

NETSIA

Dynamic LAG Application (DLA) for VOLTHA Whitebox OLTs

ONF Broadband Community Meetup 2023

Presenters: Dogukan Gulyasar Burak Gurdag

Motivation **LACP** Protocol Overview Previous Work DLA Design Overview DLA Components Development Phases Items to be Discussed \Box Q&A

OUTLINE

- It increases total throughput.
- Provides redundancy. If a port fails, the other port will resume as a primary link and continue to operate
- Divides traffic between links via various hashing mechanisms.
- Implementation followed vendor-independent standards such as Link Aggregation **Control Protocol** (LACP). In that way it works with multiple vendors.

LINK AGGREGATION CONTROL PROTOCOL (LACP)

Link Aggregation

Two protocols:

- LACP
- PAGP

LACP is a Open Standard protocol

- → Defined in 802.3ad specification.
- → Control the bundling of several physical ports together to form a single logical link
- → Automatic bundling of links by sending LACP packets

PAGP is a Cisco-proprietary protocol

- → Can be used only on Cisco switches
- → Invented in early 1990s
- → Dynamically group similarly configured ports

PREVIOUS WORK IN SEBA

- Static LAG support on the OpenOLT Agent level • OLT level (i.e. not visible to VOLTHA) • Developed as a PoC
 - Not upstreamed to the community
 - Dynamic LAG was required
 - . Added to the wishlist
- LAG work on the community side • Discussions in the brigade meetings LAG folder under ONF Drive Notes of the "Multi-NNI/LAG Discussion" Meeting with ONF

DESIGN OVERVIEW

- **DevCLI:** CLI of DLA for testing/debugging
- **REST Server:** NBI of DLA
- LAG Manager: LAG Management Entity in the control plane (position is TBD)
- **BAL**: Broadband Abstraction Layer (BAL) for PON and switch subsystems.
- **OpenOLT Agent**: VOLTHA driver for whitebox OLTs
- **OpenOLT Adapter**: VOLTHA adapter for whitebox OLTs

OLT

Components:

- LACP Daemon (i.e. LACP Stack)
 - Based on LibreSwitch LACP Daemon
- Customized OVSDB Interface Implementation for Dynamic LAG
- BAL Wrapper for LAG management
 - Based on BAL 3.10.4.4

BAL WRAPPER

- BAL API calls gathered in bal_wrapper lib
 - DLA Core initialized as a BAL Host
 Application (like OpenOLT Agent)
- It connects the DLA process (LACPd) to the BAL Core Service and configure the corresponding BAL objects:
 - ACL to trap incoming PDUs
 - Flow to packet out outgoing PDUs
 - LAG Interfaces

DLA CORE

DEV CLI

- CLI for debugging and testing DLA
- Connected via telnet
- Functionalities:
 - Create/Delete LAG
 - Add/Remove LAG Members
 - Dump/Write LAG Config
 - Dump LAG states

REST SERVER

- Northbound Interface of DLA
- Based on Edgecore Public PSME REST Server
 Implementation
 - PSME REST API
- API Functionalities:
 - Create/Delete/Modify LAG Interfaces
 - $\circ~$ Get LAG Status
 - $\circ~$ Get LAG Statistics
 - $\circ~$ Subscribe to LAG-related Events
 - LAG UP/DOWN/DEGRADED
 - NNI Member Events

DLA CORE - LACP STACK

LACP Stack Initialization:

- LACP Stack (protocol queues and event listeners)
- Rest Server
- DevCLI
- LACPd as the host application attached to the BAL Core

Stack Initialization

- Initializes all interfaces & all LAGs lists
- Configures the OLT switch with the LAG global parameters.
- Install ACL to trap LACP PDU packets to the host.
- Configures the System ID and priority.
- Creates all LAG groups from the config.yaml file.
- Configures all NNI from the config.yaml file as LAG members.

Adding member

DEVELOPMENT PHASES

• Phase 1

- LAG Configuration based on DLA config file
 - Control plane is not LAG-aware
- Tested on
 - Zyxel SDA3016SS
 - Edgecore ASGvOLT64
- Completed
- Phase 2
 - LAG Configuration through NBI
 - LAG Manager and its placement should be clarified
 - Level of LAG-awareness in the control plane should be determined

ITEMS TO BE DISCUSSED (IN TST MEETINGS?)

- VOLTHA assumes single OLT uplink: NNI-0 - Should SEBA/VOLTHA be LAG-aware?
- Who will be the LAG Manager?
 - Device Manager?
 - A new entity?
- Issues with BAL 3.10.4.4

NETSIA

Thank You

Q&A dogukan.gulyasar@netsia.com burak.gurdag@netsia.com

