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Networks are simple
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Packet
Output 
port?



However…
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>107 LoC!

A modern datacenter switch
(“SwitchV”, SIGCOMM ‘22)

Control Plane
(e.g., ONOS is ~106 LoC)

Networks are simple😄
complex😭



How do we build trustworthy networks?
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Motivating example: Color isolation
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Policy: every packet should only traverse switches of a single color

“Bluebird: High- performance SDN for bare-metal cloud services”, NSDI 2022.



How do we build trustworthy networks?
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Axiomatic
“I trust my Cisco routers to 

implement the desired 
policy correctly.”



How do we build trustworthy networks?

Model network 
behavior

✅

❌

Check policy in 
the model

8Are we done? J

Analytic
E.g., HSA, Veriflow, Anteater, 
Batfish, Minesweeper, etc.



Limitations of Analytic Trust
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All network behavior

Limitation 1: Bugs may be 
in unmodeled behavior

Limitation 2: Model may 
not reflect reality

Limitation 3: Model may be 
tedious to construct

Modeled behavior

Limitation 4: Model 
checking may not scale



Instrumentation

Can we build a network that checks itself?
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System

Runtime Verification

Predicate
(safety property)

Execution
Trace Halt

✅

❌

Runtime Verification for networks?

Instrumentation

System

Predicate

Halt

✅

❌
Execution

Trace

• “Eraser: A Dynamic Data Race Detector for Multithreaded Programs”, ToCS 1997.
• “Efficient formal verification for the Linux kernel”, ICSE 2019.



Comparison to Analytic Trust
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Bugs may be in unmodeled behavior

Model may not reflect reality

Model may be tedious to construct

Model checking may not scale

RV verifies a running system

RV scales better since it verifies one 
or a few execution traces



How do we build trustworthy networks?
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Synthetic
“I check that every packet 
conforms to the desired 

policy at runtime.”

Axiomatic
“I trust my Cisco routers to 

implement the desired 
policy correctly.”

Analytic
“I built a model of my 

network. The desired policy 
holds in the model.”



Runtime Verification for Color Isolation
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Goal: instrument the network to verify policy compliance at runtime

Policy: every packet should only traverse switches of a single color

φ1

φ2

𝜑1
φ3

φ4
φ6

φ5

𝜑2

𝜑3

𝜑4

𝜑5

𝜑6

Monitoring is 
independent of how 

policy is implemented 



Runtime Verification for Color Isolation
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Packet Trace: First 
hop’s color

Predicate: First 
hop’s color 

matches current 
switch’s color?

Predicate: …



Hints for Runtime Network Verification
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Collect network-wide execution traces on packets

Evaluate predicates per packet (fine-grained events)

Monitoring and forwarding code/state should be independent

How do we realize this design? J

If a check fails, then stop packet from making forward progress



Runtime Network Verification using P4
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This is how you should process packets!

Forwarding
+

Execution tracing
+

Predicate evaluation
+

Halting

Monitoring

Forwarding + Monitoring = Single P4 Program



Runtime Network Verification using P4
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Collect network-wide execution traces on packets

Evaluate predicates on traces on per-packet basis

Monitoring and forwarding code/state should be independent

If a check fails, then stop packet from making forward progress

✅

✅

P4 only presents a single-switch 
abstraction

Hard to enforce independence 
when P4 code is used for both



Runtime Network Verification using Hydra
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We designed Indus, a new domain-specific property language based on network-wide traces and predicates

Color Isolation in Indus

State
• Packet variables

• first_hop_color
• hop_colors

• Static variables
• switch_color



Runtime Network Verification using Hydra
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We designed Indus, a new domain-specific property language based on network-wide traces and predicates

Color Isolation in Indus

Semantics
• Initialization happens at first hop
• Telemetry executes at every hop 

and updates telemetry variables
• Checker executes at last hop and 

implements the predicate; packets 
that fail checks are dropped



Verifying load balance in Indus
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• Invariant to verify
• Load is balanced across two output ports at every 

switch in a packet’s path

• Indus provides sensor variables to aggregate state 
across packets
• Semantics: sensor variables reside on switches

• Telemetry
• Carry values of sensors in telemetry variables

• Predicate
• Check that sensor values for each pair of output ports 

is approximately equal
• Send a report to the control plane if they are not



Research Questions
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Q. Is the language powerful enough to 
express rich network-wide properties?

Q. How do we efficiently enforce properties 
thus specified on modern hardware?

We prove that the language can encode any 
network-wide property written in Linear 

Temporal Logic, heavily used in RV

We built a compiler that compiles and merges 
an Indus program with the forwarding code 

into a single binary for P4 switches



Hydra in action
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• Developed properties that capture key invariants for 
Aether, an open-source cellular platform
• “Aether: Private 4G/5G Connected Edge 

Platform for Enterprises”

• Properties
• Loop avoidance, leaf-spine routing, egress port 

validity, VLAN isolation, ECMP correctness

• Deployed said checkers on the Aether “dogfooding” 
testbed at Princeton

• Injected faults (buggy forwarding rules) that violate 
the “Egress Port Validity” property

• Errant packets are immediately detected and 
reported to controller



Hydra Overheads: Latency
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Comparison of packet RTT with and without Hydra

Overhead is negligible J



Hydra Overheads: Tofino Resource Utilization
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Programmable
Parser

Packet 
Header 

Vector (PHV)

N Pipeline Stages Programmable
Deparser

Programmable switching pipeline

1. Pipeline Stage Usage 2. PHV Usage 3. Parser TCAM Usage



Hydra Overheads: Tofino Resource Utilization
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Overheads seem manageable J

Aether’s P4
Program

Finding 1: Number of stages used is the same, despite more usage on existing stages

Finding 2: PHV and Parser TCAM overheads are low



Future Work

• Incremental Deployment
• Fixed function switches provide telemetry, check predicates at edge in NICs/eBPF?

• “Root-cause” packets that fail checks instead of simply halting progress

• Closed-loop control
• Can we actuate the network back to a known good state?

• Probabilistic Verification

• Verifying higher-level service abstractions composed of per-packet checks
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Summary
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Instrumentation

System

Predicate

Halt

✅

❌
Execution

Trace

• Networks provide telemetry “for free”

• Hydra: Runtime Monitoring for 
Networks
• An underexplored approach to 

verification!

• Contributions
• Domain-specific property language Indus
• A compiler to produce P4 code
• TTE seems to be a killer application! J


