
P4EAD: Securing the In-band Control Channels
on Commodity Programmable Switches

Archit Bhatnagar, Xin Zhe Khooi, Cha Hwan Song, Mun Choon Chan
National University of Singapore

What are control channels?

Control Plane

Data Plane

Runtime API

Runtime Server/
DriverCPU

ASIC

PCI-E

Control Plane

Runtime API

Data Plane

2

Example of Runtime APIs:
OpenFlow, P4Runtime

Out-of-band

Existing out-of-band control channels are slow

3

Control Plane

Data Plane

Runtime API

Runtime Server/
DriverCPU

ASIC

PCI-E

Orders of magnitude mismatch in performance!

High latency/
Low throughput

Control plane (out-of-band)
read/write operation rate:
 <105 entries/s

Data plane packet
processing rate: >109 pkts/s

Issue with slow control channels

4

Example: In-network KV Cache

Programmable switch
(in-network storage)

Key-value Store 1

Key-value Store 2

Control Plane

Monitoring
heavy hitters

Evict stale items
Insert popular items

Must be fast
for cache efficiency

Popularity changes

Delayed responses result in system performance degradation!

Delayed measurements,
and delayed responses!

Emerging In-band control channels

• Key idea: Exploit the data plane’s high-speed packet processing rates
• Control plane uses control packets to update/ retrieve the data plane states

5

Control Plane

Data Plane

Runtime API

Runtime Server/
DriverCPU

ASIC

PCI-E

High latency/
Low throughput

Control Plane

Data Plane

ASIC

Front-panel ports

NIC

C

C

C

C

In-band

6

Common designs for in-band control channels

• Substitute existing match-action tables (MAT) with hash tables
constructed using register arrays
• Why? Existing MATs cannot be updated

through in-band control packets

• Enables updating entirely in the
data plane with much faster updates
(e.g., up to 100 times faster)

7

Control Plane

Data Plane

ASIC

Front-panel ports

NIC

C

Entry0 Entry1 Entryk-1

k-chaining

...h(f) % N

Feed-forward Switching Pipeline

A single
match-unit

Example:

Existing in-band control channels
are vulnerable!

• Control packets are sent in the clear
• Threat Model: Can be sniffed

modified, and/or replayed by
potential adversaries!

• Systems are thus vulnerable to
attacks like:
• man-in-the-middle
• denial-of-service
• replay attacks

• encryption is not enough

8

Control Plane

Data Plane

ASIC

Front-panel ports

NIC

C

C

key=A, value=B

key=A, value=C

🔥

Existing in-band control channels
are vulnerable!

• Control packets are sent in the clear
• Threat Model: Can be sniffed and/or

modified by potential adversaries!

• Systems are thus vulnerable to
attacks like:
• man-in-the-middle
• denial-of-service
• replay attacks

9

Control Plane

Data Plane

ASIC

Front-panel ports

NIC

C

C

key=A, value=B

key=A, value=C

🔥

We need to secure the in-band control channels!

Securing the in-band control channels

10

Requirements:
• Confidentiality
• Authenticity
• Integrity

Authenticated
Encryption (AE)

Can AE be done on programmable switches?

Authenticated Encryption on
Programmable Switches?

• No existing AE implementation exists for programmable switches
• Combining P4-AES and SipHash to form an AE-like scheme, it is not secure1!
• It is also expensive – requires sufficient hardware resources for both

• How about implementing well-known AE schemes?

11
[1] T. Kohno; J. Viega & D. Whiting. NIST. Retrieved March 12, 2013. it is very easy to accidentally combine secure encryption
schemes with secure MACs and still get insecure authenticated encryption schemes.

AES-GCM

Chacha20-
Poly1305

involves the Galois Field (GF) multiplication process which has to be
done bit by bit results in unacceptably slow performance

requires modular arithmetic performed on (very) large numbers where
such is unavailable on programmable switches

Authenticated Encryption on
Programmable Switches?

• No existing AE implementation exists for programmable switches
• Combining P4-AES and SipHash to form an AE-like scheme, it is not secure1!
• It is also expensive – requires sufficient hardware resources for both

• How about implementing well-known AE schemes?

12
[1] T. Kohno; J. Viega & D. Whiting. NIST. Retrieved March 12, 2013. it is very easy to accidentally combine secure encryption
schemes with secure MACs and still get insecure authenticated encryption schemes.

AES-GCM

Chacha20-
Poly1305

involves the Galois Field (GF) multiplication process which has to be
done bit by bit results in unacceptably slow performance

requires modular arithmetic performed on (very) large numbers where
such is unavailable on programmable switches

Is there any alternative?

Lightweight Crypto Suite: ASCON

13

ASCON Cipher Suite

• Family of authenticated encryption and hashing algorithms
• ASCON-AEAD
• ASCON-HASH

• Lightweight, and hardware-friendly algorithm design:
• requires only simple binary operations like XOR, ROR and AND
• computations operate over a constant 320-bit state vector

14

Key contribution of the paper:
P4EAD

ASCON fits the bill for programmable switches!

ASCON-AEAD

Input

Keys &
Nonces

CIPHERTEXT

I/P
Abs

Tag
Final

TAGS

INIT
PERM
(12)

AD
Abs

PERM
(6)

Associated
Data

PERM
(6)

PERM
(12)

INIT - Initialization
AD Abs - AD Absorption
I/P Abs - Input Absorption
Tag Final- Tag Finalization

15

What are PERM rounds (P-RND) in ASCON?

• PERM rounds (P-RND) are
used repeatedly in ASCON
• Each P-RND consists of
• Round Constant Addition
• Substitution Layer
• Linear Diffusion Layer

16

Mapping P-RNDs on Tofino

17

Use MATs for
to perform the constant
lookup for each P-RND

Split operation into 2 parts

Do ROR using bit slicing and
concatenation

Combine operations using built in hash
engines instead of splitting them

*More details can be found in the paper and released code.

1 stage

4 stage

3 stage

In total, 8 stages required per P-RND!

Implementing P4EAD

Context: Programmable switches have limited pipeline stages (e.g., 12)

18

How to implement ASCON-AEAD on Tofino?
(recall 8-stage per P-RND)

packet recirculation: add special metadata header
to the packet to store the current P-RND number
and relevant states.

1xP-RND
(8 stages)

2xP-RND
(12 stages)

slow
tput?

double the P-RNDs: mutually exclusive operations
can be parallelized while sharing the pipeline stages

P4EAD: Pipeline Layout

• Example layout on Intel Tofino
• 2 P-RND per pipeline pass
• Encryption and decryption are symmetrical

Ingress to Egress

STAGE N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11

PREPROCESSING
[INIT, I/P & AD ABSORB]

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER
POST
PROC

INGRESS

EGRESS

TAG FINALIZATIONP-RND I RecirculateP-RND I+1

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER

19

P4EAD: Pre-processing

• Pre-processing:
• Handle 3 kinds of packets:

• (i) newly received packets that needs to be encrypted/ decrypted, or
(ii) recirculated packets in the middle of a PERM, or
(iii) recirculated packets at the end of a PERM.

• Performs state vector initialization & input absorption.

Ingress to Egress

STAGE N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11

PREPROCESSING
[INIT, I/P & AD ABSORB]

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER
POST
PROC

INGRESS

EGRESS

TAG FINALIZATIONP-RND I RecirculateP-RND I+1

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER

20

P4EAD: Post-processing

• Post-processing:
• Perform tag finalization (encryption)
• additionally, perform tag verification (decryption)
• Strip off the metadata header

21

Ingress to Egress

STAGE N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11

PREPROCESSING
[INIT, I/P & AD ABSORB]

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER
POST
PROC

INGRESS

EGRESS

TAG FINALIZATIONP-RND I RecirculateP-RND I+1

CNST
ADD SUBSTITUTION LAYER LINEAR DIFFUSION

LAYER

P4EAD: Implementation

• Intel Tofino: Up to 2 P-RND per pipeline pass
• Intel Tofino2: Up to 4 P-RND per pipeline pass

22

P4EAD is publicly available!
https://github.com/NUS-CIR/tofino-ascon/

𝑝 - length of input in bytes
𝑞 - length of associated data in bytes
𝑟 - the number of P-RNDs per pipeline pass
𝑠 - the number of recirculations needed

https://github.com/NUS-CIR/tofino-ascon/

• Search for maximum achievable
throughput by P4EAD switch
• gradually increase traffic generation rate

at the Traffic Gen Switch

• Compare generated and received
number of packets
• run experiment until packet losses

are observed

• Experiment repeated 1000 times
to ensure consistency

Evaluation Methodology

23

P4EAD
Switch

Traffic Gen
Switch

Plaintext
Input

Ciphertext
Output

Performance Benchmarks: Tofino

• Assumption:
• 4-byte AD
• One recirculation port

• Latency:
• 1 RPP: 23~35 us
• 2 RPP: 12~18 us

• Throughput:
• 1 RPP: 2.5~1.5 Mpps
• 2 RPP: 5~3.1 Mpps

� �� �
 	�
�������������������

�

�

�

��
��

��
��

��
���

��
�� ����� �����

� �� �
 	�
�������������������

�

��

��

	�

�
��

��
��

��
��

��
����� �����

24
RPP: P-RND per pipeline pass

Performance Benchmarks: Tofino2

 �� �
 	�
��������������������

�
��
��
	�

�
��

��
��

��
��
��

��
�����
�����

	����

���� • Assumption:

• 4-byte AD
• One recirculation port

• Latency:
• 3 RPP: 9~15 us
• 4 RPP: 8.4~12 us

• Throughput:
• 3 RPP: 33~19 Mpps
• 4 RPP: 39~25 Mpps

 �� �
 	�
��������������������

�
��
��
	�

�
��

��
��

��
��

��
���

��
�� �����
�����

	����

����

25
RPP: P-RND per pipeline pass

Scalability

• Assumption: 4-byte AD, 8-byte input
• Scale up by increasing the number of recirculation ports
• Up to 39 Mpps for Tofino using 8 ports
• Up to 146 Mpps for Tofino2 using 8 ports (same pipeline)
• Up to 320 Mpps for Tofino2 using 8 ports (different pipeline)

1 2 3 4 8
No. of Reci culation Po ts

5
39

100
146
200
250
300

Th
 o

ug
hp

ut
 (M

pp
s) Tofino2

Tofino2 (1 pipe)
Tofino1

26

Integration with In-network KV Cache

• In-network KV store accelerated with in-band control channel1
• two variants are compared: with (1 P-RND) and without P4EAD
• popularity changes every 5s; cache statistics sampled every 1ms

State management
module

Data Plane

P4EAD
encrypt

P4EAD Recircs

monitoring

Control Plane

Query

P4EAD decrypt
In-network

key-value store

Update
(encrypted)

In-band
control loop

0 20 40 60 80 100
(%) 0iss-rDtio

0.0

0.2

0.4

0.6

0.8

1.0

CD
)

Dy62
Dy62 w/ P4(AD

27[1] CH Song et al., Revisiting Application Offloads on Programmable Switches. IFIP Networking 2022.

Discussion and Future Work

• Fast and responsive control channels is essential for emerging high-
performance/ in-network computing applications
• The security of these applications must be investigated

• Apart from control channels, inter-switch communications will need
to be secured too!
• While P4EAD can secure existing solutions…
• Future chip/switch designs should consider:
• introducing dedicated hardware crypto accelerators
• built-in fast and responsive control channels

28

Summary

29

Talk to me!

