Hydra: Effective Runtime
Network Verification

Sundararajan Renganathan
Stanford University

Y

PRONTO

Research Team

Networks are simple

However...

Control Plane ,
(e.g., ONOS is ~106 LoC) complex @

Networks are simptete=—

Orchestration Agent!

~
t
[\ ~ -~ - ‘ SyncD _- -~ Vs
\ S Vendor Abstraction - /
\ Layer (SAl)* >107 LOC ! /
\ 4 \ ’
\ / Hardware \ /
\ 7/ Abstraction Layer* N/
\/ \/
&N Switch Linux /\
\ /N
/ \ / \
// \ / \
/ - ~ \\
/ Phe S~ ~ \
& S
L] 1 L /]
A modern datacenter switch

(“SwitchV”, SIGCOMM ‘22) ,

How do we build trustworthy networks?

Motivating example: Color isolation

SS
\ SS
\
\ /
\ /
\ /
\/
/\
RN
4 \
/ \
/
’ _-
/ /’
Pl

Policy: every packet should only traverse switches of a single color

“Bluebird: High- performance SDN for bare-metal cloud services”, NSDI 2022.

How do we build trustworthy networks?

4 D s

Cisco Blogs / SP360: Service Provider / Automating Network Slicing in the Transport Layer

Axiomatic

a . June 23, 2020 Leave a Comment
| trust my Cisco routers to

implement the desired
policy correctly.”

\l)

SP360: Service Provider

+ Automating Network
— Slicing in the Transport
3:‘:."* Layer

/]

L)
il

Q

Laurent Desaunay

Older telecommunications networks weren’t built with 5G in mind. They were designed to provide
voice, data, and basic connectivity services. But today, 5G is opening doors we never thought we
would get a glimpse behind. Service providers are encountering new requirements, new
customers, new use cases, and a myriad of connection types and in this journey, they are seeking
the most effective ways to handle these increasing traffic demands.

How do we build trustworthy networks?

/ \ [Model network

Check policy in | .. 4
behavior :> the model Ty)(

Analytic

E.g., HSA, Veriflow, Anteater,
Batfish, Minesweeper, etc.

A /

Are we done? ©

Limitations of Analytic Trust

Limitation 1: Bugs may be
in unmodeled behavior

Limitation 2: Model may
not reflect reality

Limitation 4: Model
checking may not scale

Limitation 3: Model may be
tedious to construct

Can we build a network that checks itself?

Predicate T v :
Y Predicate
(safety property)
A T 4 x A 1
Ex ion ! I 1 I
ecutio | ! Halt Executi | |
Trace I I Trace 1 I
/ 1 v \ l / 1 v
gv S e — > _“":"l'
System /
o
\ Instrumentation / \ Instrumentation
Runtime Verification Runtime Verification for networks?

* “Eraser: A Dynamic Data Race Detector for Multithreaded Programs”, ToCS 1997.

“Efficient formal verification for the Linux kernel”, ICSE 2019.

Comparison to Analytic Trust

-

-

Bugs may be in unmodeled behavior

~

J

Model may not reflect reality

Model checking may not scale

Model may be tedious to construct

>

>

RV verifies a running system

RV scales better since it verifies one
or a few execution traces

11

How do we build trustworthy networks?

4 N

Axiomatic

“I trust my Cisco routers to
implement the desired
policy correctly.”

N /

a N

Analytic

“I' built a model of my
network. The desired policy
holds in the model.”

A 4

/

\

Synthetic

“l check that every packet

conforms to the desired

policy at runtime.”

Runtime Verification for Color Isolation

Monitoring is
independent of how
policy is implemented

Policy: every packet should only traverse switches of a single color

Goal: instrument the network to verify policy compliance at runtime

Runtime Verification for Color Isolation

Trace: First
hop’s color

-, D
/
L/

/

-
-
-

-
/
\ /
\
\)
Predicate: ...
/
, YAZAN
7 \

\
\
~ \
]
A
Predicate: First ———

hop’s color
matches current
switch’s color?

-
-
/

14

Hints for Runtime Network Verification

Collect network-wide execution traces on packets

Evaluate predicates per packet (fine-grained events)

If a check fails, then stop packet from making forward progress

Monitoring and forwarding code/state should be independent

How do we realize this design? ©

15

Runtime Network Verification using P4

This is how you should process packets!

Forwarding
+ —
Execution tracing

’ D
I I < .. -7
A — Monitoring P -4

—_— Predicate evaluation 7T) ——
-
\ + -~ /
\ Vs
Halting \ ’
\ 7
\ /7
\/ \/
N N\
/ \ / \
/ \ / \
V4 \ / \
/ P - =~ ~ \
e S~ ~ N\
¢~ ~a
L J [—

Forwarding + Monitoring = Single P4 Program 6

Runtime Network Verification using P4

Collect network-wide execution traces on packets

Evaluate predicates on traces on per-packet basis

Ve

|\

If a check fails, then stop packet from making forward progress

Ve

&

Monitoring and forwarding code/state should be independent

|

P4 only presents a single-switch
abstraction

|

Hard to enforce independence
when P4 code is used for both

17

Runtime Network Verification using Hydra

We designed Indus, a new domain-specific property language based on network-wide traces and predicates]

/* Variable declarations */
tele bit<8> first_hop_color;
tele bit<8>[4] hop_colors; State
control bit<8> switch_color; .

* Packet variables

/* Code blocks */

{ /* Executes at first hop */ .
first_hop_color = switch_color; * flrSt_hOp_COlor
’ e erecutes ot every hon o * hop_colors
hop_colors. append(switch_color); e Static variables
3 .
{ /* Executes at the last hop */ o SW|tCh_CO|0r
for (hop_color in hop_colors) {
if (hop_color != first_hop_color) { reject; }
3
3

Color Isolation in Indus
18

Runtime Network Verification using Hydra

We designed Indus, a new domain-specific property language based on network-wide traces and predicates]

Variable declarations =/
tele bit<8> first_hop_color;
tele bit<8>[4] hop_colors;

Semantics
{ /* Executes at first hop =*/ +iali H H
Firct nop. cotor = switeh cotor. * Initialization happens at first hop
} S * Telemetry executes at every hop
hop_colors. append (switch_color); - and updates telemetry variables
}
{ /* Executes at the last hop #*/ * Checker executes at last hop and
for (hop_color in hop_colors) { 3 3 o
if (hop_color != first_hop_color) { reject; } Implements the prEdlcate, paCketS
! that fail checks are dropped

Color Isolation in Indus
19

Veritying load balance in Indus

Invariant to verify
* Load is balanced across two output ports at every
switch in a packet’s path
Indus provides sensor variables to aggregate state
across packets
* Semantics: sensor variables reside on switches

Telemetry
* Carry values of sensors in telemetry variables

Predicate

* Check that sensor values for each pair of output ports
is approximately equal

* Send a report to the control plane if they are not

* Sensor variables, located on every switch =
sensor b1t<32> left_load = o;
sensor b1t<32> r1ght load = 0;
0 0 ables, located on every switch

control left port
control right_port;
control thresh;
control d1ct<b1t<8> bool> is_ up11nk

metry ria tl carried on the packet =
tele b1t<32>[15] left loads
tele bit<32>[15] right_ loads

{3

{
if (is_uplink[%eg_portl) {
if (%eg_port == left_port) {
left_load += %packet_length;
3
elsif (eg_port == right_port) {
right_load += %packet_length;
3
¥
left_loads.append(left_load);
right_loads.append(right_load);
3

{
for (left_load, right_load in left_loads,
right_loads) {
if (abs(left_load - right_load) > thresh) {
report;
3
3
¥

20

Research Questions

Q. Is the language powerful enough to Q. How do we efficiently enforce properties
express rich network-wide properties? thus specified on modern hardware?
\ 4 \ 4
We prove that the language can encode any We built a compiler that compiles and merges
network-wide property written in Linear an Indus program with the forwarding code

Temporal Logic, heavily used in RV into a single binary for P4 switches

21

Hydra in action

* Developed properties that capture key invariants for
Aether, an open-source cellular platform s Small

* “Aether: Private 4G/5G Connected Edge clients cells
Platform for Enterprises”

* Properties
* Loop avoidance, leaf-spine routing, egress port
validity, VLAN isolation, ECMP correctness

Servers Servers

* Deployed said checkers on the Aether “dogfooding” E
. 300K H
testbed at Princeton 2
g 200K Incorrect Incorrect
9 ,.A(iLrulc ACL rule
* Injected faults (buggy forwarding rules) that violate £ 100K - installeq deared [— Recerver
the “Egress Port Validity” property £ o controller

T T
0 10 20 30 40 50 60
Time (seconds)

* Errant packets are immediately detected and
reported to controller 22

Hydra Overheads: Latency

[Comparison of packet RTT with and without Hydra]

0.5 1.0
Baseline —— All-Check
0.4 - 0.8 A

«

g 0.3 E 0.6 -

= @)

E 0.2 ‘ 0.4 1 Baseline
0.1 - 0.2 1 —— All-Check
0.0 T T T T 0.0 T T T T T

0 10 20 30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Minutes RTT (ms)

[Overhead is negligible ©]

Hydra Overheads: Tofino Resource Utilization

Programmable switching pipeline

v
A 4

P
OO
CAACAVAVA]

Uy
WY

Programmable Packet N Pipeline Stages
Parser Header
Vector (PHV)

Programmable
Deparser

Hydra Overheads: Tofino Resource Utilization

W Stages 0s
m PHV os
Parser TCAM 7
Aether’'sP4 =
Program

Finding 1: Number of stages used is the same, despite more usage on existing stages
Finding 2: PHV and Parser TCAM overheads are low

[Overheads seem manageable ©]

25

Future Work

* Incremental Deployment
* Fixed function switches provide telemetry, check predicates at edge in NICs/eBPF?

* “Root-cause” packets that fail checks instead of simply halting progress

* Closed-loop control
e Can we actuate the network back to a known good state?

* Probabilistic Verification

* Verifying higher-level service abstractions composed of per-packet checks

Summary

* Networks provide telemetry “for free”

* Hydra: Runtime Monitoring for
Networks

* An underexplored approach to
verification!

e Contributions
* Domain-specific property language Indus
* A compiler to produce P4 code
* TTE seems to be a killer application! ©

r
[Predicate };’
: — 4 X
Execution | : Halt
Trace I I
T T
D‘;\\\\ ’_/«:,"’_I:I_
K Instrumentation /

27

