

❌
Execution

Trace

• Networks provide telemetry “for free”

• Hydra: Runtime Monitoring for 
Networks
• An underexplored approach to 

verification!

• Contributions
• Domain-specific property language Indus
• A compiler to produce P4 code
• TTE seems to be a killer application! J


