
What’s new in P4-16
Mihai Budiu 

on behalf of the

P4 Language Design Working Group
P4 workshop

April 2023, Santa Clara, CA



Open-source Language Design Process

• Monthly meetings on zoom
• First Monday of every month
• See the p4.org calendar

• Any ONF member can participate
• Proposals and implementations tracked on github
• https://github.com/p4lang/p4-spec
• Discussion meetings available on github as well
• Changes prototyped in the open-source compiler
• We welcome new participants

https://github.com/p4lang/p4-spec


P4-16 1.2.4 to be released

• Yearly release cadence
• Previous release was in July 2022
• Many clarifications
• A few small improvements
• Fully backwards compatible with 1.2.3



Clarifications

• Driven by formal modelling of P4 syntax and semantics
• Several academic teams (Princeton, Cornell)

• “list expressions” -> “tuple expressions”
• Semantics of ‘exact’, ‘ternary’, ‘lpm’ is now part of the spec
• Semantics of “negative” ranges such as 5..2 (empty)
• Many small other fixes



New features

• static_assert – compile-time assertions
const bool _check = static_assert(V1MODEL_VERSION > 20180000,

"Expected a v1 model version >= 20180000");

• Allow comparisons for tuples
• Optional trailing commas

enum E {
#if SUPPORT_A

a,
#endif

b,
c,

}



A new list<> type

• Currently we only have list literals
• Can be used in constructor parameters

extern E {
E(list<pair_t> data);
void run();

}

control c() {
E((list<pair_t>) {{2, 3}, {4, 5}}) e;
apply {

e.run();
}

}



More kinds of expressions

• Invalid header and invalid union literals
{#} (a single token)

• Stack initializers
H<bit<32>>[3] s;        

s = (H<bit<32>>[3]){ {0, 1}, 
{2, 3}, 
(H<bit<32>>){#} };



Non-const table entries

table t {
…
largest_priority_wins = false;
priority_delta = 10; 
entries = {
const priority=10: (0x01, 0x1111 &&& 0xF   ) : a(1);

(0x02, 0x1181           ) : a(2);
(0x03, 0x1000 &&& 0xF000) : a(3);

const              (0x04, 0x0210 &&& 0x02F0) : a(4);
priority=40: (0x04, 0x0010 &&& 0x02F0) : a(5);

(0x06, _                ) : a(6);
}}



Compiler implementation

Commits during the last 12 months



Open-source compiler contributions

• Several complex O/S backends contributed
• DPDK backend (generates DPDK assembly)
• P4 to ebpf/PSA – production quality
• Testing backend – P4 test generation using symbolic execution
• PTF (Packet Test Framework) Python-based testing for many backends

• Many bug fixes and improvements
• Default initializers fully implemented (…)
• Code style enforced across all languages
• Improvements in build process
• Loop unrolling for parsers


