

Core Information Model
(CoreModel)

TR-512.15

Compute

Version 1.6
January 2024

TR-512.15 Core Information Model – Compute Version 1.6

Page 2 of 31 © 2024 Open Networking Foundation

ONF Document Type: Technical Recommendation

ONF Document Name: Core Information Model version 1.6

Disclaimer

THIS SPECIFICATION IS PROVIDED " AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF AN Y PROPOSAL,

SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

1000 El Camino Real, Suite 100, Menlo Park, CA 94025

www.opennetworking.org

©2024 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to identify,

products or services of their respective owners.

Important note

This Technical Recommendations has been approved by the Project TST, but has not been

approved by the ONF board. This Technical Recommendation is an update to a previously

released TR specification, but it has been approved under the ONF publishing guidelines for

'Informational' publications that allow Project technical steering teams (TSTs) to authorize

publication of Informational documents. The designation of '-info' at the end of the document ID

also reflects that the project team (not the ONF board) approved this TR.

http://www.opennetworking.org/

TR-512.15 Core Information Model – Compute Version 1.6

Page 3 of 31 © 2024 Open Networking Foundation

Table of Contents

Disclaimer .. 2

Open Networking Foundation ... 2

Important note ... 2

Document History .. 5

1 Introduction .. 6

1.1 References .. 6

1.2 Definitions .. 6

1.3 Conventions ... 6

1.4 Viewing UML diagrams .. 6

1.5 Understanding the figures .. 6

2 Introduction to Compute.. 7

2.1 Background ... 7

2.1.1 CPU ... 7

2.1.2 Memory .. 7

2.1.3 Storage .. 7
2.1.3.1 Challenges ... 7

2.1.3.2 Storage Options.. 8

2.1.3.3 Data "at rest" .. 8

2.2 Storage Extent ... 9

2.3 Partitioning and Aggregation .. 10

2.4 Storage Pooling ... 10

3 Compute model and context ... 12

3.1 ComputeConstruct positioning ... 12

3.1.1 ComputeConstruct ... 12

3.2 ComputePool ... 13

3.2.1 ComputePool ... 14

3.2.2 ComputePoolInput ... 15

3.2.3 ComputePoolOutput ... 15

3.2.4 ComputePoolSegment ... 16

3.2.5 ComputePoolTransferFunction ... 16

3.2.6 RoleInPool ... 16

3.3 Compute model data types .. 17

3.3.1 ProcessingProperties ... 17

3.3.2 StorageProperties .. 18

3.3.3 StorageStrategy ... 19

3.3.4 ErrorCorrectionStrategy ... 19

TR-512.15 Core Information Model – Compute Version 1.6

Page 4 of 31 © 2024 Open Networking Foundation

3.3.5 ExtentRange .. 19

3.3.6 Media ... 20

3.3.7 Lifetime .. 20

3.3.8 SpeedCharacteristic ... 20

3.3.9 Status .. 21

3.3.10 AccessStrategy .. 21

3.3.11 ReadWriteStrategy ... 21

3.3.12 ApplicationRole .. 22

3.3.13 SpeedProfile .. 22

3.3.14 SpeedCharacteristicName .. 23

3.3.15 InstructionSet ... 24

3.3.16 ProcessorArchitecture .. 24

3.3.17 Availability .. 24

3.3.18 MediaType ... 25

3.4 Relationship to File System and Software .. 25

4 A simple compute example ... 27

5 Model considerations .. 29

5.1 Pooling .. 29

5.2 Partitioning and Aggregation .. 29

5.3 Items for Further Investigation .. 30

5.3.1 ComputePoolTransferFunction ... 30

5.3.2 Application of specification model ... 30

5.3.3 Physical model considerations ... 30

5.3.4 Component-System Pattern ... 31

5.3.5 Application of various recursive structure patterns .. 31

5.3.6 Other areas .. 31

TR-512.15 Core Information Model – Compute Version 1.6

Page 5 of 31 © 2024 Open Networking Foundation

List of Figures

Figure 2-1 – Storage Options ... 8

Figure 2-2 - StorageExtent as a 'piece of tape' ... 10

Figure 2-3 – StorageExtent concatenation and striping .. 10

Figure 2-4 – StorageExtent partitioning .. 10

Figure 3-1 Compute Structure .. 12

Figure 3-2 Compute Pool ... 14

Figure 3-3 Compute Data Tyoes .. 17

Figure 3-4 Compute and Software ... 26

Figure 4-1 - Simple Compute hardware example ... 27

Figure 4-2 Compute example instance diagram ... 28

Document History

Version Date Description of Change

1.6 January 2024 Initial Version

TR-512.15 Core Information Model – Compute Version 1.6

Page 6 of 31 © 2024 Open Networking Foundation

1 Introduction

This document is an addendum to the TR-512_v1.5 ONF Core Information Model and forms

part of the description of the ONF-CIM. For general overview material and references to the

other parts refer to TR-512.1.

1.1 References

For a full list of references see TR-512.1.

1.2 Definitions

For a full list of definition see TR-512.1.

1.3 Conventions

See TR-512.1 for an explanation of:

 UML conventions

 Lifecycle Stereotypes

 Diagram symbol set

1.4 Viewing UML diagrams

Some of the UML diagrams are very dense. To view them either zoom (sometimes to 400%) or

open the associated image file (and zoom appropriately) or open the corresponding UML

diagram via Papyrus (for each figure with a UML diagram the UML model diagram name is

provided under the figure or within the figure).

1.5 Understanding the figures

Figures showing fragments of the model using standard UML symbols and also figures

illustrating application of the model are provided throughout this document. Many of the

application-oriented figures also provide UML class diagrams for the corresponding model

fragments (see TR-512.1 for diagram symbol sets). All UML diagrams depict a subset of the

relationships between the classes, such as inheritance (i.e. specialization), association

relationships (such as aggregation and composition), and conditional features or capabilities.

Some UML diagrams also show further details of the individual classes, such as their attributes

and the data types used by the attributes.

../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf
../TR-512.1_OnfCoreIm-Overview.pdf

TR-512.15 Core Information Model – Compute Version 1.6

Page 7 of 31 © 2024 Open Networking Foundation

2 Introduction to Compute

This document describes a general high-level model for compute functionality including

processing and storage. The model is considered sufficient to represent the capabilities of the

compute functions that may be present in a network device or in a controller of network devices.

For storage the document covers management of Block, File and Object storage, both directly

attached and over a network. It includes standalone hosts with local storage, Redundant Array of

Inexpensive Discs (RAID), Small Computer System Interface (SCSI) as well as network-based

storage, including enterprise and cloud storage.

Note that this model excludes physical devices such as Central Processing Unit (CPU) chips and

memory chips. All physical device considerations are covered by the existing Equipment model

(see TR-512.6).

A data dictionary that sets out the details of all classes, data types and attributes is also provided

(TR-512.DD).

2.1 Background

The compute model covers representation of the functions of CPU, memory and storage.

This model is designed to represent compute architectures in a technology independent manner

and is focused on the management and control of the compute functions.

2.1.1 CPU

The original CPU consisted of many physical units, as technology evolved it became possible to

implement a CPU in single chip. Now a single chip may contain many CPU cores, and each core

may run more than one thread. So, a definition of a 'logical CPU' function is required.

Some chips have a mix of architectures and/or capabilities (asymmetric), others simply have

several replications of the same architecture (symmetric).

For example, an asymmetric CPU may have 4 + 4 cores (4 * 1.8 GHz Type-A + 4 * 1.4 GHz

Type-B).

The CPU hardware may be housed in an Field Replaceable Unit (FRU) or a non-FRU. This is

covered in the Equipment model (see TR-512.6).

2.1.2 Memory

Memory chip(s), Single In-line Memory Module (SIMM) and Dual In-line Memory Modules

(DIMM) may be an FRU or non-FRU. This is covered in the Equipment model (see TR-512.6).

The model in this document describes the memory functionality (capabilities and capacity).

2.1.3 Storage

2.1.3.1 Challenges

The challenges in producing an abstract, standard storage model include :

 The large number of variations in storage options

TR-512.6_OnfCoreIm-Physical.pdf
file:///C:/Users/ndavis/git/ONFInfoModel/OnfModel/CoreGendoc/ModelDescriptions/TR-512.DD_v1.3_OnfCoreIm-DataDictionary.pdf
TR-512.6_OnfCoreIm-Physical.pdf
TR-512.6_OnfCoreIm-Physical.pdf

TR-512.15 Core Information Model – Compute Version 1.6

Page 8 of 31 © 2024 Open Networking Foundation

 the lack of standard terminology.

For example, the definition of a LUN is problematic :

• "A LUN, is a number used to identify a logical unit, which is a device addressed by the

SCSI protocol or Storage Area Network protocols which encapsulate SCSI, such as Fibre

Channel or iSCSI"

https://en.wikipedia.org/wiki/Logical_unit_number

• "a logical unit number (LUN) is a slice or portion of a configured set of disks that is

presentable to a host and mounted as a volume within the OS."

https://www.computerweekly.com/answer/What-is-a-LUN-and-why-do-we-need-storage-

LUNs

2.1.3.2 Storage Options

Storage can be provided in many forms, some of the options commonly used today are shown

below.

With each of the options, there could be more than one protocol used, and the diagram shows

some of these in pink.

Figure 2-1 – Storage Options

2.1.3.3 Data "at rest"

Both storage and memory allow data to be 'at rest', ready for later retrieval. Memory can perform

as volatile storage "RAM drives" or "RAM disks" and storage devices can be used as "virtual

memory" where volatile memory is paged in and out of disk to increase the apparent amount of

main memory.

https://en.wikipedia.org/wiki/Logical_unit_number
https://en.wikipedia.org/wiki/Logical_unit_number
https://en.wikipedia.org/wiki/Logical_unit_number
https://www.computerweekly.com/answer/What-is-a-LUN-and-why-do-we-need-storage-LUNs
https://www.computerweekly.com/answer/What-is-a-LUN-and-why-do-we-need-storage-LUNs

TR-512.15 Core Information Model – Compute Version 1.6

Page 9 of 31 © 2024 Open Networking Foundation

The storage model is used for both storage and memory. It covers both the case where the access

is to files, blocks or objects using a storage protocol and the case where access is to locations via

the memory protocols.

2.2 Storage Extent

In the model set out in this document, StorageExtent is defined as the key unit of storage

capacity that the rest of the model is built around. The extent is a block or segment of storage

(contiguous bytes).

The model covers ranges of extents.

TR-512.15 Core Information Model – Compute Version 1.6

Page 10 of 31 © 2024 Open Networking Foundation

2.3 Partitioning and Aggregation

The model supports both partitioning and aggregation of StorageExtent ranges.

The simple example below, where StorageExtent range is represented as a 'piece of tape', should

help clarify the concepts.

Figure 2-2 - StorageExtent as a 'piece of tape'

The tape can be aggregated in two ways, by end-to-end concatenation and by striping.

Figure 2-3 – StorageExtent concatenation and striping

The tape can be cut into sub extents, i.e., can be partitioned (the opposite of concatenation).

Figure 2-4 – StorageExtent partitioning

Note that the operations are 'closed' that is both the inputs and the results of the operations are

StorageExtent ranges, allowing the operations to be performed recursively.

2.4 Storage Pooling

Originally, due to the limitations of the hardware, only local storage was available. As

technology evolved, the support of shared storage (provided over a network) became feasible.

Therefore, the model needs to support pooling of physical storage that can then be allocated

logically to various consumers.

TR-512.15 Core Information Model – Compute Version 1.6

Page 11 of 31 © 2024 Open Networking Foundation

To do that, the model defines a ComputePool with ComputePoolEntries.

Note that the decision was made to have a single compute pool rather than separate Storage,

CPU and memory pools
1
, because :

• CPU and memory are usually tightly coupled, and the pool can then allocate these

consistently

• Sometimes storage is tightly coupled with CPU and memory and the pool can then

allocate these consistently

There are two types of entries :

 Pool inputs for SSD, PhysicalDisk, VM VirtualDisk and LogicalEntry

 A pool output as an extent allocation (volume)

Note that the extent allocation from a pool can be a LogicalEntry to another pool allowing for

allocation chaining.

Note also that the pools aren't hierarchical (deliberately no ComputePool contained in self-join)

• The association StorageExtentPoolEntryIsLogical allows an output from one pool to

become the input of another pool

• This needs to form a directed acyclic graph (no loops)

Note that there is no association linking the pool inputs and outputs. The ordering of the inputs

allows the input to output extent mapping to be determined.

It is assumed that there will be many simple pools rather than few large complex pools with

complex mappings.

1
 Note that this document only considers storage entries.

TR-512.15 Core Information Model – Compute Version 1.6

Page 12 of 31 © 2024 Open Networking Foundation

3 Compute model and context

3.1 ComputeConstruct positioning

The following figures set out the core of the compute model.

CoreModel diagram: Compute-ComputeStructure

Figure 3-1 Compute Structure

3.1.1 ComputeConstruct

Qualified Name: Compute::ComputeConstruct::ComputeConstruct

An assembly of processing and storage functionality that provides an overall compute capability.

The interconnect of the processing and storage is not detailed. The purpose of this model is to

deal primarily with resource allocation and usage.

At this stage this is a degenerate form of component-system pattern.

It is expected that the compute construct will gain ports in a later development and that some

detailed modeling of the system may be necessary.

Inherits properties from:

 GlobalClass

This class is Experimental.

TR-512.15 Core Information Model – Compute Version 1.6

Page 13 of 31 © 2024 Open Networking Foundation

Table 1: Attributes for ComputeConstruct

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

processorComponent Experimental

The properties of the processing capability of a compute construct.

The compute construct may have several distinct processing forms.

storageComponent Experimental

The properties of the storage capability of a compute construct.

The compute construct may have several distinct storage forms.

Note that storage covers any element that has the purposeful capability of

retaining data (e.g., RAM, a buffer, a queue).

_processingConstruct Experimental

The processing construct that gives rise to the compute construct.

_equipment Experimental

The equipment that gives rise to the compute construct.

_computePoolInput Experimental

The usage of the compute construct in a pool.

_computePoolOutput Experimental

The compute pool output that gives rise to the compute construct.

_runningVirtualMachine Experimental

The virtual machine that gives rise to the compute construct.

_fileSystem Experimental

The file system that gives rise to the compute construct.

_runningSoftwareProcess Experimental

The software process that gives rise to the compute construct.

3.2 ComputePool

This part of the model allows for basic allocation of compute resources.

TR-512.15 Core Information Model – Compute Version 1.6

Page 14 of 31 © 2024 Open Networking Foundation

CoreModel diagram: Compute-ComputePoolDetail

Figure 3-2 Compute Pool

3.2.1 ComputePool

Qualified Name: Compute::ComputePool::ComputePool

A pool that manages ComputePoolEntries. These entries can consist of Storage, Memory and

CPU resources.

This mechanism allows for basic allocation of groups of compute resource.

The pool does allow for some combination of resources but is not modelled as a system of

components, it is simply a basic container.

Inherits properties from:

 GlobalClass

This class is Experimental.

Table 2: Attributes for ComputePool

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_computePoolInputEntry Experimental

The resources provided to the pool.

_computePoolOutputEntry Experimental

The resources exposed by the pool.

_computePoolSegment Experimental

Pool segments (grouping and structures).

TR-512.15 Core Information Model – Compute Version 1.6

Page 15 of 31 © 2024 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

_computePoolransferfunction Experimental

Explains the mapping from the inputs to the pool to the outputs from the

pool, i.e., how the output is produced.

3.2.2 ComputePoolInput

Qualified Name: Compute::ComputePool::ComputePoolInput

A compute capability provided to the pool.

Inherits properties from:

 LocalClass

This class is Experimental.

Table 3: Attributes for ComputePoolInput

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

roleInPool Experimental

Explains the use of the item in the pool and especially with respect to the

mapping.

roleInPoolSegment Experimental

Role (perhaps just position) of the pool item in the related segment.

Provides information on the concatenation process (of either inputs or

outputs).

3.2.3 ComputePoolOutput

Qualified Name: Compute::ComputePool::ComputePoolOutput

A compute capability derived from the pool.

Inherits properties from:

 LocalClass

This class is Experimental.

Table 4: Attributes for ComputePoolOutput

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

roleInPool Experimental

Explains the use of the item in the pool and especially with respect to the

mapping.

TR-512.15 Core Information Model – Compute Version 1.6

Page 16 of 31 © 2024 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

roleInPoolSegment Experimental

Role (perhaps just position) of the pool item in the related segment.

Provides information on the concatenation process (of either inputs or

outputs).

3.2.4 ComputePoolSegment

Qualified Name: Compute::ComputePool::ComputePoolSegment

A grouping of inputs and/or outputs.

Used where several inputs and/or outputs need to be considered as a unit.

Inherits properties from:

 LocalClass

This class is Experimental.

Table 5: Attributes for ComputePoolSegment

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

roleInPool Experimental

Explains the use of the item in the pool and especially with respect to the

mapping.

_computePoolInputEntry Experimental

Collection of inputs where each may have a role stated for the segment.

_computePoolOutputEntry Experimental

Collection of outputss where each may have a role stated for the segment.

3.2.5 ComputePoolTransferFunction

Qualified Name: Compute::ComputePool::ComputePoolTransferFunction

Placeholder.

Explains the mapping between inputs and outputs of the pool.

This class is Experimental.

3.2.6 RoleInPool

Qualified Name: Compute::ComputePool::RoleInPool

The role of the item in the pool.

TR-512.15 Core Information Model – Compute Version 1.6

Page 17 of 31 © 2024 Open Networking Foundation

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 NO_DEFINED_ROLE:

o The item has no defined role, the pool is simply grouping several items.

o Applied stereotypes:

 Experimental

3.3 Compute model data types

CoreModel diagram: Compute-DataTypes

Figure 3-3 Compute Data Tyoes

3.3.1 ProcessingProperties

Qualified Name: Compute::Processing::ProcessingProperties

The properties of the processing capability of a compute construct.

Table 6: Attributes for ProcessingProperties

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

instructionSet Experimental

The identifier of the set of instructions that can be used to manipulate the

processing functionality.

TR-512.15 Core Information Model – Compute Version 1.6

Page 18 of 31 © 2024 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

speedCharacteristic Experimental

A statement of operational performance.

Note that this is a somewhat simplistic property. Speed/performance is far

more complex and requires a temporal treatment.

ProcessorArchitecture Experimental

The identification of the architecture of the processing functionality.

Essentially a reference to a spec.

ProcessorType Experimental

The identification of the specification of the processor.

Note that the processor may be a hardware device or a software emulation.

maxThreads Experimental

Manximum number of threads.

Note that this is a somewhat simplistic property. It requires a temporal

treatment and may have other dependencies.

numberOfCores Experimental

Number of cores.

availability Experimental

A statement of the operational resilience of the function.

isEmulated Experimental

An indication as to whether the function is a native form of the type or is

emergent from a complex system designed to appear to be the type.

media Experimental

Details of the physical realization.

Note that this should migrate to the physical model.

status Experimental

A statement of the operational situation of the function.

3.3.2 StorageProperties

Qualified Name: Compute::Storage::StorageProperties

The properties of the storage capability of a compute construct.

Table 7: Attributes for StorageProperties

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

blockSize Experimental

Where the storage is arranged in blocks, this property provides the size of

the blocks.

capacity Experimental

Size of the storage in total.

storageStrategy Experimental

Defines how the data is stored and accessed.

status Experimental

A statement of the operational situation of the function.

TR-512.15 Core Information Model – Compute Version 1.6

Page 19 of 31 © 2024 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

extentRange Experimental

Represents the range of the extent, i.e., the storage capacity.

isEmulated Experimental

An indication as to whether the function is a native form of the type or is

emergent from a complex system designed to appear to be the type.

isEncrypted Experimental

The data is encrypted.

The encryption scheme is not described here. Further work is required to

detail this area.

errorCorrectionStragegy Experimental

Some mechanism is used to correct errors in the data.

speedCharacteristic Experimental

A statement of operational performance.

Note that this is a somewhat simplistic property. Speed/performance is far

more complex and requires a temporal treatment.

applicationRole Experimental

Indicates the design intent for the application of this storage function.

media Experimental

Details of the physical realization.

Note that this should migrate to the physical model.

3.3.3 StorageStrategy

Qualified Name: Compute::Storage::StorageStrategy

Defines how the data is stored and accessed.

Table 8: Attributes for StorageStrategy

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

readWriteStrategy Experimental

Approach to examine and change of the data stored.

accessStrategy Experimental

Approach to access of the data.

3.3.4 ErrorCorrectionStrategy

Qualified Name: Compute::Storage::ErrorCorrectionStrategyy

Placeholder

Some mechanism is used to correct errors in the data.

The specific mechanism have not yet been modelled.

3.3.5 ExtentRange

Qualified Name: Compute::Storage::ExtentRange

TR-512.15 Core Information Model – Compute Version 1.6

Page 20 of 31 © 2024 Open Networking Foundation

Placeholder.

Represents the range of the extent, i.e., the storage capacity.

Further work is required to develop the form of representation.

3.3.6 Media

Qualified Name: Compute::Media::Media

Details of the physical realization.

Note that this should migrate to the physical model.

Table 9: Attributes for Media

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

mediaType Experimental

Type of the media.

lifetime Experimental

Specification of characteristics of expected operating lifetime.

isPowerDownSafe Experimental

Can be powered down without losing or corrupting state.

speedCharacteristicProfile Experimental

A statement of operational performance.

Includes ROTATION speed for disks.

Note that this is a somewhat simplistic property. Speed/performance is far

more complex and requires a temporal treatment.

removable Experimental

Can be removed during operation.

3.3.7 Lifetime

Qualified Name: Compute::Media::Lifetime

Placeholder.

Specification of characteristics of expected operating lifetime.

3.3.8 SpeedCharacteristic

Qualified Name: Compute::Common::SpeedCharacteristic

A statement of operational performance.

Note that this is a somewhat simplistic property. Speed/performance is far more complex and

requires a temporal treatment.

Table 10: Attributes for SpeedCharacteristic

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

speedCharacteristicName Experimental

Name of the speed characteristic type.

TR-512.15 Core Information Model – Compute Version 1.6

Page 21 of 31 © 2024 Open Networking Foundation

Attribute Name
Lifecycle Stereotype

(empty = Mature)
Description

speedCharacteristicProfile Experimental

Defines the complex speed characteristics.

characteristicNameQualifier Experimental

Additional qualification of the characteristic name (e.g., when there are two

clocks, both will be CLOCK and need to be distinguished).

3.3.9 Status

Qualified Name: Compute::Common::Status

Placeholder.

A statement of the operational situation of the function.

3.3.10 AccessStrategy

Qualified Name: Compute::Storage::AccessStrategy

List of access approaches.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 RANDOM_ACCESS:

o Any individual item of data can be accessed directly with equal performance.

o Applied stereotypes:

 Experimental

 SERIAL_ACCESS:

o Data can be accessed efficiently in series, but accessing the first element of data

takes significant time.

o Applied stereotypes:

 Experimental

3.3.11 ReadWriteStrategy

Qualified Name: Compute::Storage::ReadWriteStrategy

List of read and write combinations.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 READ_ONLY:

o The data can be read but not written.

o Applied stereotypes:

TR-512.15 Core Information Model – Compute Version 1.6

Page 22 of 31 © 2024 Open Networking Foundation

 Experimental

 REWRITABLE:

o The data can be read and written as required.

o Applied stereotypes:

 Experimental

 WRITE_ONCE_ERASE:

o The data can be read as required and can be written one unit at a time but cannot

be changed.

The data can only be errased on mass (all data at once).

o Applied stereotypes:

 Experimental

 WRITE_ONCE:

o Data can be read as required but written only once and never changed or erased.

o Applied stereotypes:

 Experimental

 WRITE_ONLY:

o Data can be written but not read.

o Applied stereotypes:

 Experimental

3.3.12 ApplicationRole

Qualified Name: Compute::Storage::ApplicationRole

List of application roles for a storage function.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 CACHE:

o Temporary storage for frequently accessed data.

o Applied stereotypes:

 Experimental

 LONG_TERM_LOG:

o For storage of large quantities of data where there are essentially no changes, just

additions and the data needs to be stored for a very long duration.

o Applied stereotypes:

 Experimental

 RAM:

o Main memory.

o Applied stereotypes:

 Experimental

3.3.13 SpeedProfile

Qualified Name: Compute::Common::SpeedProfile

TR-512.15 Core Information Model – Compute Version 1.6

Page 23 of 31 © 2024 Open Networking Foundation

Placeholder.

Defines the complex speed characteristics.

Applied stereotypes:

 Experimental

3.3.14 SpeedCharacteristicName

Qualified Name: Compute::Common::SpeedCharacteristicName

List of speed characteristics.

Note that each could have mean, max, min etc.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 CLOCK:

o Clock ticks.

o Applied stereotypes:

 Experimental

 INSTRUCTIONS:

o Instructions in the native language of the processor.

o Applied stereotypes:

 Experimental

 FLOATING_POINT_OPERATIONS:

o Floating point operations.

o Applied stereotypes:

 Experimental

 TRANSFER_RATE:

o Data transfer into/out of the function.

o Applied stereotypes:

 Experimental

 START_UP_DELAY:

o Time from initialization to full operation.

o Applied stereotypes:

 Experimental

 ACCESS_DELAY:

o Delay in gaining access to the function.

o Applied stereotypes:

 Experimental

 OPERATIONS_PER_SECOND:

o Generalized activities per second.

o Applied stereotypes:

 Experimental

 ROTATION:

o Rotation speed of a mechanical device.

TR-512.15 Core Information Model – Compute Version 1.6

Page 24 of 31 © 2024 Open Networking Foundation

o Applied stereotypes:

 Experimental

3.3.15 InstructionSet

Qualified Name: Compute::Processing::InstructionSet

List of the identifiers of the set of instruction sets.

Essentially spec references.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 GENERIC:

o Generic instruction set.

o Applied stereotypes:

 Experimental

3.3.16 ProcessorArchitecture

Qualified Name: Compute::Processing::ProcessorArchitecture

List of identifiers for architectures of processing functionality.

Essentially spec references.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 GENERIC:

o Generic architecture.

o Applied stereotypes:

 Experimental

3.3.17 Availability

Qualified Name: Compute::Processing::Availability

List of statements of the operational resilience of the functions.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 HIGH:

o High operational resilience (nearly always on).

o Applied stereotypes:

 Experimental

TR-512.15 Core Information Model – Compute Version 1.6

Page 25 of 31 © 2024 Open Networking Foundation

 MEDIUM:

o Medium operational resilience (normally running OK).

o Applied stereotypes:

 Experimental

 LOW:

o Low operational resilience (often not functioning).

o Applied stereotypes:

 Experimental

3.3.18 MediaType

Qualified Name: Compute::Media::MediaType

List of types of media.

Applied stereotypes:

 Experimental

Contains Enumeration Literals:

 SOLID_STATE:

o Transistor etc. based with no mechanically active parts.

o Applied stereotypes:

 Experimental

 ROTATING:

o Mechanical and rotating.

o Applied stereotypes:

 Experimental

3.4 Relationship to File System and Software

The following diagram shows the relationships between this compute model and other existing

models, such as the software model described in TR-512.12.

TR-512.12_OnfCoreIm-Software.pdf

TR-512.15 Core Information Model – Compute Version 1.6

Page 26 of 31 © 2024 Open Networking Foundation

CoreModel diagram: Compute-ComputeAndSoftware

Figure 3-4 Compute and Software

TR-512.15 Core Information Model – Compute Version 1.6

Page 27 of 31 © 2024 Open Networking Foundation

4 A simple compute example

This simple example shows how the concepts in the model fit together. The figure below shows

an assembly of hardware.

Chassis

FRU2
FRU1

CPU

FRU3

SSD

Mem3

Mem2

Mem1

FRU4

Figure 4-1 - Simple Compute hardware example

The instance representation below shows how a slice of the capability of the hardware can be

represented using the compute model. Not all of the hardware is required in the slice depicted

and some associations in the software model are omitted.

TR-512.15 Core Information Model – Compute Version 1.6

Page 28 of 31 © 2024 Open Networking Foundation

CoreModel diagram: Compute-SimpleCompute

Figure 4-2 Compute example instance diagram

TR-512.15 Core Information Model – Compute Version 1.6

Page 29 of 31 © 2024 Open Networking Foundation

5 Model considerations

5.1 Pooling

The decision was made to have a single compute pool rather than separate Storage, CPU and

memory pools
2
, because :

• CPU and memory are usually tightly coupled (via the CPU and memory buses) and the

pool can then allocate these consistently

• Sometimes storage is tightly coupled with CPU and memory and the pool can then

allocate these consistently (local attached un-sharable storage)

The pools aren't hierarchical, i.e., there is not a self-join association on ComputePool

(deliberately), because:

• The association StorageExtentPoolEntryIsLogical allows an output from one pool to

become the input of another pool

• The structure needs to form a directed acyclic graph (no loops)

Note that there is no association linking the pool inputs and outputs. The

ComputePoolTransferFunction will determine the order and association between inputs and

outputs. In addition, the ordering of the inputs allows the input-to-output extent mapping to be

determined in simple cases.

It is assumed that there will be a large number of simple pools rather than few large complex

pools with complex mappings.

5.2 Partitioning and Aggregation

The partitioning and aggregation of CPU and memory is subtly different from that of Storage.

With Storage, in theory each extent can be considered separately. Some extents could come from

a disk A, some from disk B. With a sensible pool allocation there is no need to worry about

segmenting the pool.

With CPU and storage, we have 2 issues :

1. The pool needs to remember and enforce segmentation (resource chunks)

2. The pool needs to pair CPU and Memory segments

For example, if there are 2 blade servers Blade-A and Blade-B.

 A software process cannot be allocated a CPU from Blade-A and memory from Blade-B.

 A software thread cannot be allocated half its CPU requirements from Blade-A and half

from Blade-B.

 A software thread cannot be allocated half its memory requirements from Blade-A and

half from Blade-B.

2
 Note that this document only considers CPU and memory entries.

TR-512.15 Core Information Model – Compute Version 1.6

Page 30 of 31 © 2024 Open Networking Foundation

A multi-threaded application may be able to run across multiple CPU/memory pairs, but it would

have to know the segmentation.

This model will use the following :

 ComputePoolSegment is defined to allow the definition of 'segments'

 Inputs to the pool can be optionally assigned to a segment

 Each pool input/output may optionally be related to one segment

 If an input entry relates to a segment, then no output can be assigned that 'crosses' the

segment (i.e., each output can only relate to 1 segment)

 Multiple inputs can only be combined if both do not relate to a segment or if both relate

to the same segment

 If an input entry is related to a segment, then it should be propagated to any outputs that

relate to the same segment

 If a CPU output relates to a segment, then it can only be used with memory that relates to

the same segment (and visa-versa)

 Each segment should have its own internal number range in the pool

5.3 Items for Further Investigation

5.3.1 ComputePoolTransferFunction

This is currently a placeholder. The transfer function model will be developed in a future release.

The model should take advantage of the work on the modeling of Task and

ViewMappingFunction both of which have elements of transfer function. The work will also

need to leverage the spec model patterns.

The transfer function in this model is intended to be basic. A more sophisticated form could be

developed.

5.3.2 Application of specification model

The spec model approach should be applied to all aspects of this model.

Some of the properties of the compute and storage could be moved to spec model occurrences.

5.3.3 Physical model considerations

The physical model should be extended to cover media type which should then be removed from

this document.

Rotation properties should also be considered in the context of the physical model and removed

from this document. However, application of rotation properties may not be straightforward as

rotation is physical behavior and the current physical model focusses (intentionally) on physical

inventory. The rotation consideration has similar challenges to temperature and power (both of

which overload the physical model).

Similarly, the concept of removable media belongs to the physical model. This could be covered

by the equipment in holder structure.

TR-512.15 Core Information Model – Compute Version 1.6

Page 31 of 31 © 2024 Open Networking Foundation

5.3.4 Component-System Pattern

The component-system pattern has been mentioned in this document, but it has not been fully

expanded in the model described in this document.

The ComputeConstruct should align more strongly with the component-system pattern and the

"..emergent.." associations should be worked further (as there is mapping complexity hidden in

these associations). It could be argued that the ViewMappingFunction is necessarily present in

the relationship between a system and the apparent emergent component. This should be

explored further.

5.3.5 Application of various recursive structure patterns

There are various recursive structures that can be assembled using objects from the models

described in TR-512. As shown in this document, the compute model and the software model

can be used in a recursive fashion (see section 4 A simple compute example on page 27, which

shows a recursion of ComputeConstruct). These structures can give rise to processing constructs,

transport functions and control functions which can be assembled to provide network structures

that interconnect physical devices that give rise to processing constructs and compute, i.e., can

form a larger scale recursion.

These recursive structures can be applied to model real world deployments. Not all recursive

structures will appear in real world deployments and some that do appear will not be useful from

the perspective of control and management of those deployments.

It will be helpful, in follow-on work, to analyze structures and recursions to identify those that

usefully represent real world deployments and to capture these in the form of formally described

patterns and in the form of examples.

These patterns and examples can then be used to both inform solutions and to reduce

unnecessary variety via emergence of common practice and via standardization which in turn

will reduce integration cost/complexity and improve overall efficiency.

5.3.6 Other areas

What units should be defined for memory sizes, for CPU clock speed etc.

Note that:

 Kubernetes works in units of CPU, where "One CPU, in Kubernetes, is equivalent to

a Hyperthread on a bare-metal Intel processor with Hyperthreading"

 A CPU hardware thread is also called a vCPU (virtual CPU)

Zone size needs to be defined (block, sector, byte…).

The implications of address and data bus limitations needs to be explored.

End of Document

	Disclaimer
	Open Networking Foundation
	Important note
	Document History
	1 Introduction
	1.1 References
	1.2 Definitions
	1.3 Conventions
	1.4 Viewing UML diagrams
	1.5 Understanding the figures

	2 Introduction to Compute
	2.1 Background
	2.1.1 CPU
	2.1.2 Memory
	2.1.3 Storage
	2.1.3.1 Challenges
	2.1.3.2 Storage Options
	2.1.3.3 Data "at rest"

	2.2 Storage Extent
	2.3 Partitioning and Aggregation
	2.4 Storage Pooling

	3 Compute model and context
	3.1 ComputeConstruct positioning
	3.1.1 ComputeConstruct

	3.2 ComputePool
	3.2.1 ComputePool
	3.2.2 ComputePoolInput
	3.2.3 ComputePoolOutput
	3.2.4 ComputePoolSegment
	3.2.5 ComputePoolTransferFunction
	3.2.6 RoleInPool

	3.3 Compute model data types
	3.3.1 ProcessingProperties
	3.3.2 StorageProperties
	3.3.3 StorageStrategy
	3.3.4 ErrorCorrectionStrategy
	3.3.5 ExtentRange
	3.3.6 Media
	3.3.7 Lifetime
	3.3.8 SpeedCharacteristic
	3.3.9 Status
	3.3.10 AccessStrategy
	3.3.11 ReadWriteStrategy
	3.3.12 ApplicationRole
	3.3.13 SpeedProfile
	3.3.14 SpeedCharacteristicName
	3.3.15 InstructionSet
	3.3.16 ProcessorArchitecture
	3.3.17 Availability
	3.3.18 MediaType

	3.4 Relationship to File System and Software

	4 A simple compute example
	5 Model considerations
	5.1 Pooling
	5.2 Partitioning and Aggregation
	5.3 Items for Further Investigation
	5.3.1 ComputePoolTransferFunction
	5.3.2 Application of specification model
	5.3.3 Physical model considerations
	5.3.4 Component-System Pattern
	5.3.5 Application of various recursive structure patterns
	5.3.6 Other areas

